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Abstract

We present MultiGranCNN, a general
deep learning architecture for matching
text chunks. MultiGranCNN supports
multigranular comparability of represen-
tations: shorter sequences in one chunk
can be directly compared to longer se-
quences in the other chunk. Multi-
GranCNN also contains a flexible and
modularized match feature component
that is easily adaptable to different types
of chunk matching. We demonstrate state-
of-the-art performance of MultiGranCNN
on clause coherence and paraphrase iden-
tification tasks.

1 Introduction

Many natural language processing (NLP) tasks
can be posed as classifying the relationship be-
tween two TEXTCHUNKS (cf. Li et al. (2012),
Bordes et al. (2014b)) where a TEXTCHUNK can
be a sentence, a clause, a paragraph or any other
sequence of words that forms a unit.

Paraphrasing (Figure 1, top) is one task that we
address in this paper and that can be formalized
as classifying a TEXTCHUNK relation. The two
classes correspond to the sentences being (e.g.,
the pair <p, q+>) or not being (e.g., the pair
<p, q−>) paraphrases of each other. Another
task we look at is clause coherence (Figure 1, bot-
tom). Here the two TEXTCHUNK relation classes
correspond to the second clause being (e.g., the
pair <x, y+>) or not being (e.g., the pair <x,
y−>) a discourse-coherent continuation of the
first clause. Other tasks that can be formalized
as TEXTCHUNK relations are question answering
(QA) (is the second chunk an answer to the first?),
textual inference (does the first chunk imply the
second?) and machine translation (are the two
chunks translations of each other?).

p
PDC will also almost certainly fan the flames of
speculation about Longhorn’s release.

q+ PDC will also almost certainly reignite speculation
about release dates of Microsoft ’s new products.

q− PDC is indifferent to the release of Longhorn.
x The dollar suffered its worst one-day loss in a month,
y+ falling to 1.7717 marks . . . from 1.7925 marks yesterday.
y− up from 112.78 yen in late New York trading yesterday.

Figure 1: Examples for paraphrasing and clause
coherence tasks

In this paper, we present MultiGranCNN, a gen-
eral architecture for TEXTCHUNK relation classi-
fication. MultiGranCNN can be applied to a broad
range of different TEXTCHUNK relations. This is
a challenge because natural language has a com-
plex structure – both sequential and hierarchical –
and because this structure is usually not parallel
in the two chunks that must be matched, further
increasing the difficulty of the task. A successful
detection algorithm therefore needs to capture not
only the internal structure of TEXTCHUNKS, but
also the rich pattern of their interactions.

MultiGranCNN is based on two innovations
that are critical for successful TEXTCHUNK re-
lation classification. First, the architecture is de-
signed to ensure multigranular comparability. For
general matching, we need the ability to match
short sequences in one chunk with long sequences
in the other chunk. For example, what is expressed
by a single word in one chunk (“reignite” in q+

in the figure) may be expressed by a sequence of
several words in its paraphrase (“fan the flames
of” in p). To meet this objective, we learn rep-
resentations for words, phrases and the entire sen-
tence that are all mutually comparable; in particu-
lar, these representations all have the same dimen-
sionality and live in the same space.

Most prior work (e.g., Blacoe and Lapata (2012;
Hu et al. (2014)) has neglected the need for multi-
granular comparability and performed matching
within fixed levels only, e.g., only words were
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matched with words or only sentences with sen-
tences. For a general solution to the problem of
matching, we instead need the ability to match a
unit on a lower level of granularity in one chunk
with a unit on a higher level of granularity in the
other chunk. Unlike (Socher et al., 2011), our
model does not rely on parsing and it can more ex-
haustively search the hypothesis space of possible
matchings, including matchings that correspond to
conflicting segmentations of the input chunks (see
Section 5).

Our second contribution is that MultiGranCNN
contains a flexible and modularized match feature
component. This component computes the ba-
sic features that measure how well phrases of the
two chunks match. We investigate three different
match feature models that demonstrate that a wide
variety of different match feature models can be
implemented. The match feature models can be
swapped in and out of MultiGranCNN, depending
on the characteristics of the task to be solved.

Prior work that has addressed matching tasks
has usually focused on a single task like QA (Bor-
des et al., 2014a; Yu et al., 2014) or paraphrasing
(Socher et al., 2011; Madnani et al., 2012; Ji and
Eisenstein, 2013). The ARC architectures pro-
posed by Hu et al. (2014) are intended to be more
general, but seem to be somewhat limited in their
flexibility to model different matching relations;
e.g., they do not perform well for paraphrasing.

Different match feature models may also be re-
quired by factors other than the characteristics of
the task. If the amount of labeled training data is
small, then we may prefer a match feature model
with few parameters that is robust against overfit-
ting. If there is lots of training data, then a richer
match feature model may be the right choice.
This motivates the need for an architecture like
MultiGranCNN that allows selection of the task-
appropriate match feature model from a range of
different models and its seamless integration into
the architecture.

In remaining parts, Section 2 introduces some
related work; Section 3 gives an overview of the
proposed MultiGranCNN; Section 4 shows how to
learn representations for generalized phrases (g-
phrases); Section 5 describes the three matching
models: DIRECTSIM, INDIRECTSIM and CON-
CAT; Section 6 describes the two 2D pooling
methods: grid-based pooling and phrase-based
pooling; Section 7 describes the match feature

CNN; Section 8 summarizes the architecture of
MultiGran CNN; and Section 9 presents experi-
ments; finally, Section 10 concludes.

2 Related Work

Paraphrase identification (PI) is a typical task of
sentence matching and it has been frequently stud-
ied (Qiu et al., 2006; Blacoe and Lapata, 2012;
Madnani et al., 2012; Ji and Eisenstein, 2013).
Socher et al. (2011) utilized parsing to model the
hierarchical structure of sentences and uses un-
folding recursive autoencoders to learn represen-
tations for single words and phrases acting as non-
leaf nodes in the tree. The main difference to
MultiGranCNN is that we stack multiple convo-
lution layers to model flexible phrases and learn
representations for them, and aim to address more
general sentence correspondence. Bach et al.
(2014) claimed that elementary discourse units ob-
tained by segmenting sentences play an important
role in paraphrasing. Their conclusion also en-
dorses (Socher et al., 2011)’s and our work, for
both take interactions between component phrases
into account.

QA is another representative sentence matching
problem. Yu et al. (2014) modeled sentence rep-
resentations in a simplified CNN, finally finding
the match score by projecting question and answer
candidates into the same space. Other relevant QA
work includes (Bordes et al., 2014c; Bordes et al.,
2014a; Yang et al., 2014; Iyyer et al., 2014)

For more general matching, Chopra et al. (2005)
and Liu (2013) used a Siamese architecture of
shared-weight neural networks (NNs) to model
two objects simultaneously, matching their repre-
sentations and then learning a specific type of sen-
tence relation. We adopt parts of their architec-
ture, but we model phrase representations as well
as sentence representations.

Li and Xu (2012) gave a comprehensive intro-
duction to query-document matching and argued
that query and document match at different levels:
term, phrase, word sense, topic, structure etc. This
also applies to sentence matching.

Lu and Li (2013) addressed matching of short
texts. Interactions between the two texts were ob-
tained via LDA (Blei et al., 2003) and were then
the basis for computing a matching score. Com-
pared to MultiGranCNN, drawbacks of this ap-
proach are that LDA parameters are not optimized
for the specific task and that the interactions are
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formed on the level of single words only.
Gao et al. (2014) modeled interestingness be-

tween two documents with deep NNs. They
mapped source-target document pairs to feature
vectors in a latent space in such a way that the dis-
tance between the source document and its corre-
sponding interesting target in that space was min-
imized. Interestingness is more like topic rele-
vance, based mainly on the aggregated meaning
of keywords, as opposed to more structural rela-
tionships as is the case for paraphrasing and clause
coherence.

We briefly discussed (Hu et al., 2014)’s ARC in
Section 1. MultiGranCNN is partially inspired by
ARC, but introduces multigranular comparability
(thus enabling crosslevel matching) and supports
a wider range of match feature models.

Our unsupervised learning component (Sec-
tion 4, last paragraph) resembles word2vec
CBOW (Mikolov et al., 2013), but learns repre-
sentations of TEXTCHUNKS as well as words. It
also resembles PV-DM (Le and Mikolov, 2014),
but our TEXTCHUNK representation is derived us-
ing a hierarchical architecture based on convolu-
tion and pooling.

3 Overview of MultiGranCNN

We use convolution-plus-pooling in two differ-
ent components of MultiGranCNN. The first com-
ponent, the generalized phrase CNN (gpCNN),
will be introduced in Section 4. This component
learns representations for generalized phrases (g-
phrases) where a generalized phrase is a general
term for subsequences of all granularities: words,
short phrases, long phrases and the sentence itself.
The gpCNN architecture has L layers of convolu-
tion, corresponding (for L = 2) to words, short
phrases, long phrases and the sentence. We test
different values of L in our experiments. We train
gpCNN on large data in an unsupervised manner
and then fine-tune it on labeled training data.

Using a Siamese configuration, two copies
of gpCNN, one for each of the two input
TEXTCHUNKS, are the input to the match feature
model, presented in Section 5. This model pro-
duces s1× s2 matching features, one for each pair
of g-phrases in the two chunks, where s1, s2 are
the number of g-phrases in the two chunks, respec-
tively.

The s1×s2 match feature matrix is first reduced
to a fixed size by dynamic 2D pooling. The re-

sulting fixed size matrix is then the input to the
second convolution-plus-pooling component, the
match feature CNN (mfCNN) whose output is fed
to a multilayer perceptron (MLP) that produces
the final match score. Section 6 will give details.

We use convolution-plus-pooling for both word
sequences and match features because we want to
compute increasingly abstract features at multiple
levels of granularity. To ensure that g-phrases are
mutually comparable when computing the s1× s2
match feature matrix, we impose the constraint
that all g-phrase representations live in the same
space and have the same dimensionality.

Figure 2: gpCNN: learning g-phrase representa-
tions. This figure only shows two convolution lay-
ers (i.e., L = 2) for saving space.

4 gpCNN: Learning Representations for
g-Phrases

We use several stacked blocks, i.e., convolution-
plus-pooling layers, to extract increasingly ab-
stract features of the TEXTCHUNK. The input to
the first block are the words of the TEXTCHUNK,
represented by CW (Collobert and Weston, 2008)
embeddings. Given a TEXTCHUNK of length |S|,
let vector ci ∈ Rwd be the concatenated embed-
dings of words vi−w+1, . . . , vi where w = 5 is the
filter width, d = 50 is the dimensionality of CW
embeddings and 0 < i < |S| + w. Embeddings
for words vi, i < 1 and i > |S|, are set to zero.
We then generate the representation pi ∈ Rd of
the g-phrase vi−w+1, . . . , vi using the convolution
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matrix Wl ∈ Rd×wd:

pi = tanh(Wlci + bl) (1)

where block index l = 1, bias bl ∈ Rd. We use
wide convolution (i.e., we apply the convolution
matrix Wl to words vi, i < 1 and i > |S|) because
this makes sure that each word vi, 1 ≤ i ≤ |S|,
can be detected by all weights of Wl – as opposed
to only the rightmost (resp. leftmost) weights for
initial (resp. final) words in narrow convolution.

The configuration of convolution layers in fol-
lowing blocks (l > 1) is exactly the same except
that the input vectors ci are not words, but the out-
put of pooling from the previous layer of convo-
lution – as we will explain presently. The con-
figuration is the same (e.g., all Wl ∈ Rd×wd) be-
cause, by design, all g-phrase representations have
the same dimensionality d. This also ensures that
each g-phrase representation can be directly com-
pared with each other g-phrase representation.

We use dynamic k-max pooling to extract the kl

top values from each dimension after convolution
in the lth block and the kL top values in the final
block. We set

kl = max(α, dL− l
L
|S|e) (2)

where l = 1, · · · , L is the block index, and α = 4
is a constant (cf. Kalchbrenner et al. (2014)) that
makes sure a reasonable minimum number of val-
ues is passed on to the next layer. We set kL = 1
(not 4, cf. Kalchbrenner et al. (2014)) because our
design dictates that all g-phrase representations,
including the representation of the TEXTCHUNK

itself, have the same dimensionality. Example: for
L = 4, |S| = 20, the ki are [15, 10, 5, 1].

Dynamic k-max pooling keeps the most impor-
tant features and allows us to stack multiple blocks
to extract hiearchical features: units on consec-
utive layers correspond to larger and larger parts
of the TEXTCHUNK thanks to the subset selection
property of pooling.

For many tasks, labeled data for training
gpCNN is limited. We therefore employ unsu-
pervised training to initialize gpCNN as shown in
Figure 2. Similar to CBOW (Mikolov et al., 2013),
we predict a sampled middle word vi from the av-
erage of seven vectors: the TEXTCHUNK repre-
sentation (the final output of gpCNN) and the three
words to the left and to the right of vi. We use
noise-contrastive estimation (Mnih and Teh, 2012)
for training: 10 noise words are sampled for each
true example.

Figure 3: General illustration of match feature
model. In this example, both S1 and S2 have 10 g-
phrases, so the match feature matrix F̂ ∈ Rs1×s2

has size 10× 10.

5 Match Feature Models

Let g1, . . . , gsk
be an enumeration of the sk g-

phrases of TEXTCHUNK Sk. Let Sk ∈ Rsk×d be
the matrix, constructed by concatenating the four
matrices of unigram, short phrase, long phrase and
sentence representations shown in Figure 2 that
contain the learned representations from Section 4
for these sk g-phrases; i.e., row Ski is the learned
representation of gi.

The basic design of a match feature model is
that we produce an s1 × s2 matrix F̂ for a pair
of TEXTCHUNKS S1 and S2, shown in Figure 3.
F̂i,j is a score that assesses the relationship be-
tween g-phrase gi of S1 and g-phrase gj of S2

with respect to the TEXTCHUNK relation of in-
terest (paraphrasing, clause coherence etc). This
score F̂i,j is computed based on the vector repre-
sentations S1i and S2j of the two g-phrases.1

We experiment with three different feature
models to compute the match score F̂i,j because
we would like our architecture to address a wide
variety of different TEXTCHUNK relations. We
can model a TEXTCHUNK relation like paraphras-
ing as “for each meaning element in one sentence,
there must be a similar meaning element in the
other sentence”; thus, a good candidate for the
match score F̂i,j is simply vector similarity. In
contrast, similarity is a less promising match score
for clause coherence; for clause coherence, we
want a score that models how good a continuation
one g-phrase is for the other. These considerations
motivate us to define three different match feature
models that we will introduce now.

The first match feature model is DIRECTSIM.
1In response to a reviewer question, recall that si is the

total number of g-phrases of Si, so there is only one s1 × s2

matrix, not several on different levels of granularity.
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Figure 4: CONCAT match feature model

This model computes the match score of two g-
phrases as their similarity using a radial basis
function kernel:

F̂i,j = exp(
−||S1i − S2j ||2

2β
) (3)

where we set β = 2 (cf. Wu et al. (2013)).
DIRECTSIM is an appropriate feature model for
TEXTCHUNK relations like paraphrasing because
in that case direct similarity features are helpful in
assessing meaning equivalence.

The second match feature model is INDIRECT-
SIM. Instead of computing the similarity di-
rectly as we do for DIRECTSIM, we first trans-
form the representation of the g-phrase in one
TEXTCHUNK using a transformation matrix M ∈
Rd×d, then compute the match score by inner
product and sigmoid activation:

F̂i,j = σ(S1iMST
2j + b), (4)

Our motivation is that for a TEXTCHUNK rela-
tion like clause coherence, the two TEXTCHUNKS

need not have any direct similarity. However, if we
map the representations of TEXTCHUNK S1 into
an appropriate space then we can hope that sim-
ilarity between these transformed representations
of S1 and the representations of TEXTCHUNK S2

do yield useful features. We will see that this hope
is borne out by our experiments.

The third match feature model is CONCAT. This
is a general model that can learn any weighted
combination of the values of the two vectors:

F̂i,j = σ(wTei,j + b) (5)

where ei,j ∈ R2d is the concatenation of S1i and
S2j . We can learn different combination weights
w to solve different types of TEXTCHUNK match-
ing.

We call this match feature model CONCAT be-
cause we implement it by concatenating g-phrase
vectors to form a tensor as shown in Figure 4.

The match feature models implement multi-
granular comparability: they match all units in
one TEXTCHUNK with all units in the other
TEXTCHUNK. This is necessary because a gen-
eral solution to matching must match a low-level
unit like “reignite” to a higher-level unit like “fan
the flames of” (Figure 1). Unlike (Socher et al.,
2011), our model does not rely on parsing; there-
fore, it can more exhaustively search the hypoth-
esis space of possible matchings: mfCNN covers
a wide variety of different, possibly overlapping
units, not just those of a single parse tree.

6 Dynamic 2D Pooling

The match feature models generate an s1×s2 ma-
trix. Since it has variable size, we apply two dif-
ferent dynamic 2D pooling methods, grid-based
pooling and phrase-focused pooling, to transform
it to a fixed size matrix.

6.1 Grid-based pooling

We need to map F̂ ∈ Rs1×s2 into a matrix F of
fixed size s∗ × s∗ where s∗ is a parameter. Grid-
based pooling divides F̂ into s∗ × s∗ nonover-
lapping (dynamic) pools and copies the maximum
value in each dynamic pool to F. This method is
similar to (Socher et al., 2011), but preserves lo-
cality better.

F̂ can be split into equal regions only if both s1
and s2 are divisible by s∗. Otherwise, for s1 > s∗

and if s1 mod s∗ = b, the dynamic pools in the
first s∗ − b splits each have

⌊
s1
s∗
⌋

rows while the
remaining b splits each have

⌊
s1
s∗
⌋

+ 1 rows. In
Figure 5, a s1 × s2 = 4 × 5 matrix (left) is split
into s∗×s∗ = 3×3 dynamic pools (middle): each
row is split into [1, 1, 2] and each column is split
into [1, 2, 2].

If s1 < s∗, we first repeat all rows in batch style
with size s1 until no fewer than s∗ rows remain.
Then the first s∗ rows are kept and split into s∗

dynamic pools. The same principle applies to the
partitioning of columns. In Figure 5 (right), the ar-
eas with dashed lines and dotted lines are repeated
parts for rows and columns, respectively; each cell
is its own dynamic pool.

6.2 Phrase-focused pooling

In the match feature matrix F̂ ∈ Rs1×s2 , row i
(resp. column j) contains all feature values for g-
phrase gi of S1 (resp. gj of S2). Phrase-focused
pooling attempts to pick the largest match features
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Figure 5: Partition methods in grid-based pooling. Original matrix with size 4× 5 is mapped into matrix
with size 3× 3 and matrix with size 6× 7, respectively. Each dynamic pool is distinguished by a border
of empty white space around it.

for a g-phrase g on the assumption that they are the
best basis for assessing the relation of g with other
g-phrases. To implement this, we sort the values
of each row i (resp. each column j) in decreasing
order giving us a matrix F̂r ∈ Rs1×s2 with sorted
rows (resp. F̂c ∈ Rs1×s2 with sorted columns).
Then we concatenate the columns of F̂r (resp. the
rows of F̂c) resulting in list Fr = {f r

1 , . . . , f
r
s1s2
}

(resp. Fc = {f c
1 , . . . , f

c
s1s2
}) where each f r (f c) is

an element of F̂r (F̂c). These two lists are merged
into a list F by interleaving them so that members
from Fr and Fc alternate. F is then used to fill the
rows of F from top to bottom with each row being
filled from left to right.2

7 mfCNN: Match feature CNN

The output of dynamic 2D pooling is further pro-
cessed by the match feature CNN (mfCNN) as de-
picted in Figure 6. mfCNN extracts increasingly
abstract interaction features from lower-level in-
teraction features, using several layers of 2D wide
convolution and fixed-size 2D pooling.

We call the combination of a 2D wide convo-
lution layer and a fixed-size 2D pooling layer a
block, denoted by index b (b = 1, 2 . . .). In gen-
eral, let tensor Tb ∈ Rcb×sb×sb denote the fea-
ture maps in block b; block b has cb feature maps,
each of size sb × sb (T1 = F ∈ R1×s∗×s∗). Let
Wb ∈ Rcb+1×cb×fb×fb be the filter weights of 2D
wide convolution in block b, fb×fb is then the size
of sliding convolution regions. Then the convolu-
tion is performed as element-wise multiplication

2If F̂ has fewer cells than F, then we simply repeat the
filling procedure to fill all cells.

between Wb and Tb as follows:

T̂b+1
m,i−1,j−1 = σ(

∑
Wb

m,:,:,:T
b
:,i−fb:i,j−fb:j

+bb
m)
(6)

where 0≤m<cb+1, 1 ≤ i, j < sb+fb, bb ∈ Rcb+1 .
Subsequently, fixed-size 2D pooling selects

dominant features from kb × kb non-overlapping
windows of T̂b+1 to form a tensor as input of
block b+ 1:

Tb+1
m,i,j = max(T̂b+1

m,ikb:(i+1)kb,jkb:(j+1)kb
) (7)

where 0 ≤ i, j < b sb+fb−1
kb
c.

Hu et al. (2014) used narrow convolution which
would limit the number of blocks. 2D wide convo-
lution in this work enables to stack multiple blocks
of convolution and pooling to extract higher-level
interaction features. We will study the influence of
the number of blocks on performance below.

For the experiments, we set s∗ = 40, cb =
50, fb = 5, kb = 2 (b = 1, 2, · · ·).
8 MultiGranCNN

We can now describe the overall architecture of
MultiGranCNN. First, using a Siamese configu-
ration, two copies of gpCNN, one for each of
the two input TEXTCHUNKS, produce g-phrase
representations on different levels of abstraction
(Figure 2). Then one of the three match feature
models (DIRECTSIM, CONCAT or INDIRECTSIM)
produces an s1 × s2 match feature matrix, each
cell of which assesses the match of a pair of g-
phrases from the two chunks. This match feature
matrix is reduced to a fixed size matrix by dy-
namic 2D pooling (Section 6). As shown in Fig-
ure 6, the resulting fixed size matrix is the input
for mfCNN, which extracts interaction features of
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Figure 6: mfCNN & MLP for matching score learning. s∗ = 10, fb = 5, kb = 2, cb = 4 in this example.

increasing complexity from the basic interaction
features computed by the match feature model. Fi-
nally, the output of the last block of mfCNN is the
input to an MLP that computes the match score.

MultiGranCNN bears resemblance to previous
work on clause and sentence matching (e.g., Hu
et al. (2014), Socher et al. (2011)), but it is more
general and more flexible. It learns representa-
tions of g-phrases, i.e., representations of parts of
the TEXTCHUNK at multiple granularities, not just
for a single level such as the sentence as ARC-I
does (Hu et al., 2014). MultiGranCNN explores
the space of interactions between the two chunks
more exhaustively by considering interactions be-
tween every unit in one chunk with every other
unit in the other chunk, at all levels of granular-
ity. Finally, MultiGranCNN supports a number of
different match feature models; the corresponding
module can be instantiated in a way that ensures
that match features are best suited to support ac-
curate decisions on the TEXTCHUNK relation task
that needs to be addressed.

9 Experimental Setup and Results

9.1 Training
Suppose the triple (x,y+,y−) is given and x
matches y+ better than y−. Then our objective
is the minimization of the following ranking loss:

l(x,y+,y−) = max(0, 1 + s(x,y−)− s(x,y+))

where s(x,y) is the predicted match score for
(x,y). We use stochastic gradient descent with
Adagrad (Duchi et al., 2011), L2 regularization
and minibatch training.

We set initial learning rate to 0.05, batch size to
70, L2 weight to 5 · 10−4.

Recall that we employ unsupervised pretraining
of representations for g-phrases. We can either

freeze these representations in subsequent super-
vised training; or we can fine-tune them. We study
the performance of both regimes.

9.2 Clause Coherence Task

As introduced by Hu et al. (2014), the clause
coherence task determines for a pair (x,y) of
clauses if the sentence “xy” is a coherent sen-
tence. We construct a clause coherence dataset
as follows (the set used by Hu et al. (2014) is not
yet available). We consider all sentences from En-
glish Gigaword (Parker et al., 2009) that consist of
two comma-separated clauses x and y, with each
clause having between five and 30 words. For each
y, we choose four clauses y′ . . .y′′′′ randomly
from the 1000 second clauses that have the highest
similarity to y, where similarity is cosine similar-
ity of TF-IDF vectors of the clauses; restricting
the alternatives to similar clauses ensures that the
task is hard. The clause coherence task then is to
select y from the set y,y′, . . . ,y′′′′ as the correct
continuation of x. We create 21 million examples,
each consisting of a first clause x and five second
clauses. This set is divided into a training set of
19 million and development and test sets of one
million each. An example from the training set is
given in Figure 1.

Then, we study the performance variance of
different MultiGranCNN setups from three per-
spectives: a) layers of CNN in both unsuper-
vised (gpCNN) and supervised (mfCNN) training
phases; b) different approaches for clause relation
feature modeling; c) dynamic pooling methods for
generating same-sized feature matrices.

Figure 7 (top table) shows that (Hu et al.,
2014)’s parameters are good choices for our setup
as well. We get best result when both gpCNN
and mfCNN have three blocks of convolution and
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pooling. This suggests that multiple layers of con-
volution succeed in extracting high-level features
that are beneficial for clause coherence.

Figure 7 (2nd table) shows that INDIRECTSIM

and CONCAT have comparable performance and
both outperform DIRECTSIM. DIRECTSIM is ex-
pected to perform poorly because the contents in
the two clauses usually have little or no overlap-
ping meaning. In contrast, we can imagine that
INDIRECTSIM first transforms the first clause x
into a counterpart and then matches this counter-
part with the second clause y. In CONCAT, each
of s1×s2 pairs of g-phrases is concatentated and
supervised training can then learn an unrestricted
function to assess the importance of this pair for
clause coherence (cf. Eq. 5). Again, this is clearly
a more promising TEXTCHUNK relation model for
clause coherence than one that relies on DIRECT-
SIM.

acc
mfCNN

0 1 2 3

gp
C

N
N 0 38.02 44.08 47.81 48.43

1 40.91 45.31 51.73 52.13
2 43.10 48.06 54.14 54.86
3 45.62 51.77 55.97 56.31

match feature model acc
DIRECTSIM 25.40
INDIRECTSIM 56.31
CONCAT 56.12

freeze g-phrase represenations or not acc
MultiGranCNN (freeze) 55.79
MultiGranCNN (fine-tune) 56.31

pooling method acc
dynamic (Socher et al., 2011) 55.91
grid-based 56.07
phrase-focused 56.31

Figure 7: Effect on dev acc (clause coherence) of
different factors: # convolution blocks, match fea-
ture model, freeze vs. fine-tune, pooling method.

Figure 7 (3rd table) demonstrates that fine-
tuning g-phrase representations gives better per-
formance than freezing them. Also, grid-based
and phrase-focused pooling outperform dynamic
pooling (Socher et al., 2011) (4th table). Phrase-
focused pooling performs best.

Table 1 compares MultiGranCNN to ARC-I and
ARC-II, the architectures proposed by Hu et al.

(2014). We also test the five baseline systems
from their paper: DeepMatch, WordEmbed, SEN-
MLP, SENNA+MLP, URAE+MLP. For Multi-
GranCNN, we use the best dev set settings: num-
ber of convolution layers in gpCNN and mfCNN
is 3; INDIRECTSIM; phrase-focused pooling. Ta-
ble 1 shows that MultiGranCNN outperforms all
other approaches on clause coherence test set.

9.3 Paraphrase Identification Task

We evaluate paraphrase identification (PI) on the
PAN corpus (http://bit.ly/mt-para, (Madnani et al.,
2012)), consisting of training and test sets of
10,000 and 3000 sentence pairs, respectively. Sen-
tences are about 40 words long on average.

Since PI is a binary classification task, we re-
place the MLP with a logistic regression layer. As
phrase-focused pooling was proven to be optimal,
we directly use phrase-focused pooling in PI task
without comparison, assuming that the choice of
dynamic pooling is task independent.

For parameter selection, we split the PAN train-
ing set into a core training set (core) of size 9000
and a development set (dev) of size 1000. We
then train models on core and select parameters
based on best performance on dev. The best re-
sults on dev are obtained for the following param-
eters: freezing g-phrase representations, DIRECT-
SIM, two convolution layers in gpCNN, no convo-
lution layers in mfCNN. We use these parameter
settings to train a model on the entire training set
and report performance in Table 2.

We compare MultiGranCNN to ARC-I/II (Hu
et al., 2014), and two previous papers reporting
performance on PAN. Madnani et al. (2012) used
a combination of three basic MT metrics (BLEU,
NIST and TER) and five complex MT met-
rics (TERp, METEOR, BADGER, MAXISIM,

model acc
Random Guess 20.00
DeepMatch 34.17
WordEmbed 38.28
SENMLP 34.57
SENNA+MLP 42.09
URAE+MLP 27.41
ARC-I 45.04
ARC-II 50.18
MultiGranCNN 56.27

Table 1: Performance on clause coherence test set.
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SEPIA), computed on entire sentences. Bach et
al. (2014) applied MT metrics to elementary dis-
course units. We integrate these eight MT metrics
from prior work.

method acc F1

ARC-I 61.4 60.3
ARC-II 64.9 63.5
basic MT metrics 88.6 87.8
+ TERp 91.5 91.2
+ METEOR 92.0 91.8
+ Others 92.3 92.1
(Bach et al., 2014) 93.4 93.3
8MT+MultiGranCNN (fine-tune) 94.1 94.0
8MT+MultiGranCNN (freeze) 94.9 94.7

Table 2: Results on PAN. “8MT” = 8 MT metrics

Table 2 shows that MultiGranCNN in combina-
tion with MT metrics obtains state-of-the-art per-
formance on PAN. Freezing weights learned in
unsupervised training (Figure 2) performs better
than fine-tuning them; also, Table 3 shows that the
best result is achieved if no convolution is used
in mfCNN. Thus, the best configuration for para-
phrase identification is to “forward” fixed-size in-
teraction matrices as input to the logistic regres-
sion, without any intermediate convolution layers.

Freezing weights learned in unsupervised train-
ing and no convolution layers in mfCNN both pro-
tect against overfitting. Complex deep neural net-
works are in particular danger of overfitting when
training sets are small as in the case of PAN (cf. Hu
et al. (2014)). In contrast, fine-tuning weights and
several convolution layers were the optimal setup
for clause coherence. For clause coherence, we
have a much larger training set and therefore can
successfully train a much larger number of param-
eters.

Table 3 shows that CONCAT performs badly for
PI while DIRECTSIM and INDIRECTSIM perform
well. We can conceptualize PI as the task of deter-
mining if each meaning element in S1 has a simi-
lar meaning element in S2. The s1 × s2 DIRECT-
SIM feature model directly models this task and
the s1×s2 INDIRECTSIM feature model also mod-
els it, but learning a transformation of g-phrase
representations before applying similarity. In con-
trast, CONCAT can learn arbitrary relations be-
tween parts of the two sentences, a model that
seems to be too unconstrained for PI if insufficient
training resources are available.

In contrast, for the clause coherence task, con-
catentation worked well and DIRECTSIM worked
poorly and we provided an explanation based on
the specific properties of clause coherence (see
discussion of Figure 7). We conclude from these
results that it is dependent on the task what the best
feature model is for matching two linguistic ob-
jects. Interestingly, INDIRECTSIM performs well
on both tasks. This suggests that INDIRECTSIM is
a general feature model for matching, applicable
to tasks with very different properties.

10 Conclusion

In this paper, we present MultiGranCNN, a gen-
eral deep learning architecture for classifying the
relation between two TEXTCHUNKS. Multi-
GranCNN supports multigranular comparabil-
ity of representations: shorter sequences in one
TEXTCHUNK can be directly compared to longer
sequences in the other TEXTCHUNK. Multi-
GranCNN also contains a flexible and modu-
larized match feature component that is eas-
ily adaptable to different TEXTCHUNK relations.
We demonstrated state-of-the-art performance of
MultiGranCNN on paraphrase identification and
clause coherence tasks.
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F1
mfCNN

0 1 2 3

gp
C

N
N 0 92.7 92.9 92.9 93.9

1 93.2 93.5 93.9 93.5
2 94.7 94.2 93.7 93.3
3 94.5 94.0 93.6 92.9

match feature model acc F1

DIRECTSIM 94.9 94.7
INDIRECTSIM 94.7 94.5
CONCAT 93.0 92.9

Table 3: Effect on dev F1 (PI) of different factors:
# convolution blocks, match feature model.
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