
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 296–301,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Improving sparse word similarity models with asymmetric measures

Jean Mark Gawron
San Diego State University
gawron@mail.sdsu.edu

Abstract

We show that asymmetric models based on
Tversky (1977) improve correlations with
human similarity judgments and nearest
neighbor discovery for both frequent and
middle-rank words. In accord with Tver-
sky’s discovery that asymmetric similarity
judgments arise when comparing sparse
and rich representations, improvement on
our two tasks can be traced to heavily
weighting the feature bias toward the rarer
word when comparing high- and mid-
frequency words.

1 Introduction

A key assumption of most models of similarity is
that a similarity relation is symmetric. This as-
sumption is foundational for some conceptions,
such as the idea of a similarity space, in which
similarity is the inverse of distance; and it is deeply
embedded into many of the algorithms that build
on a similarity relation among objects, such as
clustering algorithms. The symmetry assumption
is not, however, universal, and it is not essential
to all applications of similarity, especially when it
comes to modeling human similarity judgments.
Citing a number of empirical studies, Tversky
(1977) calls symmetry directly into question, and
proposes two general models that abandon sym-
metry. The one most directly related to a large
body of word similarity work that followed is what
he calls the ratio model, which defines sim(a, b)
as:

f(A ∩ B)
f(A ∩ B) + αf(A\B) + βf(B\A)

(1)

Here A and B represent feature sets for the objects
a and b respectively; the term in the numerator is a
function of the set of shared features, a measure of

similarity, and the last two terms in the denomina-
tor measure dissimilarity: α and β are real-number
weights; when α 6= β, symmetry is abandoned.

To motivate such a measure, Tversky presents
experimental data with asymmetric similarity re-
sults, including similarity comparisons of coun-
tries, line drawings of faces, and letters. Tversky
shows that many similarity judgment tasks have
an inherent asymmetry; but he also argues, fol-
lowing Rosch (1975), that certain kinds of stimuli
are more naturally used as foci or standards than
others. Goldstone (in press) summarizes the re-
sults succinctly: “Asymmetrical similarity occurs
when an object with many features is judged as
less similar to a sparser object than vice versa; for
example, North Korea is judged to be more like
China than China is [like] North Korea.” Thus,
one source of asymmetry is the comparison of
sparse and dense representations.

The relevance of such considerations to word
similarity becomes clear when we consider that
for many applications, word similarity measures
need to be well-defined when comparing very fre-
quent words with infrequent words. To make this
concrete, let us consider a word representation
in the word-as-vector paradigm (Lee, 1997; Lin,
1998), using a dependency-based model. Sup-
pose we want to measure the semantic similarity
of boat, rank 682 among the nouns in the BNC
corpus studied below, which has 1057 nonzero
dependency features based on 50 million words
of data, with dinghy, rank 6200, which has only
113 nonzero features. At the level of the vec-
tor representations we are using, these are events
of very different dimensionality; that is, there are
ten times as many features in the representation of
boat as there are in the representation of dinghy. If
in Tversky/Rosch terms, the more frequent word
is also a more likely focus, then this is exactly
the kind of situation in which asymmetric similar-
ity judgments will arise. Below we show that an
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asymmetric measure, using α and β biased in fa-
vor of the less frequent word, greatly improves the
performance of a dependency-based vector model
in capturing human similarity judgments.

Before presenting these results, it will be help-
ful to slightly reformulate and slightly generalize
Tversky’s ratio model. The reformulation will al-
low us to directly draw the connection between
the ratio model and a set of similarity measures
that have played key roles in the similarity litera-
ture. First, since Tversky has primarily additive f
in mind, we can reformulate f(A ∩ B) as follows

f(A ∩ B) =
∑

f∈A∩B

wght(f) (2)

Next, since we are interested in generalizing from
sets of features, to real-valued vectors of features,
w1, w2, we define

σSI(w1, w2) =
∑

f∈w1∩w2
SI(w1[f ], w2[f ]).

(3)
Here SI is some numerical operation on real-
number feature values (SI stands for shared infor-
mation). If the operation is MIN and w1[f ] and
w2[f ] both contain the feature weights for f , then∑
f∈A∩B

wght(f)= σMIN(w1, w2)
=

∑
f∈w1∩w2

MIN(w1[f ], w2[f ]),

so with SI set to MIN, Equation (3) includes Equa-
tion (2) as a special case. Similarly, σ(w1, w1)
represents the summed feature weights of w1, and
therefore,

f(w1\w2) = σ(w1, w1) − σ(w1, w2)

In this generalized form, then, (1) becomes

σ(w1,w2)
σ(w1,w2)+α[σ(w1,w1)−σ(w1,w2)]+β[σ(w2,w2)−σ(w1,w2)]

= σ(w1,w2)
ασ(w1,w1)+βσ(w2,w2)+σ(w1,w2)−(α+β)σ(w1,w2)

(4)
Thus, if α + β = 1, Tversky’s ratio model be-

comes simply:

sim(w1, w2) = σ(w1,w2)
ασ(w1,w1)+(1−α)σ(w2 ,w2)

(5)
The computational advantage of this reformula-
tion is that the core similarity operation σ(w1, w2)
is done on what is generally only a small number
of shared features, and the σ(wi, wi) calculations
(which we will call self-similarities), can be com-
puted in advance. Note that sim(w1, w2) is sym-
metric if and only if α = 0.5. When α > 0.5,

sim(w1, w2) is biased in favor of w1 as the refer-
ent; When α < 0.5, sim(w1, w2) is biased in favor
of w2.

Consider four similarity functions that have
played important roles in the literature on similar-
ity:

DICE PROD(w1, w2) = 2∗w1·w2

‖w1‖2+‖w2‖2

DICE†(w1, w2) =
2∗∑f∈w1∩w2

min(w1[f ], w2[f ])
∑

w1[f ]+
∑

w2[f ]

LIN(w1, w2) =
∑

f∈w1∩w2
w1[f ]+ w2[f ]

∑
w1[f ]+

∑
w2[f ]

COS(w1, w2) = DICE PROD applied
to unit vectors

(6)
The function DICE PROD is not well known in the
word similarity literature, but in the data mining
literature it is often just called Dice coefficient, be-
cause it generalized the set comparison function
of Dice (1945). Observe that cosine is a special
case of DICE PROD. DICE† was introduced in Cur-
ran (2004) and was the most successful function
in his evaluation. Since LIN was introduced in Lin
(1998); several different functions have born that
name. The version used here is the one used in
Curran (2004).

The three distinct functions in Equation 6 have
a similar form. In fact, all can be defined in terms
of σ functions differing only in their SI operation.

Let σSI be a shared feature sum for operation SI,
as defined in Equation (3). We define the Tversky-
normalized version of σSI, written TSI, as:1

TSI(w1, w2) =
2 · σSI(w1, w2)

σSI(w1, w1) + σSI(w2, w2)
(7)

Note that TSI is just the special case of Tversky’s
ratio model (5) in which α = 0.5 and the similarity
measure is symmetric.

We define three SI operations σPROD
2, σMIN, and

σAVG as follows:

SI σSI(w1, w2)
PROD

∑
f∈w1∩w2

w1[f ] ∗ w2[f ]
AVG

∑
f∈w1∩w2

w1[f ]+w2[f ]
2

MIN
∑

f∈w1∩w2
MIN(w1[f ], w2[f ])

1Paralleling (7) is Jaccard-family normalization:

σJACC(w1, w2) =
σ(w1, w2)

σ(w1, w1) + σ(w2, w2)− σ(w1, w2)

It is easy to generalize the result from van Rijsbergen (1979)
for the original set-specific versions of Dice and Jaccard, and
show that all of the Tversky family functions discussed above
are monotonic in Jaccard.

2σPROD , of course, is dot product.
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This yields the three similarity functions cited
above:

DICE PROD(w1, w2) = TPROD(w1, w2)

DICE†(w1, w2) = TMIN(w1, w2)

LIN(w1, w2) = TAVG(w1, w2)

(8)

Thus, all three of these functions are special cases
of symmetric ratio models. Below, we investigate
asymmetric versions of all three, which we write
as Tα,SI(w1, w2), defined as:

σSI(w1, w2)
α · σSI(w1, w1) + (1 − α) · σSI(w2, w2)

(9)

Following Lee (1997), who investigates a different
family of asymmetric similarity functions, we will
refer to these as α-skewed measures.

We also will look at a rank-biased family of
measures:

Rα,SI(w1, w2) = Tα,SI(wh, wl)
where wl = arg min w∈{w1,w2} Rank(w)

wh = arg max w∈{w1,w2} Rank(w)
(10)

Here, Tα,SI(wh, wl) is as defined in (9), and the α-
weighted word is always the less frequent word.
For example, consider comparing the 100-feature
vector for dinghy to the 1000 feature vector for
boat: if α is high, we give more weight to the pro-
portion of dinghy’s features that are shared than
we give to the proportion of boat’s features that
are shared.

In the following sections we present data show-
ing that the performance of a dependency-based
similarity system in capturing human similarity
judgments can be greatly improved with rank-
bias and α-skewing. We will investigate the three
asymmetric functions defined above.3 We argue
that the advantages of rank bias are tied to im-
proved similarity estimation when comparing vec-
tors of very different dimensionality. We then
turn to the problem of finding a word’s nearest
semantic neighbors. The nearest neighbor prob-
lem is a rather a natural ground in which to try
out ideas on asymmetry, since the nearest neigh-
bor relation is itself not symmetrical. We show
that α-skewing can be used to improve the quality
of nearest neighbors found for both high- and mid-
frequency words.

3Interestingly, Equation (9) does not yield an asymmetric
version of cosine. Plugging unit vectors into the α-skewed
version of DICE PROD still leaves us with a symmetric func-
tion (COS), whatever the value of α.

2 Systems

1. We parsed the BNC with the Malt Depen-
dency parser (Nivre, 2003) and the Stanford
parser (Klein and Manning, 2003), creating
two dependency DBs, using basically the de-
sign in Lin (1998), with features weighted by
PMI (Church and Hanks, 1990).

2. For each of the 3 rank-biased similarity sys-
tems (Rα,SI) and cosine, we computed corre-
lations with human judgments for the pairs
in 2 standard wordsets: the combined Miller-
Charles/Rubenstein-Goodenough word sets
(Miller and Charles, 1991; Rubenstein and
Goodenough, 1965) and the Wordsim 353
word set (Finkelstein et al., 2002), as well as
to a subset of the Wordsim set restricted to
reflect semantic similarity judgments, which
we will refer to as Wordsim 201.

3. For each of 3 α-skewed similarity systems
(Tα,SI) and cosine, we found the nearest
neighbor from among BNC nouns (of any
rank) for the 10,000 most frequent BNC
nouns using the the dependency DB created
in step 2.

4. To evaluate of the quality of the nearest
neighbors pairs found in Step 4, we scored
them using the Wordnet-based Personalized
Pagerank system described in Agirre (2009)
(UKB), a non distributional WordNet based
measure, and the best system in Table 1.

3 Human correlations

Table 1 presents the Spearman’s correlation
with human judgments for Cosine, UKB, and
our 3 α-skewed models using Malt-parser
based vectors applied to the combined Miller-
Charles/Rubenstein-Goodenough word sets, the
Wordsim 353 word set, and the Wordsim 202
word set.

The first of each of the column pairs is a sym-
metric system, and the second a rank-biased vari-
ant, based on Equation (10). In all cases, the bi-
ased system improves on the performance of its
symmetric counterpart; in the case of DICE†and
DICE PROD, that improvement is enough for the
biased system to outperform cosine, the best of
the symmetric distributionally based systems. The
value .97 was chosen for α because it produced the
best α-system on the MC/RG corpus. That value
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MC/RG Wdsm201 Wdsm353
α = .5 α = .97 α = .5 α = .97 α = .5 α = .97

Dice DICE PROD .59 .71 .50 .60 .35 .44
LIN .48 .62 .42 .54 .29 .39
DICE† .58 .67 .49 .58 .34 .43

Euc Cosine .65 NA .56 NA .41 NA
WN UKB WN .80 NA .75 NA .68 NA

Table 1: System/Human correlations. Above the line: MALT Parser-based systems
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Figure 1: Scores monotonically increase with α

is probably probably an overtrained optimum. The
point is that α-skewing always helps: For all three
systems, the improvement shown in raising α from
.5 to whatever the optimum is is monotonic. This
is shown in Figure 1. Table 2 shows very simi-
lar results using the Stanford parser, demonstrat-
ing the pattern is not limited to a single parsing
model.

In Table 3, we list the pairs whose reranking
on the MC/RG dataset contributed most to the im-
provement of the α = .9 system over the default
α = .5 system. In the last column an approxi-
mation of the amount of correlation improvement
provided by that pair (δ):4 Note the 3 of the 5
items contributing the most improvement this sys-
tem were pairs with a large difference in rank.
Choosing α = .9, weights recall toward the rarer
word. We conjecture that the reason this helps is
Tversky’s principle: It is natural to use the sparser

4The approximation is based on the formula for comput-
ing Spearman’s R with no ties. If n is the number of items,
then the improvement on that item is:

6 ∗ [(baseline − gold)2 − (test − gold)2]

n ∗ (n2 − 1)

Word 1 Rank Word 2 Rank δ

automobile 7411 car 100 0.030
asylum 3540 madhouse 14703 0.020
coast 708 hill 949 0.018
mound 3089 stove 2885 0.017
autograph 10136 signature 2743 0.009

Table 3: Pairs contributing the biggest improve-
ment, MC/RG word set

representation as the focus in the comparison.

4 Nearest neighbors

Figure 2 gives the results of our nearest neighbor
study on the BNC for the case of DICE PROD. The
graphs for the other two α-skewed systems are
nearly identical, and are not shown due to space
limitations. The target word, the word whose
nearest neighbor is being found, always receives
the weight 1 − α. The x-axis shows target word
rank; the y-axis shows the average UKB simi-
larity scores assigned to nearest neighbors every
50 ranks. All the systems show degraded nearest
neighbor quality as target words grow rare, but at
lower ranks, the α = .04 nearest neighbor system
fares considerably better than the symmetric α =
.50 system; the line across the bottom tracks the
score of a system with randomly generated near-
est neighbors. The symmetric DICE PROD sys-
tem is as an excellent nearest neighbor system at
high ranks but drops below the α = .04 system at
around rank 3500. We see that the α = .8 system
is even better than the symmetric system at high
ranks, but degrades much more quickly.

We explain these results on the basis of the prin-
ciple developed for the human correlation data: To
reflect natural judgments of similarity for compar-
isons of representations of differing sparseness, α
should be tipped toward the sparser representation.

Thus, α = .80 works best for high rank tar-
get words, because most nearest neighbor candi-
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MC/RG Wdsm201 Wdsm353
α = .5 opt opt α α = .5 opt opt α α = .5 opt opt α

DICE PROD .65 .70 .86 .42 .57 .99 .36 .44 .98
LIN .58 .68 .90 .41 .56 .94 .30 .41 .99
DICE† .60 .71 .91 .43 .53 .99 .32 .43 .99

Table 2: System/Human correlations for Stanford parser systems
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Figure 2: UKB evaluation scores for nearest
neighbor pairs across word ranks, sampled every
50 ranks.

dates are less frequent, and α = .8 tips the bal-
ance toward the nontarget words. On the other
hand, when the target word is a low ranking word,
a high α weight means it never receives the high-
est weight, and this is disastrous, since most good
candidates are higher ranking. Conversely, α =
.04 works better.

5 Previous work

The debt owed to Tversky (1977) has been made
clear in the introduction. Less clear is the debt
owed to Jimenez et al. (2012), which also pro-
poses an asymmetric similarity framework based
on Tversky’s insights. Jimenez et al. showed the
continued relevance of Tversky’s work.

Motivated by the problem of measuring how
well the distribution of one word w1 captures the
distribution of another w2, Weeds and Weir (2005)
also explore asymmetric models, expressing sim-
ilarity calculations as weighted combinations of
several variants of what they call precision and re-
call. Some of their models are also Tverskyan ratio
models. To see this, we divide (9) everywhere by
σ(w1, w2):

TSI(w1, w2) =
1

α·σ(w1,w1)
σ(w1,w2)

+ (1−α)·σ(w2 ,w2)
σ(w1,w2)

If the SI is MIN, then the two terms in the de-
nominator are the inverses of what W&W call
difference-weighted precision and recall:

PREC(w1, w2) = σMIN(w1,w2)
σMIN(w1,w1)

REC(w1, w2) = σMIN(w1,w2)
σMIN(w2,w2)

,

So for TMIN, (9) can be rewritten:

1
α

PREC(w1,w2)
+ 1−α

REC(w1,w2)

That is, TMIN is a weighted harmonic mean of
precision and recall, the so-called weighted F-
measure (Manning and Schütze, 1999). W&W’s
additive precision/recall models appear not to be
Tversky models, since they compute separate
sums for precision and recall from the f ∈ w1 ∩
w2, one using w1[f ], and one using w2[f ].

Long before Weed and Weir, Lee (1999) pro-
posed an asymmetric similarity measure as well.
Like Weeds and Weir, her perspective was to cal-
culate the effectiveness of using one distribution as
a proxy for the other, a fundamentally asymmetric
problem. For distributions q and r, Lee’s α-skew
divergence takes the KL-divergence of a mixture
of q and r from q, using the α parameter to define
the proportions in the mixture.

6 Conclusion

We have shown that Tversky’s asymmetric ratio
models can improve performance in capturing
human judgments and produce better nearest
neighbors. To validate these very preliminary
results, we need to explore applications compat-
ible with asymmetry, such as the TOEFL-like
synonym discovery task in Freitag et al. (2005),
and the PP-attachment task in Dagan et al. (1999).
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