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Abstract

Analyses of filler-gap dependencies usu-
ally involve complex syntactic rules or
heuristics; however recent results suggest
that filler-gap comprehension begins ear-
lier than seemingly simpler constructions
such as ditransitives or passives. Therefore,
this work models filler-gap acquisition as a
byproduct of learning word orderings (e.g.
SVO vs OSV), which must be done at a
very young age anyway in order to extract
meaning from language. Specifically, this
model, trained on part-of-speech tags, rep-
resents the preferred locations of semantic
roles relative to a verb as Gaussian mix-
tures over real numbers.

This approach learns role assignment in
filler-gap constructions in a manner con-
sistent with current developmental findings
and is extremely robust to initialization
variance. Additionally, this model is shown
to be able to account for a characteristic er-
ror made by learners during this period (A
and B gorped interpreted as A gorped B).

1 Introduction

The phenomenon of filler-gap, where the argument
of a predicate appears outside its canonical posi-
tion in the phrase structure (e.g. [the apple]i that
the boy ate ti or [what]i did the boy eat ti), has long
been an object of study for syntacticians (Ross,
1967) due to its apparent processing complexity.
Such complexity is due, in part, to the arbitrary
length of the dependency between a filler and its
gap (e.g. [the apple]i that Mary said the boy ate ti).

Recent studies indicate that comprehension of
filler-gap constructions begins around 15 months
(Seidl et al., 2003; Gagliardi et al., 2014). This
finding raises the question of how such a complex
phenomenon could be acquired so early since chil-
dren at that age do not yet have a very advanced
grasp of language (e.g. ditransitives do not seem
to be generalized until at least 31 months; Gold-
berg et al. 2004, Bello 2012). This work shows
that filler-gap comprehension in English may be
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Figure 1: The developmental timeline of subject
(Wh-S) and object (Wh-O) wh-clause extraction
comprehension suggested by experimental results
(Seidl et al., 2003; Gagliardi et al., 2014). Paren-
theses indicate weak comprehension. The final row
shows the timeline of 1-1 role bias errors (Naigles,
1990; Gertner and Fisher, 2012). Missing nodes de-
note a lack of studies.

acquired through learning word orderings rather
than relying on hierarchical syntactic knowledge.

This work describes a cognitive model of the de-
velopmental timecourse of filler-gap comprehension
with the goal of setting a lower bound on the mod-
eling assumptions necessary for an ideal learner
to display filler-gap comprehension. In particular,
the model described in this paper takes chunked
child-directed speech as input and learns orderings
over semantic roles. These orderings then permit
the model to successfully resolve filler-gap depen-
dencies.1 Further, the model presented here is also
shown to initially reflect an idiosyncratic role as-
signment error observed in development (e.g. A
and B kradded interpreted as A kradded B ; Gert-
ner and Fisher, 2012), though after training, the
model is able to avoid the error. As such, this work
may be said to model a learner from 15 months to
between 25 and 30 months.

1This model does not explicitly learn gap positions,
but rather assigns thematic roles to arguments based
on where those arguments are expected to manifest.
This approach to filler-gap comprehension is supported
by findings that show people do not actually link fillers
to gap positions but instead link the filler to a verb
with missing arguments (Pickering and Barry, 1991)
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2 Background

The developmental timeline during which children
acquire the ability to process filler-gap construc-
tions is not well-understood. Language comprehen-
sion precedes production, and the developmental
literature on the acquisition of filler-gap construc-
tions is sparsely populated due to difficulties in de-
signing experiments to test filler-gap comprehen-
sion in preverbal infants. Older studies typically
looked at verbal children and the mistakes they
make to gain insight into the acquisition process
(de Villiers and Roeper, 1995).

Recent studies, however, indicate that filler-
gap comprehension likely begins earlier than pro-
duction (Seidl et al., 2003; Gagliardi and Lidz,
2010; Gagliardi et al., 2014). Therefore, studies
of verbal children are probably actually testing
the acquisition of production mechanisms (plan-
ning, motor skills, greater facility with lexical ac-
cess, etc) rather than the acquisition of filler-
gap. Note that these may be related since filler-
gap could introduce greater processing load which
could overwhelm the child’s fragile production ca-
pacity (Phillips, 2010).

Seidl et al. (2003) showed that children are able
to process wh-extractions from subject position
(e.g. [who]i ti ate pie) as young as 15 months
while similar extractions from object position (e.g.
[what]i did the boy eat ti) remain unparseable until
around 20 months of age.2 This line of investiga-
tion has been reopened and expanded by Gagliardi
et al. (2014) whose results suggest that the ex-
perimental methodology employed by Seidl et al.
(2003) was flawed in that it presumed infants have
ideal performance mechanisms. By providing more
trials of each condition and controlling for the prag-
matic felicity of test statements, Gagliardi et al.
(2014) provide evidence that 15-month old infants
can process wh-extractions from both subject and
object positions. Object extractions are more diffi-
cult to comprehend than subject extractions, how-
ever, perhaps due to additional processing load in
object extractions (Gibson, 1998; Phillips, 2010).
Similarly, Gagliardi and Lidz (2010) show that rel-
ativized extractions with a wh-relativizer (e.g. find
[the boy]i who ti ate the apple) are easier to com-
prehend than relativized extractions with that as
the relativizer (e.g. find [the boy]i that ti ate the
apple).

Yuan et al. (2012) demonstrate that 19-month
olds use their knowledge of nouns to learn both
verbs and their associated argument structure. In

2Since the wh-phrase is in the same (or a very simi-
lar) position as the original subject when the wh-phrase
takes subject position, it is not clear that these con-
structions are true extractions (Culicover, 2013), how-
ever, this paper will continue to refer to them as such
for ease of exposition.

their study, infants were shown video of a person
talking on a phone using a nonce verb with ei-
ther one or two nouns (e.g. Mary kradded Susan).
Under the assumption that infants look longer at
things that correspond to their understanding of
a prompt, the infants were then shown two im-
ages that potentially depicted the described action
– one picture where two actors acted independently
(reflecting an intransitive proposition) and one pic-
ture where one actor acted on the other (reflecting
a transitive proposition).3 Even though the infants
had no extralinguistic knowledge about the verb,
they consistently treated the verb as transitive if
two nouns were present and intransitive if only one
noun was present.

Similarly, Gertner and Fisher (2012) show that
intransitive phrases with conjoined subjects (e.g.
John and Mary gorped) are given a transitive in-
terpretation (i.e. John gorped Mary) at 21 months
(henceforth termed ‘1-1 role bias’), though this ef-
fect is no longer present at 25 months (Naigles,
1990). This finding suggests both that learners
will ignore canonical structure in favor of using
all possible arguments and that children have a
bias to assign a unique semantic role to each argu-
ment. It is important to note, however, that cross-
linguistically children do not seem to generalize be-
yond two arguments until after at least 31 months
of age (Goldberg et al., 2004; Bello, 2012), so a
predicate occurring with three nouns would still
likely be interpreted as merely transitive rather
than ditransitive.

Computational modeling provides a way to test
the computational level of processing (Marr, 1982).
That is, given the input (child-directed speech,
adult-directed speech, and environmental experi-
ences), it is possible to probe the computational
processes that result in the observed output. How-
ever, previous computational models of grammar
induction (Klein and Manning, 2004), including in-
fant grammar induction (Kwiatkowski et al., 2012),
have not addressed filler-gap comprehension.4

The closest work to that presented here is the
work on BabySRL (Connor et al., 2008; Connor et
al., 2009; Connor et al., 2010). BabySRL is a com-
putational model of semantic role acquistion using
a similar set of assumptions to the current work.
BabySRL learns weights over ordering constraints
(e.g. preverbal, second noun, etc.) to acquire se-
mantic role labelling while still exhibiting 1-1 role
bias. However, no analysis has evaluated the abil-

3There were two actors in each image to avoid bias-
ing the infants to look at the image with more actors.

4As one reviewer notes, Joshi et al. (1990) and sub-
sequent work show that filler-gap phenomena can be
formally captured by mildly context-sensitive grammar
formalisms; these have the virtue of scaling up to adult
grammar, but due to their complexity, do not seem to
have been described as models of early acquisition.
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Susan said John gave girl book
-3 -2 -1 0 1 2

Table 1: An example of a chunked sentence (Su-
san said John gave the girl a red book) with the
sentence positions labelled. Nominal heads of noun
chunks are in bold.

ity of BabySRL to acquire filler-gap constructions.
Further comparison to BabySRL may be found in
Section 6.

3 Assumptions

The present work restricts itself to acquiring filler-
gap comprehension in English. The model pre-
sented here learns a single, non-recursive ordering
for the semantic roles in each sentence relative to
the verb since several studies have suggested that
early child grammars may consist of simple lin-
ear grammars that are dictated by semantic roles
(Diessel and Tomasello, 2001; Jackendoff and Wit-
tenberg, in press). This work assumes learners can
already identify nouns and verbs, which is sup-
ported by Shi et al. (1999) who show that chil-
dren at an extremely young age can distinguish be-
tween content and function words and by Waxman
and Booth (2001) who show that children can dis-
tinguish between different types of content words.
Further, since Waxman and Booth (2001) demon-
strate that, by 14 months, children are able to dis-
tinguish nouns from modifiers, this work assumes
learners can already chunk nouns and access the
nominal head. To handle recursion, this work as-
sumes that children treat the final verb in each
sentence as the main verb (implicitly assuming sen-
tence segmentation), which ideally assigns roles to
each of the nouns in the sentence.

Due to the findings of Yuan et al. (2012),
this work adopts a ‘syntactic bootstrapping’ the-
ory of acquisition (Gleitman, 1990), where struc-
tural properties (e.g. number of nouns) inform the
learner about semantic properties of a predicate
(e.g. how many semantic roles it confers). Since
infants infer the number of semantic roles, this
work further assumes they already have expecta-
tions about where these roles tend to be realized
in sentences, if they appear. These positions may
correspond to different semantic roles for different
predicates (e.g. the subject of run and of melt);
however, the role for predicates with a single argu-
ment is usually assigned to the noun that precedes
the verb while a second argument is usually as-
signed after the verb. The semantic properties of
these roles may be learned lexically for each pred-
icate, but that is beyond the scope of this work.
Therefore, this work uses syntactic and semantic
roles interchangeably (e.g. subject and agent).

µ σ π
GSC -1 0.5 .999
GSN -1 3 .001
GOC 1 0.5 .999
GON 1 3 .001

Φ .00001

Table 2: Initial values for the mean (µ), standard
deviation (σ), and prior (π) of each Gaussian as
well as the skip penalty (Φ) used in this paper.

Finally, following the finding by Gertner and
Fisher (2012) that children interpret intransitives
with conjoined subjects as transitives, this work as-
sumes that semantic roles have a one-to-one corre-
spondence with nouns in a sentence (similarly used
as a soft constraint in the semantic role labelling
work of Titov and Klementiev, 2012).

4 Model

The model represents the preferred locations of
semantic roles relative to the verb as distribu-
tions over real numbers. This idea is adapted from
Boersma (1997) who uses it to learn constraint
rankings in optimality theory.

In this work, the final (main) verb is placed at
position 0; words (and chunks) before the verb are
given progressively more negative positions, and
words after the verb are given progressively more
positive positions (see Table 1). Learner expecta-
tions of where an argument will appear relative
to the verb are modelled as two-component Gaus-
sian mixtures: one mixture of Gaussians (GS·) cor-
responds to the subject argument, another (GO·)
corresponds to the object argument. There is no
mixture for a third argument since children do not
generalize beyond two arguments until later in de-
velopment (Goldberg et al., 2004; Bello, 2012).

One component of each mixture learns to repre-
sent the canonical position for the argument (G·C)
while the other (G·N ) represents some alternate,
non-canonical position such as the filler position
in filler-gap constructions. To reflect the fact that
learners have had 15 months of exposure to their
language before acquiring filler-gap, the mixture is
initialized so that there is a stronger probability
associated with the canonical Gaussian than with
the non-canonical Gaussian of each mixture.5 Fi-
nally, the one-to-one role bias is explicitly encoded
such that the model cannot use a label that has
already been used elsewhere in the sentence.

5Akhtar (1999) finds that learners may not have
strong expectations of canonical argument positions
until four years of age, but the results of the current
study are extremely robust to changes in initialization,
as discussed in Section 7 of this paper, so this assump-
tion is mostly adopted for ease of exposition.
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Figure 2: Visual representations of (Left) the initial model’s expectations of where arguments will appear,
given the initial parameters in Table 2 and (Right) the converged model’s expectations of where arguments
will appear.

Thus, the initial model conditions (see Figure 2)
are most likely to realize an SVO ordering, al-
though it is possible to obtain SOV (by sampling
a negative number from the blue curve) or even
OSV (by also sampling the red curve very close
to 0). The model is most likely to hypothesize a
preverbal object when it has already assigned the
subject role to something and, in addition, there is
no postverbal noun competing for the object label.
In other words, the model infers that an object ex-
traction may have occurred if there is a ‘missing’
postverbal argument.

Finally, the probability of a given sequence is the
product of the label probabilities for the compo-
nent argument positions (e.g. GSC generating an
argument at position -2, etc). Since many sentences
have more than two nouns, the model is allowed to
skip nouns by multiplying a penalty term (Φ) into
the product for each skipped noun; the cost is set
at 0.00001 for this study, though see Section 7 for a
discussion of the constraints on this parameter. See
Table 2 for initialization parameters and Figure 2
for a visual representation of the initial expecta-
tions of the model.

This work uses a model with 2-component mix-
tures for both subjects and objects (termed the
symmetric model). This formulation achieves the
best fit to the training data according to the
Bayesian Information Criterion (BIC).6 However,
follow-up experiments find that the non-canonical
subject Gaussian only improves the likelihood of
the data by erroneously modeling postverbal nouns
in imperative statements. The lack of a canonical
subject in English imperatives allows the model to
improve the likelihood of the data by using the
non-canonical subject Gaussian to capture ficti-

6The BIC rewards improved log-likelihood but pe-
nalizes increased model complexity.

tious postverbal arguments. When imperatives are
filtered out of the training corpus, the symmetric
model obtains a worse BIC fit than a model that
lacks the non-canonical subject Gaussian. There-
fore, if one makes the assumption that impera-
tives are prosodically-marked for learners (e.g. the
learner is the implicit subject), the best model is
one that lacks a non-canonical subject.7 The re-
mainder of this paper assumes a symmetric model
to demonstrate what happens if such an assump-
tion is not made; for the evaluations described in
this paper, the results are similar in either case.

This model differs from other non-recursive
computational models of grammar induction (e.g.
Goldwater and Griffiths, 2007) since it is not based
on Hidden Markov Models. Instead, it determines
the best ordering for the sentence as a whole. This
approach bears some similarity to a Generalized
Mallows model (Chen et al., 2009), but the current
formulation was chosen due to being independently
posited as cognitively plausible (Boersma, 1997).

Figure 2 (Right) shows the converged, final state
of the model. The model expects the first argu-
ment (usually agent) to be assigned preverbally
and expects the second (say, patient) to be assigned
postverbally; however, there is now a larger chance
that the second argument will appear preverbally.

5 Evaluation

The model in this work is trained using transcribed
child-directed speech (CDS) from the BabySRL
portions (Connor et al., 2008) of CHILDES
(MacWhinney, 2000). Chunking is performed us-

7This finding suggests that a Dirichlet Process or
other means of dynamically determining the number
of components in each mixture would converge to a
model that lacks non-canonical subjects if imperative
filtering were employed.
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Eve (n = 4820) Adam (n = 4461)
P R F P R F

Initial .54 .64 .59 .53 .60 .56
Trained .52 .69 .59∗ .51 .65 .57∗

Initialc .56 .66 .60 .55 .62 .58
Trainedc .54 .71 .61∗ .53 .67 .59∗

Table 3: Overall accuracy on the Eve and Adam
sections of the BabySRL corpus. Bottom rows re-
flect accuracy when non-agent roles are collapsed
into a single role. Note that improvements are nu-
merically slight since filler-gap is relatively rare
(Schuler, 2011). ∗p << .01

ing a basic noun-chunker from NLTK (Bird et al.,
2009). Based on an initial analysis of chunker per-
formance, yes is hand-corrected to not be a noun.
Poor chunker perfomance is likely due to a mis-
match in chunker training and testing domains
(Wall Street Journal text vs transcribed speech),
but chunking noise may be a good estimation of
learner uncertainty, so the remaining text is left
uncorrected. All noun phrase chunks are then re-
placed with their final noun (presumed the head)
to approximate the ability of children to distin-
guish nouns from modifiers (Waxman and Booth,
2001). Finally, for each sentence, the model assigns
sentence positions to each word with the final verb
at zero.

Viterbi Expectation-Maximization is performed
over each sentence in the corpus to infer the pa-
rameters of the model. During the Expectation
step, the model uses the current Gaussian param-
eters to label the nouns in each sentence with ar-
gument roles. Since the model is not lexicalized,
these roles correspond to the semantic roles most
commonly associated with subject and object. The
model then chooses the best label sequence for each
sentence.

These newly labelled sentences are used during
the Maximization step to determine the Gaussian
parameters that maximize the likelihood of that
labelling. The mean of each Gaussian is updated
to the mean position of the words it labels. Sim-
ilarly, the standard deviation of each Gaussian is
updated with the standard deviation of the posi-
tions it labels. A learning rate of 0.3 is used to
prevent large parameter jumps. The prior proba-
bility of each Gaussian is updated as the ratio of
that Gaussian’s labellings to the total number of
labellings from that mixture in the corpus:

πρθ =
| Gρθ |
| Gρ· | (1)

where ρ ∈ {S,O} and θ ∈ {C,N}.
Best results seem to be obtained when the skip-

penalty is loosened by an order of magnitude dur-

Subject Extraction filter: S x V . . .
Object Extraction filter: O . . . V . . .

Eve (n = 1345) Adam (n = 1287)
P R F P R F

Initialc .53 .57 .55 .53 .52 .52
Trainedc .55 .67 .61∗ .54 .63 .58∗

Table 4: (Above) Filters to extract filler-gap con-
structions: A) the subject and verb are not ad-
jacent, B) the object precedes the verb. (Below)
Filler-gap accuracy on the Eve and Adam sections
of the BabySRL corpus when non-agent roles are
collapsed into a single role. ∗p << .01

ing testing. Essentially, this forces the model to
tightly adhere to the perceived argument struc-
ture during training to learn more rigid parame-
ters, but the model is allowed more leeway to skip
arguments it has less confidence in during testing.
Convergence (see Figure 2) tends to occur after
four iterations but can take up to ten iterations
depending on the initial parameters.

Since the model is unsupervised, it is trained on
a given corpus (e.g. Eve) before being tested on
the role annotations of that same corpus. The Eve
corpus was used for development purposes,8 and
the Adam data was used only for testing.

For testing, this study uses the semantic role
annotations in the BabySRL corpus. These anno-
tations were obtained by automatically semantic
role labelling portions of CHILDES with the sys-
tem of Punyakanok et al. (2008) before roughly
hand-correcting them (Connor et al., 2008). The
BabySRL corpus is annotated with 5 different
roles, but the model described in this paper only
uses 2 roles. Therefore, overall accuracy results (see
Table 3) are presented both for the raw BabySRL
corpus and for a collapsed BabySRL corpus where
all non-agent roles are collapsed into a single role
(denoted by a subscript c in all tables).

Since children do not generalize above two ar-
guments during the modelled age range (Goldberg
et al., 2004; Bello, 2012), the collapsed numbers
more closely reflect the performance of a learner
at this age than the raw numbers. The increase in
accuracy obtained from collapsing non-agent ar-
guments indicates that children may initially gen-
eralize incorrectly to some verbs and would need
to learn lexically-specific role assignments (e.g.
double-object constructions of give). Since the cur-
rent work is interested in general filler-gap com-
prehension at this age, including over unknown
verbs, the remaining analyses in this paper con-

8This is included for transparency, though the ini-
tial parameters have very little bearing on the final re-
sults as stated in Section 7, so the danger of overfitting
to development data is very slight.
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P R F P R F
Eve Subj (n = 691) Obj (n = 654)

Initialc .66 .83 .74 .35 .31 .33
Trainedc .64 .84 .72† .45 .52 .48∗

Adam Subj (n = 886) Obj (n = 1050)
Initialc .69 .81 .74 .33 .27 .30

Trainedc .66 .81 .73 .44 .48 .46∗

P R F P R F
Eve Wh- (n = 689) That (n = 125)

Initialc .63 .45 .53 .43 .48 .45
Trainedc .73 .75 .74∗ .44 .57 .50†

Adam Wh- (n = 748) That (n = 189)
Initialc .50 .37 .42 .50 .50 .50

Trainedc .61 .65 .63∗ .47 .56 .51†

Table 5: (Left) Subject-extraction accuracy and object-extraction accuracy and (Right) Wh-relative ac-
curacy and that-relative accuracy; calculated over the Eve and Adam sections of the BabySRL corpus
with non-agent roles collapsed into a single role. †p = .02 ∗p << .01

sider performance when non-agent arguments are
collapsed.9

Next, a filler-gap version of the BabySRL cor-
pus is created using a coarse filtering process: the
new corpus is comprised of all sentences where an
associated object precedes the final verb and all
sentences where the relevant subject is not imme-
diately followed by the final verb (see Table 4). For
these filler-gap evaluations, the model is trained on
the full version of the corpus in question (e.g. Eve)
before being tested on the filler-gap subset of that
corpus. The overall results of the filler-gap evalua-
tion (see Table 4) indicate that the model improves
significantly at parsing filler-gap constructions af-
ter training.

The performance of the model on role-
assignment in filler-gap constructions may be
analyzed further in terms of how the model
performs on subject-extractions compared with
object-extractions and in terms of how the model
performs on that-relatives compared with wh-
relatives (see Table 5).

The model actually performs worse at subject-
extractions after training than before training.
This is unsurprising because, prior to training,
subjects have little-to-no competition for prever-
bal role assignments; after training, there is a pre-
verbal extracted object category, which the model
can erroneously use. This slight, though signifi-
cant in Eve, deficit is counter-balanced by a very
substantial and significant improvement in object-
extraction labelling accuracy.

Similarly, training confers a large and significant
improvement for role assignment in wh-relative
constructions, but it yields less of an improve-
ment for that-relative constructions. This differ-
ence mimics a finding observed in the developmen-
tal literature where children seem slower to ac-
quire comprehension of that-relatives than of wh-
relatives (Gagliardi and Lidz, 2010).

9Though performance is slightly worse when argu-
ments are not collapsed, all the same patterns emerge.

6 Comparison to BabySRL

The acquisition of semantic role labelling (SRL) by
the BabySRL model (Connor et al., 2008; Connor
et al., 2009; Connor et al., 2010) bears many sim-
ilarities to the current work and is, to our knowl-
edge, the only comparable line of inquiry to the
current one. The primary function of BabySRL is
to model the acquisition of semantic role labelling
while making an idiosyncratic error which infants
also make (Gertner and Fisher, 2012), the 1-1 role
bias error (John and Mary gorped interpreted as
John gorped Mary). Similar to the model presented
in this paper, BabySRL is based on simple ordering
features such as argument position relative to the
verb and argument position relative to the other
arguments.

This section will demonstrate that the model in
this paper initially reflects 1-1 role bias comparably
to BabySRL, though it progresses beyond this bias
after training.10 Further, the model in this paper is
able to reflect the concurrent acquisition of filler-
gap whereas BabySRL does not seem well-suited
to such a task. Finally, BabySRL performs unde-
sirably in intransitive settings whereas the model
in this paper does not.

Connor et al. (2008) demonstrate that a super-
vised perceptron classifier, based on positional fea-
tures and trained on the silver role label annota-
tions of the BabySRL corpus, manifests 1-1 role
bias errors. Follow-up studies show that supervi-
sion may be lessened (Connor et al., 2009) or re-
moved (Connor et al., 2010) and BabySRL will still
reflect a substantial 1-1 role bias.

Connor et al. (2008) and Connor et al. (2009)
run direct analyses of how frequently their mod-
els make 1-1 role bias errors. A comparable eval-
uation may be run on the current model by
generating 1000 sentences with a structure of
NNV and reporting how many times the model
chooses a subject-first labelling (see Table 6).11

10All evaluations in this section are preceded by
training on the chunked Eve corpus.

11While Table 6 analyzes erroneous labellings of
NNV structure, the ‘Obj’ column of Table 5 (Left)
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Error rate
Initial .36

Trained .11
Initial (given 2 args) .66

Trained (given 2 args) .13
2008 arg-arg position .65
2008 arg-verb position 0
2009 arg-arg position .82
2009 arg-verb position .63

Table 6: 1-1 role bias error in this model compared
to the models of Connor et al. (2008) and Connor
et al. (2009). That is, how frequently each model
labelled an NNV sentence SOV. Since the Connor
et al. models are perceptron-based, they require
both arguments be labelled. The model presented
in this paper does not share this restriction, so the
raw error rate for this model is presented in the
first two lines; the error rate once this additional
restriction is imposed is given in the second two
lines.

The results of Connor et al. (2008) and Connor
et al. (2009) depend on whether BabySRL uses
argument-argument relative position as a feature
or argument-verb relative position as a feature
(there is no combined model). Further, the model
presented here from Connor et al. (2009) has a
unique argument constraint, similar to the model
in this paper, in order to make comparison as di-
rect as possible.

The 1-1 role bias error rate (before training) of
the model presented in this paper is comparable
to that of Connor et al. (2008) and Connor et al.
(2009), which shows that the current model pro-
vides comparable developmental modeling benefits
to the BabySRL models. Further, similar to real
children (see Figure 1) the model presented in this
paper develops beyond this error by the end of its
training,12 whereas the BabySRL models still make
this error after training.

Connor et al. (2010) look at how frequently
their model correctly labels the agent in transitive
and intransitive sentences with unknown verbs (to
demonstrate that it exhibits an agent-first bias).
This evaluation can be replicated for the current
study by generating 1,000 sentences with the tran-
sitive form of NVN and a further 1,000 sentences
with the intransitive form of NV (see Table 7).

Since Connor et al. (2010) investigate the effects

shows model accuracy on NNV structures.
12It is important to note that the unique argument

constraint prevents the current model from actually
getting the correct, conjoined-subject parse, but it no
longer exhibits agent-first bias, an important step for
acquiring passives, which occurs between 3 and 4 years
(Thatcher et al., 2008).

NVN NV
Sents in Eve 1173 1513

Sents in Adam 1029 1353
Initial .67 1

Trained .65 .96
Weak (10) lexical .71 .59

Strong (365) lexical .74 .41
Gold Args .77 .58

Table 7: Agent-prediction recall accuracy in tran-
sitive (NVN) and intransitive (NV) settings of the
model presented in this paper (middle) and the
combined model of Connor et al. (2010) (bottom),
which has features for argument-argument relative
position as well as argument-predicate relative po-
sition and so is closest to the model presented in
this paper.

of different initial lexicons, this evaluation com-
pares against the resulting BabySRL from each ini-
tializer: they initially seed their part-of-speech tag-
ger with either the 10 or 365 most frequent nouns
in the corpus or they dispense with the tagger and
use gold part-of-speech tags.

As with subject extraction, the model in this
paper gets less accurate after training because of
the newly minted extracted object category that
can be mistakenly used in these canonical settings.
While the model of Connor et al. (2010) outper-
forms the model presented here when in a tran-
sitive setting, their model does much worse in an
intransitive setting. The difference in transitive set-
tings stems from increased lexicalization, as is ap-
parent from their results alone; the model pre-
sented here initially performs close to their weakly
lexicalized model, though training impedes agent-
prediction accuracy due to an increased probability
of non-canonical objects.

For the intransitive case, however, whereas the
model presented in this paper is generally able to
successfully label the lone noun as the subject, the
model of Connor et al. (2010) chooses to label lone
nouns as objects about 40% of the time. This likely
stems from their model’s reliance on argument-
argument relative position as a feature; when there
is no additional argument to use for reference, the
model’s accuracy decreases. This is borne out by
their model (not shown in Table 7) that omits
the argument-argument relative position feature
and solely relies on verb-argument position, which
achieves up to 70% accuracy in intransitive set-
tings. Even in that case, however, BabySRL still
chooses to label lone nouns as objects 30% of the
time. The fact that intransitive sentences are more
common than transitive sentences in both the Eve
and Adam sections of the BabySRL corpus sug-
gests that learners should be more likely to assign
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correct roles in an intransitive setting, which is not
reflected in the BabySRL results.

The overall reason for the different results be-
tween the current work and BabySRL is that
BabySRL relies on positional features that mea-
sure the relative position of two individual ele-
ments (e.g. where a given noun is relative to the
verb). Since the model in this paper operates over
global orderings, it implicitly takes into account
the positions of other nouns as it models argument
position relative to the verb; object and subject
are in competition as labels for preverbal nouns,
so a preverbal object is usually only assigned once
a subject has already been detected.

Further, while BabySRL consistently reflects 1-
1 role bias (corresponding to a pre 25-month old
learner), it also learns to productively label five
roles, which developmental studies have shown
does not take place until at least 31 months (Gold-
berg et al., 2004; Bello, 2012). Finally, it does not
seem likely that BabySRL could be easily extended
to capture filler-gap acquisition. The argument-
verb position features impede acquisition of filler-
gap by classifying preverbal arguments as agents,
and the argument-argument position features in-
hibit accurate labelling in intransitive settings and
result in an agent-first bias which would tend to
label extracted objects as agents. In fact, these ob-
servations suggest that any linear classifier which
relies on positioning features will have difficulties
modeling filler-gap acquisition.

In sum, the unlexicalized model presented in this
paper is able to achieve greater labelling accuracy
than the lexicalized BabySRL models in intran-
sitive settings, though this model does perform
slightly worse in the less common transitive set-
ting. Further, the unsupervised model in this pa-
per initially reflects developmental 1-1 role bias as
well as the supervised BabySRL models, and it
is able to progress beyond this bias. Finally, un-
like BabySRL, the model presented here provides a
cognitive model of the acquisition of filler-gap com-
prehension, which BabySRL does not seem well-
suited to model.

7 Discussion

This paper has presented a simple cognitive model
of filler-gap acquisition, which is able to capture
several findings from developmental psychology.
Training significantly improves role labelling in
the case of object-extractions, which improves the
overall accuracy of the model. This boost is ac-
companied by a slight decrease in labelling ac-
curacy in subject-extraction settings. The asym-
metric ease of subject versus object comprehen-
sion is well-documented in both children and
adults (Gibson, 1998), and while training improves
the model’s ability to process object-extractions,

there is still a gap between object-extraction and
subject-extraction comprehension even after train-
ing.

Further, the model exhibits better comprehen-
sion of wh-relatives than that-relatives similar to
children (Gagliardi and Lidz, 2010). This could
also be an area where a lexicalized model could
do better. As Gagliardi and Lidz (2010) point
out, whereas wh-relatives such as who or which
always signify a filler-gap construction, that can
occur for many different reasons (demonstrative,
determiner, complementizer, etc) and so is a much
weaker filler-gap cue. A lexical model could poten-
tially pick up on clues which could indicate when
that is a relativizer or simply improve on its com-
prehension of wh-relatives even more.

It is interesting to note that the cuurent model
does not make use of that as a cue at all and
yet is still slower at acquiring that-relatives than
wh-relatives. This fact suggests that the findings
of Gagliardi and Lidz (2010) may be partially ex-
plained by a frequency effect: perhaps the input to
children is simply biased such that wh-relatives are
much more common than that-relatives (as shown
in Table 5).

This model also initially reflects the 1-1 role bias
observed in children (Gertner and Fisher, 2012) as
well as previous models (Connor et al., 2008; Con-
nor et al., 2009; Connor et al., 2010) without sac-
rificing accuracy in canonical intransitive settings.

Finally, this model is extremely robust to differ-
ent initializations. The canonical Gaussian expec-
tations can begin far from the verb (±3) or close
to the verb (±0.1), and the standard deviations
of the distributions and the skip-penalty can vary
widely; the model always converges to give compa-
rable results to those presented here. The only con-
straint on the initial parameters is that the proba-
bility of the extracted object occurring preverbally
must exceed the skip-penalty (i.e. extraction must
be possible). In short, this paper describes a sim-
ple, robust cognitive model of the development of
a learner between 15 months until somewhere be-
tween 25- and 30-months old (since 1-1 role bias is
no longer present but no more than two arguments
are being generalized).

In future, it would be interesting to incorporate
lexicalization into the model presented in this pa-
per, as this feature seems likely to bridge the gap
between this model and BabySRL in transitive set-
tings. Lexicalization should also help further dis-
tinguish modifiers from arguments and improve the
overall accuracy of the model.

It would also be interesting to investigate how
well this model generalizes to languages besides
English. Since the model is able to use the verb
position as a semi-permeable boundary between
canonical subjects and objects, it may not work as
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well in verb-final languages, and thus makes the
prediction that filler-gap comprehension may be
acquired later in development in such languages
due to a greater reliance on hierarchical syntax.

Ordering is one of the definining characteris-
tics of a language that must be acquired by learn-
ers (e.g. SVO vs SOV), and this work shows that
filler-gap comprehension can be acquired as a by-
product of learning orderings rather than having to
resort to higher-order syntax. Note that this model
cannot capture the constraints on filler-gap usage
which require a hierarchical grammar (e.g. subja-
cency), but such knowledge is really only needed
for successful production of filler-gap construc-
tions, which occurs much later (around 5 years;
de Villiers and Roeper, 1995). Further, the kind of
ordering system proposed in this paper may form
an initial basis for learning such grammars (Jack-
endoff and Wittenberg, in press).
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