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Abstract

We aim to improve spoken term detec-
tion performance by incorporating con-
textual information beyond traditional N-
gram language models. Instead of taking a
broad view of topic context in spoken doc-
uments, variability of word co-occurrence
statistics across corpora leads us to fo-
cus instead the on phenomenon of word
repetition within single documents. We
show that given the detection of one in-
stance of a term we are more likely to
find additional instances of that term in the
same document. We leverage this bursti-
ness of keywords by taking the most con-
fident keyword hypothesis in each docu-
ment and interpolating with lower scor-
ing hits. We then develop a principled
approach to select interpolation weights
using only the ASR training data. Us-
ing this re-weighting approach we demon-
strate consistent improvement in the term
detection performance across all five lan-
guages in the BABEL program.

1 Introduction

The spoken term detection task arises as a key sub-
task in applying NLP applications to spoken con-
tent. Tasks like topic identification and named-
entity detection require transforming a continu-
ous acoustic signal into a stream of discrete to-
kens which can then be handled by NLP and other
statistical machine learning techniques. Given a
small vocabulary of interest (1000-2000 words or
multi-word terms) the aim of the term detection
task is to enumerate occurrences of the keywords
within a target corpus. Spoken term detection con-
verts the raw acoustics into time-marked keyword
occurrences, which may subsequently be fed (e.g.
as a bag-of-terms) to standard NLP algorithms.

Although spoken term detection does not re-
quire the use of word-based automatic speech
recognition (ASR), it is closely related. If we
had perfectly accurate ASR in the language of
the corpus, term detection is reduced to an exact
string matching task. The word error rate (WER)
and term detection performance are clearly corre-
lated. Given resource constraints, domain, chan-
nel, and vocabulary limitations, particularly for
languages other than English, the errorful token
stream makes term detection a non-trivial task.

In order to improve detection performance, and
restricting ourselves to an existing ASR system
or systems at our disposal, we focus on leverag-
ing broad document context around detection hy-
potheses. ASR systems traditionally use N-gram
language models to incorporate prior knowledge
of word occurrence patterns into prediction of the
next word in the token stream. N-gram mod-
els cannot, however, capture complex linguistic or
topical phenomena that occur outside the typical
3-5 word scope of the model. Yet, though many
language models more sophisticated than N-grams
have been proposed, N-grams are empirically hard
to beat in terms of WER.

We consider term detection rather than the tran-
scription task in considering how to exploit topic
context, because in evaluating the retrieval of cer-
tain key terms we need not focus on improving
the entire word sequence. Confidence scores from
an ASR system (which incorporate N-gram prob-
abilities) are optimized in order to produce the
most likely sequence of words rather than the ac-
curacy of individual word detections. Looking at
broader document context within a more limited
task might allow us to escape the limits of N-gram
performance. We will show that by focusing on
contextual information in the form of word repe-
tition within documents, we obtain consistent im-
provement across five languages in the so called
Base Phase of the IARPA BABEL program.
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1.1 Task Overview

We evaluate term detection and word repetition-
based re-scoring on the IARPA BABEL training
and development corpora1 for five languages Can-
tonese, Pashto, Turkish, Tagalog and Vietnamese
(Harper, 2011). The BABEL task is modeled on
the 2006 NIST Spoken Term Detection evaluation
(NIST, 2006) but focuses on limited resource con-
ditions. We focus specifically on the so called no
target audio reuse (NTAR) condition to make our
method broadly applicable.

In order to arrive at our eventual solution, we
take the BABEL Tagalog corpus and analyze word
co-occurrence and repetition statistics in detail.
Our observation of the variability in co-occurrence
statistics between Tagalog training and develop-
ment partitions leads us to narrow the scope of
document context to same word co-occurrences,
i.e. word repetitions.

We then analyze the tendency towards within-
document repetition. The strength of this phe-
nomenon suggests it may be more viable for im-
proving term-detection than, say, topic-sensitive
language models. We validate this by develop-
ing an interpolation formula to boost putative word
repetitions in the search results, and then inves-
tigate a method for setting interpolation weights
without manually tuning on a development set.

We then demonstrate that the method general-
izes well, by applying it to the 2006 English data
and the remaining four 2013 BABEL languages.
We demonstrate consistent improvements in all
languages in both the Full LP (80 hours of ASR
training data) and Limited LP (10 hours) settings.

2 Motivation

We seek a workable definition of broad docu-
ment context beyond N-gram models that will im-
prove term detection performance on an arbitrary
set of queries. Given the rise of unsupervised la-
tent topic modeling with Latent Dirchlet Alloca-
tion (Blei et al., 2003) and similar latent variable
approaches for discovering meaningful word co-
occurrence patterns in large text corpora, we ought
to be able to leverage these topic contexts instead
of merely N-grams. Indeed there is work in the
literature that shows that various topic models, la-
tent or otherwise, can be useful for improving lan-

1Language collection releases IARPA-babel101-v0.4c,
IARPA-babel104b-v0.4bY, IARPA-babel105b-v0.4, IARPA-
babel106-v0.2g and IARPA-babel107b-v0.7 respectively.

guage model perplexity and word error rate (Khu-
danpur and Wu, 1999; Chen, 2009; Naptali et
al., 2012). However, given the preponderance of
highly frequent non-content words in the compu-
tation of a corpus’ WER, it’s not clear that a 1-2%
improvement in WER would translate into an im-
provement in term detection.

Still, intuition suggests that knowing the topic
context of a detected word ought to be useful
in predicting whether or not a term does belong
in that context. For example, if we determine
the context of the detection hypothesis is about
computers, containing words like ‘monitor,’ ‘in-
ternet’ and ‘mouse,’ then we would be more con-
fident of a term such as ‘keyboard’ and less con-
fident of a term such as ‘cheese board’. The dif-
ficulty in this approach arises from the variabil-
ity in word co-occurrence statistics. Using topic
information will be helpful if ‘monitor,’ ‘key-
board’ and ‘mouse’ consistently predict that ‘key-
board’ is present. Unfortunately, estimates of co-
occurrence from small corpora are not very consis-
tent, and often over- or underestimate concurrence
probabilities needed for term detection.

We illustrate this variability by looking at how
consistent word co-occurrences are between two
separate corpora in the same language: i.e., if we
observe words that frequently co-occur with a key-
word in the training corpus, do they also co-occur
with the keywords in a second held-out corpus?
Figure 1, based on the BABEL Tagalog corpus, sug-
gests this is true only for high frequency keywords.

Figure 1: Correlation between the co-occurrence
counts in the training and held-out sets for a fixed
keyword (term) and all its “context” words.

Each point in Figure 1 represents one of 355
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(a) High frequency keyword ‘bukas’ (b) Low frequency keyword ‘Davao’

Figure 2: The number of times a fixed keyword k co-occurs with a vocabulary word w in the training
speech collection — T (k,w) — versus the search collection — D(k,w).

Tagalog keywords used for system development
by all BABEL participants. For each keyword k,
we count how often it co-occurs in the same con-
versation as a vocabulary word w in the ASR
training data and the development data, and des-
ignate the counts T (k,w) and D(k,w) respec-
tively. The x-coordinate of each point in Figure 1
is the frequency of k in the training data, and the
y-coordinate is the correlation coefficient ρk be-
tween T (k,w) and D(k,w). A high ρk implies
that wordsw that co-occur frequently with k in the
training data also do so in the search collection.

To further illustrate how Figure 1 was obtained,
consider the high-frequency keyword bukas (count
= 879) and the low-frequency keyword Davao
(count = 11), and plot T (k, ·) versus D(k, ·),
as done in Figure 2. The correlation coefficients
ρbukas and ρDavao from the two plots end up as two
points in Figure 1.

Figure 1 suggests that (k,w) co-occurrences are
consistent between the two corpora (ρk > 0.8) for
keywords occurring 100 or more times. However,
if the goal is to help a speech retrieval system de-
tect content-rich (and presumably infrequent) key-
words, then using word co-occurrence informa-
tion (i.e. topic context) does not appear to be
too promising, even though intuition suggests that
such information ought to be helpful.

In light of this finding, we will restrict the type
of context we use for term detection to the co-
occurrence of the term itself elsewhere within the
document. As it turns out this ‘burstiness’ of
words within documents, as the term is defined by
Church and Gale in their work on Poisson mix-
tures (1995), provides a more reliable framework

for successfully exploiting document context.

2.1 Related Work
A number of efforts have been made to augment
traditional N-gram models with latent topic infor-
mation (Khudanpur and Wu, 1999; Florian and
Yarowsky, 1999; Liu and Liu, 2008; Hsu and
Glass, 2006; Naptali et al., 2012) including some
of the early work on Probabilistic Latent Semantic
Analysis by Hofmann (2001). In all of these cases
WER gains in the 1-2% range were observed by
interpolating latent topic information with N-gram
models.

The re-scoring approach we present is closely
related to adaptive or cache language models (Je-
linek, 1997; Kuhn and De Mori, 1990; Kneser and
Steinbiss, 1993). The primary difference between
this and previous work on similar language mod-
els is the narrower focus here on the term detec-
tion task, in which we consider each search term in
isolation, rather than all words in the vocabulary.
Most recently, Chiu and Rudnicky (2013) looked
at word bursts in the IARPA BABEL conversational
corpora, and were also able to successfully im-
prove performance by leveraging the burstiness of
language. One advantage of the approach pro-
posed here, relative to their approach, is its sim-
plicity and its not requiring an additional tuning
set to estimate parameters.

In the information retrieval community, cluster-
ing and latent topic models have yielded improve-
ments over traditional vector space models. We
will discuss in detail in the following section re-
lated works by Church and Gale (1995, 1999, and
2000). Work by Wei and Croft (2006) and Chen
(2009) take a language model-based approach to
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(a) fw versus IDFw

‘
(b) Obsered versus predicted IDFw

Figure 3: Tagalog corpus frequency statistics, unigrams

information retrieval, and again, interpolate latent
topic models with N-grams to improve retrieval
performance. However, in many text retrieval
tasks, queries are often tens or hundreds of words
in length rather than short spoken phrases. In these
efforts, the topic model information was helpful in
boosting retrieval performance above the baseline
vector space or N-gram models.

Clearly topic or context information is relevant
to a retrieval type task, but we need a stable, con-
sistent framework in which to apply it.

3 Term and Document Frequency
Statistics

To this point we have assumed an implicit property
of low-frequency words which Church and Gale
state concisely in their 1999 study of inverse doc-
ument frequency:

Low frequency words tend to be rich
in content, and vice versa. But not
all equally frequent words are equally
meaningful. Church and Gale (1999).

The typical use of Document Frequency (DF) in
information retrieval or text categorization is to
emphasize words that occur in only a few docu-
ments and are thus more “rich in content”. Close
examination of DF statistics by Church and Gale
in their work on Poisson Mixtures (1995) resulted
in an analysis of the burstiness of content words.

In this section we look at DF and burstiness
statistics applying some of the analyses of Church
and Gale (1999) to the BABEL Tagalog corpus.
We observe, in 648 Tagalog conversations, simi-
lar phenomena as observed by Church and Gale on

89,000 AP English newswire articles. We proceed
in this fashion to make a case for why burstiness
ought to help in the term detection task.

For the Tagalog conversations, as with En-
glish newswire, we observe that the document fre-
quency, DFw, of a word w is not a linear function
of word frequency fw in the log domain, as would
be expected under a naive Poisson generative as-
sumption. The implication of deviations from a
Poisson model is that words tend to be concen-
trated in a small number of documents rather than
occurring uniformly across the corpus. This is the
burstiness we leverage to improve term detection.

The first illustration of word burstiness can be
seen by plotting observed inverse document fre-
quency, IDFw, versus fw in the log domain (Fig-
ure 3a). We use the same definition of IDFw as
Church and Gale (1999):

IDFw = − log2

DFw

N
, (1)

where N is the number of documents (i.e. conver-
sations) in the corpus.

There is good linear correlation (ρ = 0.73) be-
tween log fw and IDFw. Yet, visually, the rela-
tionship in Figure 3a is clearly not linear. In con-
trast, the AP English data exhibits a correlation of
ρ = 0.93 (Church and Gale, 1999). Thus the devi-
ation in the Tagalog corpus is more pronounced,
i.e. words are less uniformly distributed across
documents.

A second perspective on word burstiness that
follows from Church and Gale (1999) is that a
Poisson assumption should lead us to predict:

ÎDFw = − log2

(
1− e− fw

N

)
. (2)
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Figure 4: Difference between observed and pre-
dicted IDFw for Tagalog unigrams.

For the AP newswire, Church and Gale found the
largest deviation between the predicted ̂IDFw and
observed IDFw to occur in the middle of the fre-
quency range. We see a somewhat different pic-
ture for Tagalog speech in Figure 3b. Observed
IDFw values again deviate significantly from their
predictions (2), but all along the frequency range.

There is a noticeable quantization effect occur-
ring in the high IDF range, given that our N is at
least a factor of 100 smaller than the number of
AP articles they studied: 648 vs. 89,000. Figure 4
also shows the difference between and observed
IDFw and Poisson estimate ÎDFw and further il-
lustrates the high variance in IDFw for low fre-
quency words.

Two questions arise: what is happening with in-
frequent words, and why does this matter for term
detection? To look at the data from a different
perspective, we consider the random variable k,
which is the number of times a word occurs in a
particular document. In Figure 5 we plot the fol-
lowing ratio, which Church and Gale (1995) define
as burstiness :

Ew[k|k > 0] =
fw

DFw
(3)

as a function of fw. We denote this as E[k] and
can interpret burstiness as the expected word count
given we see w at least once.

In Figure 5 we see two classes of words emerge.
A similar phenomenon is observed concerning
adaptive language models (Church, 2000). In
general, we can think of using word repetitions
to re-score term detection as applying a limited
form of adaptive or cache language model (Je-
linek, 1997). Likewise, Katz attempts to capture

Figure 5: Tagalog burstiness.

these two classes in his G model of word frequen-
cies (1996).

For the first class, burstiness increases slowly
but steadily as w occurs more frequently. Let us
label these Class A words. Since our corpus size
is fixed, we might expect this to occur, as more
word occurrences must be pigeon-holed into the
same number of documents

Looking close to the y-axis in Figure 5, we ob-
serve a second class of exclusively low frequency
words whose burstiness ranges from highly con-
centrated to singletons. We will refer to these as
Class B words. If we take the Class A concentra-
tion trend as typical, we can argue that most Class
B words exhibit a larger than average concentra-
tion. In either case we see evidence that both high
and low frequency words tend towards repeating
within a document.

3.1 Unigram Probabilities

In applying the burstiness quantity to term detec-
tion, we recall that the task requires us to locate a
particular instance of a term, not estimate a count,
hence the utility of N-gram language models pre-
dicting words in sequence.

We encounter the burstiness property of words
again by looking at unigram occurrence probabili-
ties. We compare the unconditional unigram prob-
ability (the probability that a given word token is
w) with the conditional unigram probability, given
the term has occurred once in the document. We
compute the conditional probability for w using
frequency information.
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Figure 6: Difference between conditional and un-
conditional unigram probabilities for Tagalog

P (w|k > 0) =
fw −DFw∑

D:w∈D |D|
(4)

Figure 6 shows the difference between con-
ditional and unconditional unigram probabilities.
Without any other information, Zipf’s law sug-
gests that most word types do not occur in a partic-
ular document. However, conditioning on one oc-
currence, most word types are more likely to occur
again, due to their burstiness.

Finally we measure the adaptation of a word,
which is defined by Church and Gale (1995) as:

Padapt(w) = Pw(k > 1|k > 0) (5)

When we plot adaptation versus fw (Figure 7)
we see that all high-frequency and a significant
number of low-frequency terms have adaptation
greater that 50%. To be precise, 26% of all to-
kens and 25% of low-frequency (fw < 100) have
at least 50% adaptation. Given that adaptation val-
ues are roughly an order of magnitude higher than
the conditional unigram probabilities, in the next
two sections we describe how we use adaptation
to boost term detection scores.

4 Term Detection Re-scoring

We summarize our re-scoring of repeated words
with the observation: given a correct detection,
the likelihood of additional terms in the same doc-
uments should increase. When we observe a term
detection score with high confidence, we boost the
other lower-scoring terms in the same document to
reflect this increased likelihood of repeated terms.

Figure 7: Tagalog word adaptation probability

For each term t and document d we propose in-
terpolating the ASR confidence score for a partic-
ular detection td with the top scoring hit in dwhich
we’ll call t̂d.

S(td) = (1− α)Pasr(td|O) + αPasr(t̂d|O) (6)

We will we develop a principled approach to se-
lecting α using the adaptation property of the cor-
pus. However to verify that this approach is worth
pursuing, we sweep a range of small α values, on
the assumption that we still do want to mostly rely
on the ASR confidence score for term detection.
For the Tagalog data, we let α range from 0 (the
baseline) to 0.4 and re-score each term detection
score according to (6). Table 1 shows the results
of this parameter sweep and yields us 1 to 2% ab-
solute performance gains in a number of term de-
tection metrics.

α ATWV P (Miss)

0.00 0.470 0.430
0.05 0.481 0.422
0.10 0.483 0.420
0.15 0.484 0.418
0.20 0.483 0.416
0.25 0.480 0.417
0.30 0.477 0.417
0.35 0.475 0.415
0.40 0.471 0.413
0.45 0.465 0.413
0.50 0.462 0.410

Table 1: Term detection scores for swept α values
on Tagalog development data
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The primary metric for the BABEL program, Ac-
tual Term Weighted Value (ATWV) is defined by
NIST using a cost function of the false alarm prob-
ability P (FA) and P (Miss), averaged over a set
of queries (NIST, 2006). The manner in which the
components of ATWV are defined:

P (Miss) = 1−Ntrue(term)/fterm (7)

P (FA) = Nfalse/Durationcorpus (8)

implies that cost of a miss is inversely proportional
to the frequency of the term in the corpus, but the
cost of a false alarm is fixed. For this reason, we
report both ATWV and the P (Miss) component.
A decrease in P (Miss) reflects the fact that we
are able to boost correct detections of the repeated
terms.

4.1 Interpolation Weights
We would prefer to use prior knowledge rather
than naive tuning to select an interpolation weight
α. Our analysis of word burstiness suggests that
adaptation, is a reasonable candidate. Adaptation
also has the desirable property that we can esti-
mate it for each word in the training vocabulary
directly from training data and not post-hoc on a
per-query basis. We consider several different es-
timates and we can show that the favorable result
extends across languages.

Intuition suggests that we prefer per-term in-
terpolation weights related to the term’s adapta-
tion. But despite the strong evidence of the adapta-
tion phenomenon in both high and low-frequency
words (Figure 7), we have less confidence in the
adaptation strength of any particular word.

As with word co-occurrence, we consider if es-
timates of Padapt(w) from training data are con-
sistent when estimated on development data. Fig-
ure 8 shows the difference between Padapt(w)
measured on the two corpora (for words occurring
in both).

We see that the adaptation estimates are only
consistent between corpora for high-frequency
words. Using this Padapt(w) estimate directly ac-
tually hurts ATWV performance by 4.7% absolute
on the 355 term development query set (Table 2).

Given the variability in estimating Padapt(w),
an alternative approach would be take P̂w as an
upper bound on α, reached as the DFw increases
(cf. Equation 9). We would discount the adapta-
tion factor when DFw is low and we are unsure of

Figure 8: Difference in adaptation estimates be-
tween Tagalog training and development corpora

Interpolation Weight ATWV P (Miss)

None 0.470 0.430
Padapt(w) 0.423 0.474
(1− e−DFw)Padapt(w) 0.477 0.415
α̂ = 0.20 0.483 0.416

Table 2: Term detection performance using vari-
ous interpolation weight strategies on Tagalog dev
data

the effect.

αw = (1− e−DFw) · P̂adapt(w) (9)

This approach shows a significant improvement
(0.7% absolute) over the baseline. However, con-
sidering this estimate in light of the two classes of
words in Figure 5, there are clearly words in Class
B with high burstiness that will be ignored by try-
ing to compensate for the high adaptation variabil-
ity in the low-frequency range.

Alternatively, we take a weighted average of
αw’s estimated on training transcripts to obtain a
single α̂ per language (cf. Equation 10).

α̂ = Avg
w

[(
1− e−DFw

) · P̂adapt(w)
]

(10)

Using this average as a single interpolation weight
for all terms gives near the best performance as
we observed in our parameter sweep. Table 2
contrasts the results for using the three different
interpolation heuristics on the Tagalog develop-
ment queries. Using the mean α̂ instead of indi-
vidual αw’s provides an additional 0.5% absolute
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Language α̂ ATWV (%±) P (Miss) (%±)

Full LP setting

Tagalog 0.20 0.523 (+1.1) 0.396 (-1.9)
Cantonese 0.23 0.418 (+1.3) 0.458 (-1.9)
Pashto 0.19 0.419 (+1.1) 0.453 (-1.6)
Turkish 0.14 0.466 (+0.8) 0.430 (-1.3)
Vietnamese 0.30 0.420 (+0.7) 0.445 (-1.0)
English (Dev06) 0.20 0.670 (+0.3) 0.240 (-0.4)

Limited LP setting

Tagalog 0.22 0.228 (+0.9) 0.692 (-1.7)
Cantonese 0.26 0.205 (+1.0) 0.684 (-1.3)
Pashto 0.21 0.206 (+0.9) 0.682 (-0.9)
Turkish 0.16 0.202 (+1.1) 0.700 (-0.8)
Vietnamese 0.34 0.227 (+1.0) 0.646 (+0.4)

Table 3: Word-repetition re-scored results for available CTS term detection corpora

improvement, suggesting that we find additional
gains boosting low-frequency words.

5 Results

Now that we have tested word repetition-based
re-scoring on a small Tagalog development set
we want to know if our approach, and particu-
larly our α̂ estimate is sufficiently robust to apply
broadly. At our disposal, we have the five BABEL

languages — Tagalog, Cantonese, Pashto, Turk-
ish and Vietnamese — as well as the development
data from the NIST 2006 English evaluation. The
BABEL evaluation query sets contain roughly 2000
terms each and the 2006 English query set con-
tains roughly 1000 terms.

The procedure we follow for each language
condition is as follows. We first estimate adap-
tation probabilities from the ASR training tran-
scripts. From these we take the weighted aver-
age as described previously to obtain a single in-
terpolation weight α̂ for each training condition.
We train ASR acoustic and language models from
the training corpus using the Kaldi speech recog-
nition toolkit (Povey et al., 2011) following the
default BABEL training and search recipe which is
described in detail by Chen et al. (2013). Lastly,
we re-score the search output by interpolating the
top term detection score for a document with sub-
sequent hits according to Equation 6 using the α̂
estimated for this training condition.

For each of the BABEL languages we consider
both the FullLP (80 hours) and LimitedLP (10

hours) training conditions. For the English sys-
tem, we also train a Kaldi system on the 240 hours
of the Switchboard conversational English cor-
pus. Although Kaldi can produce multiple types
of acoustic models, for simplicity we report results
using discriminatively trained Subspace Gaussian
Mixture Model (SGMM) acoustic output densi-
ties, but we do find that similar results can be ob-
tained with other acoustic model configurations.

Using our final algorithm, we are able to boost
repeated term detections and improve results in all
languages and training conditions. Table 3 lists
complete results and the associated estimates for
α̂. For the BABEL languages, we observe improve-
ments in ATWV from 0.7% to 1.3% absolute and
reductions in the miss rate of 0.8% to 1.9%. The
only test for which P (Miss) did not improve was
the Vietnamese Limited LP setting, although over-
all ATWV did improve, reflecting a lower P (FA).

In all conditions we also obtain α estimates
which correspond to our expectations for partic-
ular languages. For example, adaptation is low-
est for the agglutinative Turkish language where
longer word tokens should be less likely to re-
peat. For Vietnamese, with shorter, syllable length
word tokens, we observe the lowest adaptation es-
timates.

Lastly, the reductions in P (Miss) suggests that
we are improving the term detection metric, which
is sensitive to threshold changes, by doing what
we set out to do, which is to boost lower confi-
dence repeated words and correctly asserting them
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as true hits. Moreover, we are able to accomplish
this in a wide variety of languages.

6 Conclusions

Leveraging the burstiness of content words, we
have developed a simple technique to consis-
tently boost term detection performance across
languages. Using word repetitions, we effectively
use a broad document context outside of the typi-
cal 2-5 N-gram window. Furthermore, we see im-
provements across a broad spectrum of languages:
languages with syllable-based word tokens (Viet-
namese, Cantonese), complex morphology (Turk-
ish), and dialect variability (Pashto).

Secondly, our results are not only effective but
also intuitive, given that the interpolation weight
parameter matches our expectations for the bursti-
ness of the word tokens in the language on which
it is estimated.

We have focused primarily on re-scoring results
for the term detection task. Given the effective-
ness of the technique across multiple languages,
we hope to extend our effort to exploit our hu-
man tendency towards redundancy to decoding or
other aspects of the spoken document processing
pipeline.
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