
Proceedings of the ACL 2014 Student Research Workshop, pages 1–9,
Baltimore, Maryland USA, June 22-27 2014. c©2014 Association for Computational Linguistics

Bayesian Kernel Methods for Natural Language Processing

Daniel Beck
Department of Computer Science

University of Sheffield
Sheffield, United Kingdom

debeck1@sheffield.ac.uk

Abstract

Kernel methods are heavily used in Natu-
ral Language Processing (NLP). Frequen-
tist approaches like Support Vector Ma-
chines are the state-of-the-art in many
tasks. However, these approaches lack
efficient procedures for model selection,
which hinders the usage of more advanced
kernels. In this work, we propose the
use of a Bayesian approach for kernel
methods, Gaussian Processes, which allow
easy model fitting even for complex kernel
combinations. Our goal is to employ this
approach to improve results in a number of
regression and classification tasks in NLP.

1 Introduction

In the last years, kernel methods have been suc-
cessfully employed in many Natural Language
Processing tasks. These methods allow the build-
ing of non-parametric models which make less as-
sumptions about the underlying pattern in the data.
Another advantage of kernels is that they can be
defined in arbitrary structures like strings or trees,
which greatly reduce the need for careful feature
engineering in these structures.

The properties cited above make kernel meth-
ods ideal for problems where we do not have
much prior knowledge about how the data be-
haves. This is a common setting in NLP, where
they have been mostly applied in the form of Sup-
port Vector Machines (SVMs). Systems based on
SVMs have been the state-of-the-art in classifica-
tion tasks like Text Categorization (Lodhi et al.,
2002), Sentiment Analysis (Johansson and Mos-
chitti, 2013; Pérez-Rosas and Mihalcea, 2013) and
Question Classification (Moschitti, 2006; Croce et
al., 2011). Recently, they were also employed in
regression settings like Machine Translation Qual-
ity Estimation (Specia and Farzindar, 2010; Bojar

et al., 2013) and structured prediction (Chang et
al., 2013).

SVMs are a frequentist method: they aim to find
an approximation to the exact latent function that
explains the data. This is in contrast to Bayesian
settings, which define a prior distribution on this
function and perform inference by marginalizing
over all its possible values. Although there is some
discussion about which approach is better (Mur-
phy, 2012, Sec. 6.6.4), Bayesian methods offer
many useful theoretical properties. In fact, they
have been used before in NLP, especially in gram-
mar induction (Cohn et al., 2010) and word seg-
mentation (Goldwater et al., 2009). However, only
very recently kernel methods have been applied in
NLP using the Bayesian approach.

Gaussian Processes (GPs) are the Bayesian
counterpart of kernel methods and are widely con-
sidered the state-of-the-art for inference on func-
tions (Hensman et al., 2013). They have a number
of advantages which are very useful in NLP:

• Kernels in general can be combined and pa-
rameterized in many ways. This parame-
terization lead to the problem of model se-
lection, which is difficult in frequentist ap-
proaches (mainly based on cross validation).
The Bayesian formulation of GPs let them
deal with model selection in a much more
more efficient and elegant way: by maximiz-
ing the likelihood on the training data. This
opens the door for the use of heavily param-
eterized kernel combinations, like multi-task
kernels for example.

• Being a probabilistic framework, they are
able to naturally encode uncertainty in the
predictions, which can be propagated if the
task is part of a larger system pipeline.

Besides these properties, GPs have also been
applied sucessfully in many Machine Learning

1

tasks. Examples include Robotics (Ko et al.,
2007), Bioinformatics (Chu et al., 2005; Polaj-
nar et al., 2011), Geolocation (Schwaighofer et
al., 2004) and Computer Vision (Sinz et al., 2004;
Riihimäki et al., 2013). In NLP, GPs have been
used only very recently and focused on regression
tasks (Cohn and Specia, 2013; Preotiuc-Pietro and
Cohn, 2013). In this work, we propose to combine
GPs with recent kernel developments to advance
the state-of-the-art in a number of NLP tasks.

2 Gaussian Processes

In this Section, we follow closely the definition of
Rasmussen and Williams (2006). Consider a ma-
chine learning setting, where we have a dataset
X = {(x1, y1), (x2, y2), . . . , (xn, yn)} and our
goal is to infer the underlying function f(x) that
best explains the data. A GP model assumes a
prior stochastic process over this function:

f(x) ∼ GP(µ(x), k(x,x′)), (1)

where µ(x) is the mean function, which is usu-
ally the 0 constant, and k(x,x′) is the kernel or
covariance function. In this sense, they are analo-
gous to Gaussian distributions, which are also de-
fined in terms of a mean and a variance values, or
in the case of multivariate Gaussians, a mean vec-
tor and a covariance matrix. In fact, a GP can be
interpreted as an infinite-dimensional multivariate
Gaussian distribution.

The full model uses Bayes’ rule to define a pos-
terior over f , combining the GP prior with the data
likelihood:

p(f |X,y) =
p(y|X, f)p(f)

p(y|X)
, (2)

where X and y are the training inputs and outputs,
respectively. The posterior is then used to predict
the label for an unseen input x∗ by marginalizing
over all possible latent functions:

p(y∗|x∗,X,y) =
∫

f
p(y∗|x∗,X, f)p(f |X,y)df.

(3)
where y∗ is the predicted output. The choice of
the likelihood distribution depends if the task is re-
gression, classification or other prediction setting.

2.1 GP Regression
In a regression setting, we assume that the output
values are equal to noisy latent function evalua-
tions, i.e., yi = f(xi) + η, where η ∼ N (0, σ2

n) is

the added white noise. We also usually assume a
Gaussian likelihood, because this able us to solve
the integral in Equation 3 analytically. Substitut-
ing the likelihood and the prior in both Equations
2 and 3 and manipulating the result, we compute
the posterior also as a Gaussian distribution:

y∗ ∼ N (k∗(K + σnI)−1yT , (4)

k(x∗,x∗)− kT
∗ (K + σnI)−1k∗).

where K is the Gram matrix corre-
sponding to the training inputs and
k∗ = [〈x1,x∗〉, 〈x2,x∗〉, . . . , 〈xn,x∗〉] is the
vector of kernel evaluations between the test input
and each training input.

2.2 GP Classification
Consider binary classification using −1 and +1
as labels1. The model in this case use the ac-
tual, noiseless latent function evaluations f and
“squash” them through the [−1,+1] interval to ob-
tain the outputs. The posterior over the outputs is
then defined as:

p(y∗ = +1|x∗,X,y) =∫
f∗
σ(f∗)p(f∗|x∗,X,y)df∗, (5)

where σ(f∗) is a squashing function. Two com-
mon choices are the logistic function and the pro-
bit function. The distribution over the latent values
f∗ is obtained by integrating out the latent func-
tion:

p(f∗|x∗,X,y) =
∫

f
p(f∗|x∗,X, f)p(f |X,y)df.

(6)
Because the likelihood is not Gaussian, the re-

sulting posterior integral is not analytically avail-
able anymore. The most common solution to this
problem is to approximate the posterior p(f |X,y)
with a Gaussian q(f |X,y). Two such approxi-
mation algorithms are the Laplace approximation
(Williams and Barber, 1998) and the Expectation
Propagation (Minka, 2001). Another option is to
use Markov Chain Monte Carlo sampling methods
on the true posterior (Neal, 1998).

2.3 Hyperparameter Optimization
The GP prior used in the models described above
usually have a number of hyperparameters. The

1Extensions to multi-class settings are possible.

2

most important ones are the kernel ones but they
can also include others like the white noise vari-
ance σ2

n used in regression. A key property of GPs
is their ability to easily fit these hyperparameters
to the data by maximizing the marginal likelihood:

p(y|X,θ) =
∫

f
p(y|X,θ, f)p(f), (7)

where θ represents the full set of hyperparameters
(which was suppressed from all conditionals until
now for brevity). Optimization involves deriving
the gradients of the marginal log likelihood w.r.t.
the hyperparameters and then employ a gradient
ascent procedure. Gradients can be found ana-
litically for regression and by approximations for
classification, using methods similar to the ones
used for prediction.

2.4 Sparse Approximations for GPs

SVMs are naturally sparse models which use only
a subset of data points to make predictions. This
results in important speed-ups which is one of
the reasons for their success. On the other hand,
canonical GPs are not sparse, making use of all
data points. This results in a training complexity
of O(n3) (due to the Gram matrix inversion) and
O(n) for predictions.

Sparse GPs tackle this problem by approximat-
ing the Gram matrix using only a subset of m in-
ducing inputs. Without loss of generalization, con-
sider these m inputs as the first ones in the train-
ing data and (n − m) the remaining ones. Then
we can partition the Gram matrix in the following
way (Rasmussen and Williams, 2006, Sec. 8.1):

K =
[

Kmm Km(n−m)

K(n−m)m K(n−m)(n−m)

]
,

where each block corresponds to a matrix of ker-
nel evaluations between two sets of inputs. For
brevity, we will refer Km(n−m) as Kmn and its
transpose as Knm. The block structure of K forms
the base of the so-called Nyström approximation:

K̃ = KnmK−1
mmKmn. (8)

which result in the following predictive posterior:

y∗ ∼ N (kT
m∗G̃

−1Kmny, (9)

k(x∗,x∗)− kT
m∗K

−1
mmkm∗+

σ2
nk

T
m∗G̃

−1km∗),

where G̃ = σ2
nKmm + KmnKnm and km∗ is the

vector of kernel evaluations between test input x∗
and the m inducing inputs. The resulting com-
plexities for training and prediction are O(m2n)
and O(m), respectively.

The remaining question is how to choose the in-
ducing inputs. Seeger et al. (2003) use an iterative
method that starts with some random data points
and adds new ones based on a greedy procedure,
in an active learning fashion. Snelson and Ghahra-
mani (2006) use a different approach: it defines a
fixed m a priori and use pseudo-inputs which can
be optimized as regular hyperparameters. Later,
Titsias (2009) also used pseudo-inputs but per-
form optimization using a variational method in-
stead. Recently, Hensman et al. (2013) modified
this method to allow Stochastic Variational Infer-
ence (Hoffman et al., 2013), which reduces the
training complexity to O(m3).

3 Kernels

The core of a GP model is the kernel function. A
kernel k(x,x′) is a symmetric and positive semi-
definite function which returns a similarity score
between two inputs in some feature space (Shawe-
Taylor and Cristianini, 2004). Probably the most
used kernel in general is the Radial Basis Func-
tion (RBF) kernel, which is defined over two real-
valued vectors. Our focus in this work is on two
different types of kernels which can be applied for
NLP settings and allow richer parameterizations.

3.1 Kernels for Discrete Structures

In NLP, discrete structures like strings or trees are
common in training data. To apply a vectorial
kernel like the RBF, one can always extract real-
valued features from these structures. However,
kernels can be defined directly on these structures,
potentially reducing the need for feature engineer-
ing. The string and tree kernels we define here
are based on the theory of Convolution kernels
of Haussler (1999), which calculate the similar-
ity between two structures based on the number
of substructures they have in common. Other ap-
proaches include random walk kernels (Gärtner et
al., 2003; Vishwanathan et al., 2010) and Fisher
kernels (Jaakkola et al., 2000).

3.1.1 String Kernels
Consider a function φs(x) that counts the number
of times a substring s appears in x. A string kernel

3

is defined as:

k(x, x′) =
∑
s∈Σ∗

wsφs(x)φs(x′), (10)

where ws is a non-negative weight for substring s
and Σ∗ is the set of all possible strings over the
symbol alphabet Σ.

Usually in NLP, each word is considered a sym-
bol, although some previous work also considered
characters as symbols (Lodhi et al., 2002). If we
restrict s to be only single words we end up hav-
ing a bag-of-words (BOW) representation. Allow-
ing longer substrings lead us to the Word Sequence
Kernels of Cancedda et al. (2003), which also al-
low gaps between words.

One extension of these kernels is to allow soft
matching between substrings. This is done by
defining a similarity matrix S, which encode sym-
bol similarities. This matrix can be defined by ex-
ternal resources, like WordNet, or be inferred from
data using Latent Semantic Analysis (Deerwester
et al., 1990) for example.

3.1.2 Tree Kernels
Collins and Duffy (2001) first introduced Tree
Kernels, which measure the similarity between
two trees by counting the number of fragments
they share, in a very similar way to string kernels.
Consider two trees T1 and T2. We define the set
of nodes in these two trees as N1 and N2 respec-
tively. Consider also F the full set of possible tree
fragments (similar to Σ∗ in the case of strings). We
define Ii(n) as an indicator function that returns 1
if fragment fi ∈ F has root n and 0 otherwise. A
Tree Kernel can then be defined as:

k(T1, T2) =
∑

n1∈N1

∑
n2∈N2

∆(n1, n2),

where:

∆(n1, n2) =
|F|∑
i=1

λsize(i)Ii(n1)Ii(n2).

Here, 0 < λ < 1 is a decay factor that penalizes
contributions from larger fragments cf. smaller
ones.

Again, we can put restrictions on the type of
tree fragment considered for comparison. Collins
and Duffy (2001) defined Subtree kernels, which
considered only subtrees as fragments, and Subset
Tree Kernels (SSTK), where fragments can have
non-terminals as leaves. Later, Moschitti (2006)

introduced the Partial Tree Kernels (PTK), by al-
lowing fragments with partial rule expansions.

Tree kernels were used in a variety of tasks, in-
cluding Relation Extraction (Bloehdorn and Mos-
chitti, 2007; Plank and Moschitti, 2013), Ques-
tion Classification (Moschitti, 2006; Croce et al.,
2011) and Quality Estimation (Hardmeier, 2011;
Hardmeier et al., 2012). Furthermore, soft match-
ing approaches were also used by Bloehdorn and
Moschitti (2007) and Croce et al. (2011).

3.2 Multi-task Kernels
Kernels can also be extended to deal with set-
tings where we want to predict a vector of val-
ues (Álvarez et al., 2012). These settings are use-
ful in multi-task and domain adaptation problems.
Kernels for vector-valued functions are known as
coregionalization kernels in the literature. Here
we are going to refer them as multi-task kernels.

One of the simplest ways to define a kernel for
a multi-task setting is the Intrinsic Coregionaliza-
tion Model (ICM):

K(x,x′) = B⊗ k(x,x′).

where ⊗ denotes the Kronecker product and B
is the coregionalization matrix, encoding task co-
variances. We also denote the resulting kernel
function as K(x,x′) to stress out that its result is
now a matrix instead of a scalar.

Cohn and Specia (2013) used the ICM to model
annotator bias in Quality Estimation datasets.
They parameterize B in a number of differ-
ent ways and get significant improvements over
single-task baselines, especially in post-editing
time prediction. They also point out that the well
known EasyAdapt method (Daumé III, 2007) for
domain adaptation can be modeled by the ICM us-
ing B = 1+I, i.e., a coregionalization matrix with
its diagonal elements equal to 2 and remaining el-
ements equal to 1.

An extension of the ICM is the Linear Model of
Coregionalization (LMC), which assume a sum of
kernels with different coregionalization matrices:

K(x,x′) =
∑
kp∈P

Bp ⊗ kp(x,x′).

where P is the set of different kernels employed.
Álvarez et al. (2012) argue that the LMC is much
more flexible than the ICM because the latter as-
sumes that each kernel contributes equally to the
task covariances.

4

4 Planned Work

Our goal in this proposal is to employ GPs and
the kernels introduced in Section 3 to advance
the state-of-the-art in regression and classification
NLP tasks. It would be unfeasible though, at least
for a single thesis, to address all possible tasks so
we are going to focus on three of them where ker-
nel methods were already successfully applied.

4.1 Quality Estimation

The purpose of Machine Translation Quality Esti-
mation is to provide a quality prediction for new,
unseen machine translated texts, without relying
on reference translations (Blatz et al., 2004; Bojar
et al., 2013). A common use of quality predictions
is the decision between post-editing a given ma-
chine translated sentence and translating its source
from scratch.

GP regression models were recently success-
fully employed for post-editing time (Cohn and
Specia, 2013) and HTER2 prediction (Beck et al.,
2013). Both used RBF kernels as the covariance
function so a natural extension is to apply the
structured kernels of Section 3.1. This was already
been done with tree kernels by Hardmeier (2011)
in the context of SVMs.

Multi-task kernels can also be applied for Qual-
ity Estimation in several ways. The model used
by Cohn and Specia (2013) for modelling annota-
tor bias can be further extended for settings with
dozens or even hundreds of annotators. This is a
common setting in crowdsourcing platforms like
Amazon’s Mechanical Turk3.

Another plan is to use multi-task kernels to
combine different datasets. Quality annotation is
usually expensive, requiring post-editing or sub-
jective scoring. Possibilities include combining
datasets from different language pairs or different
machine translation systems. Available datasets
include those used in the WMT12 and WMT13
QE shared tasks (Callison-burch et al., 2012; Bo-
jar et al., 2013) and others (Specia et al., 2009;
Specia, 2011; Koponen et al., 2012).

4.2 Question Classification

A Question Classifier is a module that aims to re-
strict the answer hypotheses generated by a Ques-
tion Answering system by applying a label to the
input question (Li and Roth, 2002; Li and Roth,

2Human Translation Error Rate (Snover et al., 2006).
3www.mturk.com

2005). This task can be seen as an instance of text
classification, where the inputs are usually com-
posed of only one sentence.

Much of previous work in Question Classifica-
tion largely used SVMs combined with structured
kernels. Zhang and Lee (2003) compares String
Kernels based on BOW and n-gram representa-
tions with the Subset Tree Kernel on constituent
trees. Moschitti (2006) show improved results by
using the Partial Tree Kernel and dependency trees
instead of constituency ones. Bloehdorn and Mos-
chitti (2007) combines a SSTK with different soft
matching approaches to encode lexical similarity
on tree leaves. The same soft matching idea is
used by Croce et al. (2011), but applied to PTKs
instead and permitting soft matches between any
nodes in each tree (which is sensible when using
kernels on dependency trees).

Our work proposes to address this task by em-
ploying tree kernels and GPs. Unlike Quality Esti-
mation, this is a classification setting and our pur-
pose is to find if this combination can also improve
the state-of-the-art for tasks of this kind. We will
use the TREC dataset provided by Li and Roth
(2002), which assigns 6000 questions with both a
coarse and a fine-grained label.

4.3 Multi-domain Sentiment Analysis

Sentiment Analysis is defined as “the computa-
tional treatment of opinion, sentiment and subjec-
tivity in text” (Pang and Lee, 2008). In this pro-
posal, we focus on the specific task of polarity de-
tection, where the goal is to label a text as hav-
ing positive or negative sentiment. State-of-the-art
methods for this task use SVMs as the learning al-
gorithm and vary between the feature sets used.

Polarity predictions can be heavily biased on
the text domain. Consider the example showed
by Turney (2002): the word “unpredictable” usu-
ally has a positive meaning in a movie review but
a negative one when applied to an automotive re-
view (in a phrase like “unpredictable steering”, for
instance). One of the first methods to tackle this
issue is the Structural Correspondence Learning
of Blitzer et al. (2007). Their method uses pivot
words shared between domains to find correspon-
dencies in words that are not shared.

A previous work that used structured kernels in
Sentiment Analysis is the approach of Wu et al.
(2009). Their method uses tree kernels on phrase
dependency trees and outperforms bag-of-words

5

and word dependency approaches. They also show
good results in cross-domain experiments.

We propose to apply GPs with a combination
of structured and multi-task kernels for this task.
The results showed by Wu et al. (2009) suggest
that tree kernels on dependency trees are a good
approach but we also plan to employ string ker-
nels on this task. This is because string kernels
have demonstrated promising results for text cate-
gorization in past work. Also, considering model
selection is easily dealt by GPs, we can combine
all those kernels in complex and heavily param-
eterized ways, an unfeasible setting for SVMs.
We will use the Multi-Domain Sentiment Dataset
(Blitzer et al., 2007), composed of Amazon prod-
uct reviews in different categories.

4.4 Research Directions

In Section 2.3 we saw how the Bayesian formu-
lation of GPs let us do model selection by maxi-
mizing the marginal likelihood. In fact, one of our
main research directions in this proposal revolves
around this crucial point: because we can easily fit
hyperparameters to the data we have much more
freedom to use richer kernel parameterizations and
kernel combinations. Multi-task kernels are one
example where we usually have a large number of
hyperparameters because we need to fit all the el-
ements of the coregionalization matrix. This num-
ber can get even larger if we have a LMC model,
with multiple coregionalization matrices. Struc-
tured kernels can also be redefined in a richer way:
tree kernels between constituency trees could have
multiple decay hyperparameters, one for each POS
tag. A more extreme example would be to treat
all weights in a string kernel as hyperparameters.
Thus, we plan to investigate these possibilities in
the context of the three tasks detailed before.

As another research direction we also want to
address the issue of scalability. Although GPs al-
ready showed promising results they can be slow
when compared to other well established meth-
ods like SVM. Fortunately there has been a lot
of advancements in the field of sparse GPs in the
last years and we plan to employ them in our
work. A key question is how to combine sparse
GPs with the structured kernels we presented be-
fore. Although it is perfectly possible to select in-
ducing points using greedy methods, it would be
much more interesting to use the pseudo-inputs
approach. However, it is not clear how to do that

in conjunction with non-vectorial inputs, like the
ones we plan to use in structured kernels, and this
is a key direction that we also plan to investigate.

4.5 GP Toolkits
Available toolkits for GP modelling include
GPML4 (Rasmussen and Williams, 2006) and GP-
stuff5 (Vanhatalo et al., 2013), which are written
in Matlab. Our experiments will mainly use GPy6,
an open source toolkit written in Python. It imple-
ments models for regression and binary classifi-
cation, including sparse approximations and many
vectorial kernels. We plan to contribute to GPy
by implementing the structured kernels of Section
3.1, effectively extending it to a GP framework for
NLP.

5 Conclusions and Future Work

In this work we showed a proposal for advancing
the state-of-the-art in a number of NLP tasks by
combining Gaussian Process with structured and
multi-task kernels. Our hypothesis is that highly
parameterized kernel combinations allied with the
fitting methods provided by GPs will result in bet-
ter models for these tasks. We also detailed the
future plans for experiments, including available
datasets and toolkits.

Further research directions that can be explored
by this proposal include the use of GPs in different
learning settings. Models for ordinal regression
(Chu and Ghahramani, 2005) and structured pre-
diction (Altun et al., 2004; Bratières et al., 2013)
were already proposed in the GP literature and a
natural extension is to apply these models for their
corresponding NLP tasks. Another extension is to
employ other kinds of kernels. The literature on
that subject is quite vast, with many approaches
showing promising results.

Acknowledgements

This work was supported by funding from
CNPq/Brazil (No. 237999/2012-9) and from the
EU FP7-ICT QTLaunchPad project (No. 296347).
The author would also like to thank Yahoo for the
financial support and the anonymous reviewers for
their excellent comments.

4www.gaussianprocess.org/gpml/code/
matlab

5becs.aalto.fi/en/research/bayes/
gpstuff

6github.com/SheffieldML/GPy

6

References
Yasemin Altun, Thomas Hofmann, and Alexander J.

Smola. 2004. Gaussian Process Classification for
Segmenting and Annotating Sequences. In Proceed-
ings of ICML, page 8, New York, New York, USA.
ACM Press.

Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D.
Lawrence. 2012. Kernels for Vector-Valued Func-
tions: a Review. Foundations and Trends in Ma-
chine Learning, pages 1–37.

Daniel Beck, Kashif Shah, Trevor Cohn, and Lucia
Specia. 2013. SHEF-Lite : When Less is More for
Translation Quality Estimation. In Proceedings of
WMT13, pages 337–342.

John Blatz, Erin Fitzgerald, and George Foster. 2004.
Confidence estimation for machine translation. In
Proceedings of the 20th Conference on Computa-
tional Linguistics, pages 315–321.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, Bollywood, Boom-boxes and
Blenders: Domain Adaptation for Sentiment Clas-
sification. In Proceedings of ACL.

Stephan Bloehdorn and Alessandro Moschitti. 2007.
Exploiting Structure and Semantics for Expressive
Text Kernels. In Proceedings of CIKM.

Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Workshop
on Statistical Machine Translation. In Proceedings
of WMT13, pages 1–44.

Sébastien Bratières, Novi Quadrianto, and Zoubin
Ghahramani. 2013. Bayesian Structured Prediction
using Gaussian Processes. arXiv:1307.3846, pages
1–17.

Chris Callison-burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Ma-
chine Translation. In Proceedings of 7th Workshop
on Statistical Machine Translation.

Nicola Cancedda, Eric Gaussier, Cyril Goutte, and
Jean-Michel Renders. 2003. Word-Sequence Ker-
nels. The Journal of Machine Learning Research,
3:1059–1082.

Kai-Wei Chang, Vivek Srikumar, and Dan Roth. 2013.
Multi-core Structural SVM Training. In Proceed-
ings of ECML-PHDD.

Wei Chu and Zoubin Ghahramani. 2005. Gaussian
Processes for Ordinal Regression. Journal of Ma-
chine Learning Research, 6:1019–1041.

Wei Chu, Zoubin Ghahramani, Francesco Falciani, and
David L Wild. 2005. Biomarker discovery in mi-
croarray gene expression data with Gaussian pro-
cesses. Bioinformatics, 21(16):3385–93, August.

Trevor Cohn and Lucia Specia. 2013. Modelling
Annotator Bias with Multi-task Gaussian Processes:
An Application to Machine Translation Quality Es-
timation. In Proceedings of ACL.

Trevor Cohn, Phil Blunsom, and Sharon Goldwater.
2010. Inducing tree-substitution grammars. The
Journal of Machine Learning, 11:3053–3096.

Michael Collins and Nigel Duffy. 2001. Convolution
Kernels for Natural Language. In Advances in Neu-
ral Information Processing Systems.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured Lexical Similarity via Con-
volution Kernels on Dependency Trees. In Proc. of
EMNLP.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of ACL.

Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by Latent Semantic Analysis. Journal of
the American Society For Information Science, 41.

Thomas Gärtner, Peter Flach, and Stefan Wrobel.
2003. On Graph Kernels: Hardness Results and Ef-
ficient Alternatives. LNAI, 2777:129–143.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A Bayesian framework for word
segmentation: Exploring the effects of context.
Cognition, 112(1):21–54, July.

Christian Hardmeier, Joakim Nivre, and Jörg Tiede-
mann. 2012. Tree Kernels for Machine Transla-
tion Quality Estimation. In Proceedings of WMT12,
number 2011, pages 109–113.

Christian Hardmeier. 2011. Improving Machine
Translation Quality Prediction with Syntactic Tree
Kernels. In Proceedings of EAMT, number May.

David Haussler. 1999. Convolution Kernels on Dis-
crete Structures. Technical report.

James Hensman, Nicolò Fusi, and Neil D. Lawrence.
2013. Gaussian Processes for Big Data. In Pro-
ceedings of UAI.

Matt Hoffman, David M. Blei, Chong Wang, and John
Paisley. 2013. Stochastic Variational Inference. The
Journal of Machine Learning Research.

Tommi Jaakkola, Mark Diekhans, and David Haussler.
2000. A discriminative framework for detecting re-
mote protein homologies. Journal of Computational
Biology, 7:95–114.

Richard Johansson and Alessandro Moschitti. 2013.
Relational Features in Fine-Grained Opinion Analy-
sis. Computational Linguistics, 39(3):473–509.

7

Jonathan Ko, Daniel J. Klein, Dieter Fox, and Dirk
Haehnel. 2007. Gaussian Processes and Reinforce-
ment Learning for Identification and Control of an
Autonomous Blimp. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation,
pages 742–747. Ieee, April.

Maarit Koponen, Wilker Aziz, Luciana Ramos, and
Lucia Specia. 2012. Post-editing time as a measure
of cognitive effort. In Proceedings of WPTP.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In Proceedings of COLING, volume 1, pages
1–7.

Xin Li and Dan Roth. 2005. Learning Question Clas-
sifiers: the Role of Semantic Information. Natural
Language Engineering, 1(1).

Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini, and Chris Watkins. 2002. Text
Classification using String Kernels. The Journal of
Machine Learning Research, 2:419–444.

Thomas P. Minka. 2001. A family of algorithms for
approximate Bayesian inference. Ph.D. thesis.

Alessandro Moschitti. 2006. Efficient Convolution
Kernels for Dependency and Constituent Syntactic
Trees. In Proceedings of ECML.

Kevin P. Murphy. 2012. Machine Learning: a Proba-
bilistic Perspective.

Radford M. Neal. 1998. Regression and Classification
Using Gaussian Process Priors. Bayesian Statistics,
6.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Foundations and Trends in In-
formation Retrieval, 2(1–2):1–135.

Verónica Pérez-Rosas and Rada Mihalcea. 2013. Sen-
timent Analysis of Online Spoken Reviews. In Pro-
ceedings of Interspeech.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding Semantic Similarity in Tree Kernels for Do-
main Adaptation of Relation Extraction. In Pro-
ceedings of ACL, pages 1498–1507.

Tamara Polajnar, Simon Rogers, and Mark Girolami.
2011. Protein interaction detection in sentences via
Gaussian Processes: a preliminary evaluation. Inter-
national Journal of Data Mining and Bioinformat-
ics, 5(1):52–72, January.

Daniel Preotiuc-Pietro and Trevor Cohn. 2013. A tem-
poral model of text periodicities using Gaussian Pro-
cesses. In Proceedings of EMNLP.

Carl Edward Rasmussen and Christopher K. I.
Williams. 2006. Gaussian processes for machine
learning, volume 1. MIT Press Cambridge.

Jaakko Riihimäki, Pasi Jylänki, and Aki Vehtari. 2013.
Nested Expectation Propagation for Gaussian Pro-
cess Classification with a Multinomial Probit Like-
lihood. Journal of Machine Learning Research,
14:75–109.

Anton Schwaighofer, Marian Grigoras, Volker Tresp,
and Clemens Hoffmann. 2004. GPPS: A Gaussian
Process Positioning System for Cellular Networks.
In Proceedings of NIPS.

Matthias Seeger, Christopher K. I. Williams, and
Neil D. Lawrence. 2003. Fast Forward Selection
to Speed Up Sparse Gaussian Process Regression.
In Proceedings of AISTATS.

John Shawe-Taylor and Nello Cristianini. 2004. Ker-
nel methods for pattern analysis. Cambridge.

Fabian H. Sinz, Joaquin Quiñonero Candela,
Gökhan H. Bakır, Carl E. Rasmussen, and
Matthias O. Franz. 2004. Learning Depth from
Stereo. Pattern Recognition, pages 1–8.

Edward Snelson and Zoubin Ghahramani. 2006.
Sparse Gaussian Processes using Pseudo-inputs. In
Proceedings of NIPS.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of AMTA.

Lucia Specia and Atefeh Farzindar. 2010. Estimating
machine translation post-editing effort with HTER.
In Proceedings of AMTA Workshop Bringing MT to
the User: MT Research and the Translation Indus-
try.

Lucia Specia, Nicola Cancedda, Marc Dymetman,
Marco Turchi, and Nello Cristianini. 2009. Estimat-
ing the sentence-level quality of machine translation
systems. In Proceedings of EAMT, pages 28–35.

Lucia Specia. 2011. Exploiting objective annotations
for measuring translation post-editing effort. In Pro-
ceedings of EAMT.

Michalis K. Titsias. 2009. Variational Learning of In-
ducing Variables in Sparse Gaussian Processes. In
Proceedings of AISTATS, volume 5, pages 567–574.

Peter D. Turney. 2002. Thumbs Up or Thumbs
Down?: Semantic Orientation Applied to Unsuper-
vised Classification of Reviews. In Proceedings of
ACL, number July, pages 417–424.

Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen,
Pasi Jylänki, Ville Tolvanen, and Aki Vehtari. 2013.
GPstuff: Bayesian Modeling with Gaussian Pro-
cesses. The Journal of Machine Learning Research,
14:1175–1179.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi
Kondor, and Karsten M. Borgwardt. 2010. Graph
Kernels. Journal of Machine Learning Research,
11:1201–1242.

8

Christopher K. I. Williams and David Barber. 1998.
Bayesian Classification with Gaussian Processes.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(12):1342–1351.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase Dependency Parsing for Opinion Min-
ing. In Proceedings of EMNLP, pages 1533–1541.

Dell Zhang and Wee Sun Lee. 2003. Question classi-
fication using support vector machines. In Proceed-
ings of SIGIR, New York, New York, USA. ACM
Press.

9

