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Abstract

Neural machine translation, a recently
proposed approach to machine transla-
tion based purely on neural networks,
has shown promising results compared to
the existing approaches such as phrase-
based statistical machine translation. De-
spite its recent success, neural machine
translation has its limitation in handling
a larger vocabulary, as training complex-
ity as well as decoding complexity in-
crease proportionally to the number of tar-
get words. In this paper, we propose
a method based on importance sampling
that allows us to use a very large target vo-
cabulary without increasing training com-
plexity. We show that decoding can be
efficiently done even with the model hav-
ing a very large target vocabulary by se-
lecting only a small subset of the whole
target vocabulary. The models trained
by the proposed approach are empirically
found to match, and in some cases out-
perform, the baseline models with a small
vocabulary as well as the LSTM-based
neural machine translation models. Fur-
thermore, when we use an ensemble of
a few models with very large target vo-
cabularies, we achieve performance com-
parable to the state of the art (measured
by BLEU) on both the English→German
and English→French translation tasks of
WMT’14.

1 Introduction

Neural machine translation (NMT) is a recently
introduced approach to solving machine transla-
tion (Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015; Sutskever et al., 2014). In neural ma-
chine translation, one builds a single neural net-
work that reads a source sentence and generates

its translation. The whole neural network is jointly
trained to maximize the conditional probability of
a correct translation given a source sentence, us-
ing the bilingual corpus. The NMT models have
shown to perform as well as the most widely used
conventional translation systems (Sutskever et al.,
2014; Bahdanau et al., 2015).

Neural machine translation has a number of
advantages over the existing statistical machine
translation system, specifically, the phrase-based
system (Koehn et al., 2003). First, NMT requires
a minimal set of domain knowledge. For instance,
all of the models proposed in (Sutskever et al.,
2014), (Bahdanau et al., 2015) or (Kalchbrenner
and Blunsom, 2013) do not assume any linguis-
tic property in both source and target sentences
except that they are sequences of words. Sec-
ond, the whole system is jointly trained to maxi-
mize the translation performance, unlike the exist-
ing phrase-based system which consists of many
separately trained features whose weights are then
tuned jointly. Lastly, the memory footprint of the
NMT model is often much smaller than the exist-
ing system which relies on maintaining large ta-
bles of phrase pairs.

Despite these advantages and promising results,
there is a major limitation in NMT compared to
the existing phrase-based approach. That is, the
number of target words must be limited. This is
mainly because the complexity of training and us-
ing an NMT model increases as the number of tar-
get words increases.

A usual practice is to construct a target vo-
cabulary of the K most frequent words (a so-
called shortlist), where K is often in the range of
30k (Bahdanau et al., 2015) to 80k (Sutskever et
al., 2014). Any word not included in this vocab-
ulary is mapped to a special token representing
an unknown word [UNK]. This approach works
well when there are only a few unknown words
in the target sentence, but it has been observed
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that the translation performance degrades rapidly
as the number of unknown words increases (Cho
et al., 2014a; Bahdanau et al., 2015).

In this paper, we propose an approximate train-
ing algorithm based on (biased) importance sam-
pling that allows us to train an NMT model with
a much larger target vocabulary. The proposed al-
gorithm effectively keeps the computational com-
plexity during training at the level of using only
a small subset of the full vocabulary. Once
the model with a very large target vocabulary is
trained, one can choose to use either all the target
words or only a subset of them.

We compare the proposed algorithm against the
baseline shortlist-based approach in the tasks of
English→French and English→German transla-
tion using the NMT model introduced in (Bah-
danau et al., 2015). The empirical results demon-
strate that we can potentially achieve better trans-
lation performance using larger vocabularies, and
that our approach does not sacrifice too much
speed for both training and decoding. Further-
more, we show that the model trained with this al-
gorithm gets the best translation performance yet
achieved by single NMT models on the WMT’14
English→French translation task.

2 Neural Machine Translation and
Limited Vocabulary Problem

In this section, we briefly describe an approach
to neural machine translation proposed recently in
(Bahdanau et al., 2015). Based on this descrip-
tion we explain the issue of limited vocabularies
in neural machine translation.

2.1 Neural Machine Translation
Neural machine translation is a recently proposed
approach to machine translation, which uses a sin-
gle neural network trained jointly to maximize
the translation performance (Forcada and Ñeco,
1997; Kalchbrenner and Blunsom, 2013; Cho et
al., 2014b; Sutskever et al., 2014; Bahdanau et al.,
2015).

Neural machine translation is often imple-
mented as the encoder–decoder network. The en-
coder reads the source sentence x = (x1, . . . , xT )
and encodes it into a sequence of hidden states
h = (h1, · · · , hT ):

ht = f (xt, ht−1) . (1)

Then, the decoder, another recurrent neural net-
work, generates a corresponding translation y =

(y1, · · · , yT ′) based on the encoded sequence of
hidden states h:

p(yt | y<t, x) ∝ exp {q (yt−1, zt, ct)} , (2)

where

zt = g (yt−1, zt−1, ct) , (3)

ct = r (zt−1, h1, . . . , hT ) , (4)

and y<t = (y1, . . . , yt−1).
The whole model is jointly trained to maximize

the conditional log-probability of the correct trans-
lation given a source sentence with respect to the
parameters θ of the model:

θ∗ = arg max
θ

N∑
n=1

Tn∑
t=1

log p(yn
t | yn

<t, x
n),

where (xn, yn) is the n-th training pair of sen-
tences, and Tn is the length of the n-th target sen-
tence (yn).

2.1.1 Detailed Description
In this paper, we use a specific implementation of
neural machine translation that uses an attention
mechanism, as recently proposed in (Bahdanau et
al., 2015).

In (Bahdanau et al., 2015), the encoder in
Eq. (1) is implemented by a bi-directional recur-
rent neural network such that

ht =
[←−
h t;
−→
h t

]
,

where

←−
h t = f

(
xt,
←−
h t+1

)
,
−→
h t = f

(
xt,
−→
h t−1

)
.

They used a gated recurrent unit for f (see, e.g.,
(Cho et al., 2014b)).

The decoder, at each time, computes the con-
text vector ct as a convex sum of the hidden states
(h1, . . . , hT ) with the coefficients α1, . . . , αT

computed by

αt =
exp {a (ht, zt−1)}∑
k exp {a (hk, zt−1)} , (5)

where a is a feedforward neural network with a
single hidden layer.

A new hidden state zt of the decoder in Eq. (3) is
computed based on the previous hidden state zt−1,
previous generated symbol yt−1 and the computed
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context vector ct. The decoder also uses the gated
recurrent unit, as the encoder does.

The probability of the next target word in
Eq. (2) is then computed by

p(yt | y<t, x) =
1
Z

exp
{
w>t φ (yt−1, zt, ct) + bt

}
,

(6)

where φ is an affine transformation followed by
a nonlinear activation, and wt and bt are respec-
tively the target word vector and the target word
bias. Z is the normalization constant computed by

Z =
∑

k:yk∈V

exp
{
w>k φ (yt−1, zt, ct) + bk

}
, (7)

where V is the set of all the target words.
For the detailed description of the implementa-

tion, we refer the reader to the appendix of (Bah-
danau et al., 2015).

2.2 Limited Vocabulary Issue and
Conventional Solutions

One of the main difficulties in training this neu-
ral machine translation model is the computational
complexity involved in computing the target word
probability (Eq. (6)). More specifically, we need
to compute the dot product between the feature
φ (yt−1, zt, ct) and the word vector wt as many
times as there are words in a target vocabulary in
order to compute the normalization constant (the
denominator in Eq. (6)). This has to be done for,
on average, 20–30 words per sentence, which eas-
ily becomes prohibitively expensive even with a
moderate number of possible target words. Fur-
thermore, the memory requirement grows linearly
with respect to the number of target words. This
has been a major hurdle for neural machine trans-
lation, compared to the existing non-parametric
approaches such as phrase-based translation sys-
tems.

Recently proposed neural machine translation
models, hence, use a shortlist of 30k to 80k most
frequent words (Bahdanau et al., 2015; Sutskever
et al., 2014). This makes training more feasible,
but comes with a number of problems. First of all,
the performance of the model degrades heavily if
the translation of a source sentence requires many
words that are not included in the shortlist (Cho
et al., 2014a). This also affects the performance
evaluation of the system which is often measured
by BLEU. Second, the first issue becomes more

problematic with languages that have a rich set of
words such as German or other highly inflected
languages.

There are two model-specific approaches to this
issue of large target vocabulary. The first approach
is to stochastically approximate the target word
probability. This has been proposed recently in
(Mnih and Kavukcuoglu, 2013; Mikolov et al.,
2013) based on noise-contrastive estimation (Gut-
mann and Hyvarinen, 2010). In the second ap-
proach, the target words are clustered into multi-
ple classes, or hierarchical classes, and the target
probability p(yt|y<t, x) is factorized as a product
of the class probability p(ct|y<t, x) and the intra-
class word probability p(yt|ct, y<t, x). This re-
duces the number of required dot-products into the
sum of the number of classes and the words in a
class. These approaches mainly aim at reducing
the computational complexity during training, but
do not often result in speed-up when decoding a
translation during test time.1

Other than these model-specific approaches,
there exist translation-specific approaches. A
translation-specific approach exploits the proper-
ties of the rare target words. For instance, Luong
et al. proposed such an approach for neural ma-
chine translation (Luong et al., 2015). They re-
place rare words (the words that are not included
in the shortlist) in both source and target sentences
into corresponding 〈OOVn〉 tokens using the word
alignment model. Once a source sentence is trans-
lated, each 〈OOVn〉 in the translation will be re-
placed based on the source word marked by the
corresponding 〈OOVn〉.

It is important to note that the model-
specific approaches and the translation-specific
approaches are often complementary and can be
used together to further improve the translation
performance and reduce the computational com-
plexity.

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description

In this paper, we propose a model-specific ap-
proach that allows us to train a neural machine
translation model with a very large target vocab-
ulary. With the proposed approach, the compu-

1This is due to the fact that the beam search requires the
conditional probability of every target word at each time step
regardless of the parametrization of the output probability.
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tational complexity of training becomes constant
with respect to the size of the target vocabulary.
Furthermore, the proposed approach allows us to
efficiently use a fast computing device with lim-
ited memory, such as a GPU, to train a neural ma-
chine translation model with a much larger target
vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complex-
ity of computing the normalization constant, we
propose here to use only a small subset V ′ of the
target vocabulary at each update. The proposed
approach is based on the earlier work of (Bengio
and Sénécal, 2008).

Let us consider the gradient of the log-
probability of the output in Eq. (6). The gradient
is composed of a positive and negative part:

∇ log p(yt | y<t, x) (8)

=∇E(yt)−
∑

k:yk∈V

p(yk | y<t, x)∇E(yk),

where we define the energy E as

E(yj) = w>j φ (yj−1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [∇E(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to

approximate this expectation, or the negative term
of the gradient, by importance sampling with a
small number of samples. Given a predefined pro-
posal distribution Q and a set V ′ of samples from
Q, we approximate the expectation in Eq. (9) with

EP [∇E(y)] ≈
∑

k:yk∈V ′

ωk∑
k′:yk′∈V ′ ωk′

∇E(yk),

(10)

where

ωk = exp {E(yk)− logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each param-
eter update. Intuitively, at each parameter update,

we update only the vectors associated with the cor-
rect word wt and with the sampled words in V ′.
Once training is over, we can use the full target vo-
cabulary to compute the output probability of each
target word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this
approach naively does not guarantee that the num-
ber of parameters being updated for each sen-
tence pair, which includes multiple target words,
is bounded nor can be controlled. This becomes
problematic when training is done, for instance,
on a GPU with limited memory.

In practice, hence, we partition the training cor-
pus and define a subset V ′ of the target vocabu-
lary for each partition prior to training. Before
training begins, we sequentially examine each tar-
get sentence in the training corpus and accumulate
unique target words until the number of unique tar-
get words reaches the predefined threshold τ . The
accumulated vocabulary will be used for this par-
tition of the corpus during training. We repeat this
until the end of the training set is reached. Let us
refer to the subset of target words used for the i-th
partition by V ′i .

This may be understood as having a separate
proposal distribution Qi for each partition of the
training corpus. The distribution Qi assigns equal
probability mass to all the target words included in
the subset V ′i , and zero probability mass to all the
other words, i.e.,

Qi(yk) =


1

|V ′
i | if yt ∈ V ′i

0 otherwise.

This choice of proposal distribution cancels out
the correction term − logQ(yk) from the impor-
tance weight in Eqs. (10)–(11), which makes the
proposed approach equivalent to approximating
the exact output probability in Eq. (6) with

p(yt | y<t, x)

=
exp

{
w>t φ (yt−1, zt, ct) + bt

}∑
k:yk∈V ′ exp

{
w>k φ (yt−1, zt, ct) + bk

} .
It should be noted that this choice of Q makes the
estimator biased.

The proposed procedure results in speed up
against usual importance sampling, as it exploits
the advantage of modern computers in doing
matrix-matrix vs matrix-vector multiplications.
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3.1.1 Informal Discussion on Consequence

The parametrization of the output probability in
Eq. (6) can be understood as arranging the vectors
associated with the target words such that the dot
product between the most likely, or correct, target
word’s vector and the current hidden state is max-
imized. The exponentiation followed by normal-
ization is simply a process in which the dot prod-
ucts are converted into proper probabilities.

As learning continues, therefore, the vectors of
all the likely target words tend to align with each
other but not with the others. This is achieved ex-
actly by moving the vector of the correct word in
the direction of φ (yt−1, zt, ct), while pushing all
the other vectors away, which happens when the
gradient of the logarithm of the exact output prob-
ability in Eq. (6) is maximized. Our approximate
approach, instead, moves the word vectors of the
correct words and of only a subset of sampled tar-
get words (those included in V ′).

3.2 Decoding

Once the model is trained using the proposed ap-
proximation, we can use the full target vocabulary
when decoding a translation given a new source
sentence. Although this is advantageous as it al-
lows the trained model to utilize the whole vocab-
ulary when generating a translation, doing so may
be too computationally expensive, e.g., for real-
time applications.

Since training puts the target word vectors in the
space so that they align well with the hidden state
of the decoder only when they are likely to be a
correct word, we can use only a subset of candi-
date target words during decoding. This is similar
to what we do during training, except that at test
time, we do not have access to a set of correct tar-
get words.

The most naı̈ve way to select a subset of candi-
date target words is to take only the top-K most
frequent target words, where K can be adjusted to
meet the computational requirement. This, how-
ever, effectively cancels out the whole purpose of
training a model with a very large target vocabu-
lary. Instead, we can use an existing word align-
ment model to align the source and target words in
the training corpus and build a dictionary. With the
dictionary, for each source sentence, we construct
a target word set consisting of the K-most fre-
quent words (according to the estimated unigram
probability) and, using the dictionary, at most K ′

likely target words for each source word. K and
K ′ may be chosen either to meet the computa-
tional requirement or to maximize the translation
performance on the development set. We call a
subset constructed in either of these ways a candi-
date list.

3.3 Source Words for Unknown Words
In the experiments, we evaluate the proposed ap-
proach with the neural machine translation model
called RNNsearch (Bahdanau et al., 2015) (see
Sec. 2.1.1). In this model, as a part of decoding
process, we obtain the alignments between the tar-
get words and source locations via the alignment
model in Eq. (5).

We can use this feature to infer the source word
to which each target word was most aligned (in-
dicated by the largest αt in Eq. (5)). This is
especially useful when the model generated an
[UNK] token. Once a translation is generated
given a source sentence, each [UNK] may be re-
placed using a translation-specific technique based
on the aligned source word. For instance, in the
experiment, we try replacing each [UNK] token
with the aligned source word or its most likely
translation determined by another word alignment
model. Other techniques such as transliteration
may also be used to further improve the perfor-
mance (Koehn, 2010).

4 Experiments

We evaluate the proposed approach in
English→French and English→German trans-
lation tasks. We trained the neural machine
translation models using only the bilingual, paral-
lel corpora made available as a part of WMT’14.
For each pair, the datasets we used are:

• English→French:2

– Common Crawl
– News Commentary
– Gigaword
– Europarl v7
– UN

• English→German:
– Common Crawl
– News Commentary
– Europarl v7

2The preprocessed data can be found and down-
loaded from http://www-lium.univ-lemans.fr/
˜schwenk/nnmt-shared-task/README.
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English-French English-German
Train Test Train Test

15k 93.5 90.8 88.5 83.8
30k 96.0 94.6 91.8 87.9
50k 97.3 96.3 93.7 90.4
500k 99.5 99.3 98.4 96.1
All 100.0 99.6 100.0 97.3

Table 1: Data coverage (in %) on target-side cor-
pora for different vocabulary sizes. ”All” refers to
all the tokens in the training set.

To ensure fair comparison, the English→French
corpus, which comprises approximately 12 mil-
lion sentences, is identical to the one used in
(Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015; Sutskever et al., 2014). As for
English→German, the corpus was preprocessed,
in a manner similar to (Peitz et al., 2014; Li et al.,
2014), in order to remove many poorly translated
sentences.

We evaluate the models on the WMT’14 test
set (news-test 2014),3 while the concatenation
of news-test-2012 and news-test-2013 is used
for model selection (development set). Table 1
presents data coverage w.r.t. the vocabulary size,
on the target side.

Unless mentioned otherwise, all reported BLEU
scores (Papineni et al., 2002) are computed with
the multi-bleu.perl script4 on the cased tokenized
translations.

4.1 Settings

As a baseline for English→French translation, we
use the RNNsearch model proposed by (Bah-
danau et al., 2015), with 30k source and target
words.5 Another RNNsearch model is trained for
English→German translation with 50k source and
target words.

For each language pair, we train another set
of RNNsearch models with much larger vocab-
ularies of 500k source and target words, using
the proposed approach. We call these models
RNNsearch-LV. We vary the size of the short-
list used during training (τ in Sec. 3.1). We tried

3To compare with previous submissions, we use the fil-
tered test sets.

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

5The authors of (Bahdanau et al., 2015) gave us access to
their trained models. We chose the best one on the validation
set and resumed training.

15k and 30k for English→French, and 15k and
50k for English→German. We later report the re-
sults for the best performance on the development
set, with models generally evaluated every twelve
hours. The training speed is approximately the
same as for RNNsearch. Using a 780 Ti or Titan
Black GPU, we could process 100k mini-batches
of 80 sentences in about 29 and 39 hours respec-
tively for τ = 15k and τ = 50k.

For both language pairs, we also trained new
models, with τ = 15k and τ = 50k, by reshuffling
the dataset at the beginning of each epoch. While
this causes a non-negligible amount of overhead,
such a change allows words to be contrasted with
different sets of other words each epoch.

To stabilize parameters other than the word em-
beddings, at the end of the training stage, we
freeze the word embeddings and tune only the
other parameters for approximately two more days
after the peak performance on the development set
is observed. This helped increase BLEU scores on
the development set.

We use beam search to generate a translation
given a source. During beam search, we keep
a set of 12 hypotheses and normalize probabili-
ties by the length of the candidate sentences, as in
(Cho et al., 2014a).6 The candidate list is chosen
to maximize the performance on the development
set, for K ∈ {15k, 30k, 50k} and K ′ ∈ {10, 20}.
As explained in Sec. 3.2, we test using a bilin-
gual dictionary to accelerate decoding and to re-
place unknown words in translations. The bilin-
gual dictionary is built using fast align (Dyer et
al., 2013). We use the dictionary only if a word
starts with a lowercase letter, and otherwise, we
copy the source word directly. This led to better
performance on the development sets.

Note on ensembles For each language pair, we
began training four models from each of which
two points corresponding to the best and second-
best performance on the development set were col-
lected. We continued training from each point,
while keeping the word embeddings fixed, until
the best development performance was reached,
and took the model at this point as a single model
in an ensemble. This procedure resulted in a to-
tal of eight models from which we averaged the
length-normalized log-probabilities. Since much
of training had been shared, the composition of

6These experimental details differ from (Bahdanau et al.,
2015).
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RNNsearch RNNsearch-LV Google Phrase-based SMT
Basic NMT 29.97 (26.58) 32.68 (28.76) 30.6?

33.3∗ 37.03•
+Candidate List – 33.36 (29.32) –
+UNK Replace 33.08 (29.08) 34.11 (29.98) 33.1◦

+Reshuffle (τ=50k) – 34.60 (30.53) –
+Ensemble – 37.19 (31.98) 37.5◦

(a) English→French

RNNsearch RNNsearch-LV Phrase-based SMT
Basic NMT 16.46 (17.13) 16.95 (17.85)

20.67�
+Candidate List – 17.46 (18.00)

+UNK Replace 18.97 (19.16) 18.89 (19.03)

+Reshuffle – 19.40 (19.37)

+Ensemble – 21.59 (21.06)
(b) English→German

Table 2: The translation performances in BLEU obtained by different models on (a) English→French and
(b) English→German translation tasks. RNNsearch is the model proposed in (Bahdanau et al., 2015),
RNNsearch-LV is the RNNsearch trained with the approach proposed in this paper, and Google is the
LSTM-based model proposed in (Sutskever et al., 2014). Unless mentioned otherwise, we report single-
model RNNsearch-LV scores using τ = 30k (English→French) and τ = 50k (English→German).
For the experiments we have run ourselves, we show the scores on the development set as well in the
brackets. (?) (Sutskever et al., 2014), (◦) (Luong et al., 2015), (•) (Durrani et al., 2014), (∗) Standard
Moses Setting (Cho et al., 2014b), (�) (Buck et al., 2014).

such ensembles may be sub-optimal. This is sup-
ported by the fact that higher cross-model BLEU
scores (Freitag et al., 2014) are observed for mod-
els that were partially trained together.

4.2 Translation Performance

In Table 2, we present the results obtained by the
trained models with very large target vocabular-
ies, and alongside them, the previous results re-
ported in (Sutskever et al., 2014), (Luong et al.,
2015), (Buck et al., 2014) and (Durrani et al.,
2014). Without translation-specific strategies, we
can clearly see that the RNNsearch-LV outper-
forms the baseline RNNsearch.

In the case of the English→French task,
RNNsearch-LV approached the performance level
of the previous best single neural machine transla-
tion (NMT) model, even without any translation-
specific techniques (Sec. 3.2–3.3). With these,
however, the RNNsearch-LV outperformed it. The
performance of the RNNsearch-LV is also better
than that of a standard phrase-based translation
system (Cho et al., 2014b). Furthermore, by com-
bining 8 models, we were able to achieve a trans-
lation performance comparable to the state of the
art, measured in BLEU.

For English→German, the RNNsearch-LV out-

performed the baseline before unknown word re-
placement, but after doing so, the two systems per-
formed similarly. We could reach higher large-
vocabulary single-model performance by reshuf-
fling the dataset, but this step could potentially
also help the baseline. In this case, we were able
to surpass the previously reported best translation
result on this task by building an ensemble of 8
models.

With τ = 15k, the RNNsearch-LV performance
worsened a little, with best BLEU scores, with-
out reshuffling, of 33.76 and 18.59 respectively for
English→French and English→German.

The English→German ensemble described in
this paper has also been used for the shared trans-
lation task of the 10th Workshop on Statistical Ma-
chine Translation (WMT’15), where it was ranked
first in terms of BLEU score. The translations by
this ensemble can be found online.7

4.3 Analysis

4.3.1 Decoding Speed
In Table 3, we present the timing information of
decoding for different models. Clearly, decoding
from RNNsearch-LV with the full target vocab-

7http://matrix.statmt.org/matrix/
output/1774?run_id=4079

7



CPU? GPU◦

RNNsearch 0.09 s 0.02 s
RNNsearch-LV 0.80 s 0.25 s
RNNsearch-LV

0.12 s 0.05 s
+Candidate list

Table 3: The average per-word decoding time.
Decoding here does not include parameter load-
ing and unknown word replacement. The baseline
uses 30k words. The candidate list is built with
K = 30k and K ′ = 10. (?) i7-4820K (single
thread), (◦) GTX TITAN Black

ulary is slowest. If we use a candidate list for
decoding each translation, the speed of decoding
substantially improves and becomes close to the
baseline RNNsearch.

A potential issue with using a candidate list is
that for each source sentence, we must re-build a
target vocabulary and subsequently replace a part
of the parameters, which may easily become time-
consuming. We can address this issue, for in-
stance, by building a common candidate list for
multiple source sentences. By doing so, we were
able to match the decoding speed of the baseline
RNNsearch model.

4.3.2 Decoding Target Vocabulary

For English→French (τ = 30k), we evaluate the
influence of the target vocabulary when translat-
ing the test sentences by using the union of a fixed
set of 30k common words and (at most) K ′ likely
candidates for each source word according to the
dictionary. Results are presented in Figure 1. With
K ′ = 0 (not shown), the performance of the sys-
tem is comparable to the baseline when not replac-
ing the unknown words (30.12), but there is not as
much improvement when doing so (31.14). As the
large vocabulary model does not predict [UNK] as
much during training, it is less likely to generate
it when decoding, limiting the effectiveness of the
post-processing step in this case. With K ′ = 1,
which limits the diversity of allowed uncommon
words, BLEU is not as good as with moderately
larger K ′, which indicates that our models can, to
some degree, correctly choose between rare alter-
natives. If we rather use K = 50k, as we did
for testing based on validation performance, the
improvement over K ′ = 1 is approximately 0.2
BLEU.

When validating the choice of K, we found it
to be correlated with the value of τ used during
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Figure 1: Single-model test BLEU scores
(English→French) with respect to the number of
dictionary entries K ′ allowed for each source
word.

training. For example, on the English→French
validation set, with τ = 15k (and K ′ = 10), the
BLEU score is 29.44 with K = 15k, but drops
to 29.19 and 28.84 respectively for K = 30k and
50k. For τ = 30k, the score increases moder-
ately from K = 15k to K = 50k. A similar
effect was observed for English→German and on
the test sets. As our implementation of importance
sampling does not apply the usual correction to the
gradient, it seems beneficial for the test vocabular-
ies to resemble those used during training.

5 Conclusion

In this paper, we proposed a way to extend the size
of the target vocabulary for neural machine trans-
lation. The proposed approach allows us to train
a model with much larger target vocabulary with-
out any substantial increase in computational com-
plexity. It is based on the earlier work in (Bengio
and Sénécal, 2008) which used importance sam-
pling to reduce the complexity of computing the
normalization constant of the output word proba-
bility in neural language models.

On English→French and English→German
translation tasks, we observed that the neural ma-
chine translation models trained using the pro-
posed method performed as well as, or better
than, those using only limited sets of target words,
even when replacing unknown words. As per-
formance of the RNNsearch-LV models increased
when only a selected subset of the target vocab-
ulary was used during decoding, this makes the
proposed learning algorithm more practical.

When measured by BLEU, our models showed
translation performance comparable to the
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state-of-the-art translation systems on both the
English→French task and English→German task.
On the English→French task, a model trained
with the proposed approach outperformed the best
single neural machine translation (NMT) model
from (Luong et al., 2015) by approximately 1
BLEU point. The performance of the ensemble
of multiple models, despite its relatively less
diverse composition, is approximately 0.3 BLEU
points away from the best system (Luong et al.,
2015). On the English→German task, the best
performance of 21.59 BLEU by our model is
higher than that of the previous state of the art
(20.67) reported in (Buck et al., 2014).

Finally, we release the source code used in our
experiments to encourage progress in neural ma-
chine translation.8
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cursive hetero-associative memories for translation.
In José Mira, Roberto Moreno-Dı́az, and Joan
Cabestany, editors, Biological and Artificial Compu-
tation: From Neuroscience to Technology, volume
1240 of Lecture Notes in Computer Science, pages
453–462. Springer Berlin Heidelberg.

Markus Freitag, Stephan Peitz, Joern Wuebker, Her-
mann Ney, Matthias Huck, Rico Sennrich, Nadir
Durrani, Maria Nadejde, Philip Williams, Philipp
Koehn, et al. 2014. Eu-bridge MT: Combined ma-
chine translation. In Proc. of the Workshop on Sta-
tistical Machine Translation, pages 105–113.

M. Gutmann and A. Hyvarinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of The Thirteenth International Conference on Arti-
ficial Intelligence and Statistics (AISTATS’10).

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the ACL Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1700–
1709. Association for Computational Linguistics.

9



Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1, NAACL ’03, pages 48–54.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press, New York, NY, USA,
1st edition.

Liangyou Li, Xiaofeng Wu, Santiago Cortes Vaillo, Jun
Xie, Andy Way, and Qun Liu. 2014. The DCU-
ICTCAS MT system at WMT 2014 on German-
English translation task. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
136–141, Baltimore, Maryland, USA, June. Associ-
ation for Computational Linguistics.

Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2015. Addressing
the rare word problem in neural machine translation.
In Proceedings of ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In International Conference
on Learning Representations: Workshops Track.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 2265–2273. Curran Associates, Inc.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Stephan Peitz, Joern Wuebker, Markus Freitag, and
Hermann Ney. 2014. The RWTH Aachen German-
English machine translation system for WMT 2014.
In Proceedings of the Ninth Workshop on Statisti-
cal Machine Translation, pages 157–162, Baltimore,
Maryland, USA, June. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS’2014.

10


