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Abstract

Abstractive text summarization of news
requires a way of representing events, such
as a collection of pattern clusters in which
every cluster represents an event (e.g.,
marriage) and every pattern in the clus-
ter is a way of expressing the event (e.g.,
X married Y, X and Y tied the knot). We
compare three ways of extracting event
patterns: heuristics-based, compression-
based and memory-based. While the for-
mer has been used previously in multi-
document abstraction, the latter two have
never been used for this task. Compared
with the first two techniques, the memory-
based method allows for generating sig-
nificantly more grammatical and informa-
tive sentences, at the cost of searching a
vast space of hundreds of millions of parse
trees of known grammatical utterances. To
this end, we introduce a data structure and
a search method that make it possible to
efficiently extrapolate from every sentence
the parse sub-trees that match against any
of the stored utterances.

1 Introduction

Text summarization beyond extraction requires a
semantic representation that abstracts away from
words and phrases and from which a summary can
be generated (Mani, 2001; Spärck-Jones, 2007).
Following and extending recent work in semantic
parsing, information extraction (IE), paraphrase
generation and summarization (Titov and Klemen-
tiev, 2011; Alfonseca et al., 2013; Zhang and
Weld, 2013; Mehdad et al., 2013), the represen-
tation we consider in this paper is a large collec-
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[John Smith] and 
[Mary Brown] wed 
in [Baltimore]...

[Smith] tied the 
knot with [Brown] 
this Monday...

#21: death

#22: divorce

#23: marriage
PER married PER
PER and PER wed
PER tied the knot with PER
PER has married PER

John Smith married Mary Brown
e1: J. Smith (PER)
e2: M. Brown (PER)
e3: Baltimore, MD (LOC)

Figure 1: An example of abstracting from input
sentences to an event representation and genera-
tion from that representation.

tion of clusters of event patterns. An abstractive
summarization system relying on such a represen-
tation proceeds by (1) detecting the most relevant
event cluster for a given sentence or sentence col-
lection, and (2) using the most representative pat-
tern from the cluster to generate a concise sum-
mary sentence. Figure 1 illustrates the summa-
rization architecture we are assuming in this pa-
per. Given input text(s) with resolved and typed
entity mentions, event mentions and the most rele-
vant event cluster are detected (first arrow). Then,
a summary sentence is generated from the event
and entity representations (second arrow).

However, the utility of such a representation for
summarization depends on the quality of pattern
clusters. In particular, event patterns must cor-
respond to grammatically correct sentences. In-
troducing an incomplete or incomprehensible pat-
tern (e.g., PER said PER) may negatively affect
both event detection and sentence generation. Re-
lated work on paraphrase detection and relation
extraction is mostly heuristics-based and has re-
lied on hand-crafted rules to collect such patterns
(see Sec. 2). A standard approach is to focus
on binary relations between entities and extract
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Figure 2: A generic pipeline for event-driven ab-
stractive headline generation.

the dependency path between the two entities as
an event representation. An obvious limitation
of this approach is there is no guarantee that the
extracted pattern corresponds to a grammatically
correct sentence, e.g., that an essential preposi-
tional phrase is retained like in file for a divorce.

In this paper we explore two novel, data-driven
methods for event pattern extraction. The first,
compression-based method uses a robust sentence
compressor with an aggressive compression rate
to get to the core of the sentence (Sec. 3). The
second, memory-based method relies on a vast
collection of human-written headlines and sen-
tences to find a substructure which is known to
be grammatically correct (Sec. 4). While the lat-
ter method comes closer to ensuring perfect gram-
maticality, it introduces a problem of efficiently
searching the vast space of known well-formed
patterns. Since standard iterative approaches com-
paring every pattern with every sentence are pro-
hibitive here, we present a search strategy which
scales well to huge collections (hundreds of mil-
lions) of sentences.

In order to evaluate the three methods, we con-
sider an abstractive summarization task where the
goal is to get the gist of single sentences by recog-
nizing the underlying event and generating a short
summary sentence. To the best of our knowledge,
this is the first time that this task has been pro-
posed; it can be considered as abstractive sentence
compression, in contrast to most existing sentence
compression systems which are based on selecting
words from the original sentence or rewriting with
simpler paraphrase tables. An extensive evalua-
tion with human raters demonstrates the utility of
the new pattern extraction techniques. Our analy-
sis highlights advantages and disadvantages of the
three methods.

To better isolate the qualities of the three ex-
traction methodologies, all three methods use the
same training data and share components of the

Algorithm 1 HEURISTICEXTRACTOR(T, E): heuristi-
cally extract relational patterns for the dependency parse T
and the set of entities E.

1: /* Global constants /*
2: global Vp, Vc, Np, Nc

3: Vc ← {subj, nsubj, nsubjpass, dobj, iobj, xcomp,
4: acomp, expl, neg, aux, attr, prt}
5: Vp ← {xcomp}
6: Nc ← {det, predet, num, ps, poss, nc, conj}
7: Np ← {ps, poss, subj, nsubj, nsubjpass, dobj, iobj}
8: /* Entry point /*
9: P ← ∅

10: for all C ∈ COMBINATIONS(E) do
11: N ← MENTIONNODES(T, C)
12: N ′ ← APPLYHEURISTICS(T, BUILDMST(T, N))
13: P ← P ∪ {BUILDPATTERN(T, N ′)}
14: return P
15: /* Procedures /*
16: procedure APPLYHEURISTICS(T, N )
17: N ′ ← N
18: while |N ′| > 0 do
19: N ′′ ← ∅
20: for all n ∈ N ′ do
21: if n.ISVERB() then
22: N ′′ ← N ′′ ∪ INCLUDECHILDREN(n, Vc)
23: N ′′ ← N ′′ ∪ INCLUDEPARENT(n, Vp)
24: else if n.ISNOUN() then
25: N ′′ ← N ′′ ∪ INCLUDECHILDREN(n, Nc)
26: N ′′ ← N ′′ ∪ INCLUDEPARENT(n, Np)

27: N ′ ← N ′′ \N ′

28: procedure INCLUDECHILDREN(n, L)
29: R← ∅
30: for all c ∈ n.CHILDREN() do
31: if c.PARENTEDGELABEL() ∈ L then
32: R← R ∪ {c}
33: return R
34: procedure INCLUDEPARENT(n, L)
35: if n.PARENTEDGELABEL() ∈ L then
36: return {n}
37: else return ∅

very same summarization architecture, as shown
in Figure 2: an event model is constructed by clus-
tering the patterns extracted according to the se-
lected extraction method. Then, the same extrac-
tion method is used to collect patterns from sen-
tences in never-seen-before news articles. Finally,
the patterns are used to query the event model and
generate an abstractive summary. The three differ-
ent pattern extractors are detailed in the next three
sections.

2 Heuristics-based pattern extraction

In order to be able to work in an Open-IE man-
ner, applicable to different domains, most existing
pattern extraction systems are based on linguisti-
cally motivated heuristics. Zhang and Weld (2013)
is based on REVERB (Fader et al., 2011), which
uses a regular expression on part-of-speech tags
to produce the extractions. An alternative system,
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OLLIE (Schmitz et al., 2012), uses syntactic de-
pendency templates to guide the pattern extraction
process.

The heuristics used in this paper are inspired by
Alfonseca et al. (2013), who built well formed re-
lational patterns by extending minimum spanning
trees (MST) which connect entity mentions in a
dependency parse. Algorithm 1 details our re-
implementation of their method and the specific
set of rules that we rely on to enforce pattern gram-
maticality. We use the standard Stanford-style set
of dependency labels (de Marneffe et al., 2006).
The input to the algorithm are a parse tree T and
a set of target entities E. We first generate com-
binations of 1-3 elements of E (line 10), then for
each combination C we identify all the nodes in
T that mention any of the entities in C. We con-
tinue by constructing the MST of these nodes, and
finally apply our heuristics to the nodes in the
MST. The procedure APPLYHEURISTICS (:16) re-
cursively grows a nodeset N ′ by including chil-
dren and parents of noun and verb nodes in N ′

based on dependency labels. For example, we in-
clude all children of verbs in N ′ whose label is
listed in Vc (:3), e.g., active or passive subjects,
direct or indirect objects, particles and auxiliary
verbs. Similarly, we include the parent of a noun
in N ′ if the dependency relation between the node
and its parent is listed in Np.

3 Pattern extraction by sentence
compression

Sentence compression is a summarization tech-
nique that shortens input sentences preserving the
most important content (Grefenstette, 1998; Mc-
Donald, 2006; Clarke and Lapata, 2008, inter
alia). While first attempts at integrating a com-
pression module into an extractive summarization
system were not particularly successful (Daumé
III and Marcu, 2004, inter alia), recent work
has been very promising (Berg-Kirkpatrick et al.,
2011; Wang et al., 2013). It has shown that drop-
ping constituents of secondary importance from
selected sentences – e.g., temporal modifiers or
relative clauses – results in readable and more in-
formative summaries. Unlike this related work,
our goal here is to compress sentences to obtain
an event pattern – the minimal grammatical struc-
ture expressing an event. To our knowledge, this
application of sentence compressors is novel. As
in Section 2, we only consider sentences mention-

ing entities and require the compression (pattern)
to retain at least one such mention.

Sentence compression methods are abundant
but very few can be configured to produce out-
put satisfying certain constraints. For example,
most compression algorithms do not accept com-
pression rate as an argument. In our case, sen-
tence compressors which formulate the compres-
sion task as an optimization problem and solve it
with integer linear programming (ILP) tools un-
der a number of constraints are particularly attrac-
tive (Clarke and Lapata, 2008; Filippova and Al-
tun, 2013). They can be extended relatively easily
with both the length constraint and the constraint
on retaining certain words. The method of Clarke
and Lapata (2008) uses a trigram language model
(LM) to score compressions. Since we are inter-
ested in very short outputs, a LM trained on stan-
dard, uncompressed text would not be suitable. In-
stead, we chose to modify the method of Filippova
and Altun (2013) because it relies on dependency
parse trees and does not use any LM scoring.

Like other syntax-based compressors, the sys-
tem of Filippova and Altun (2013) prunes depen-
dency structures to obtain compression trees and
hence sentences. The objective function to maxi-
mize in an ILP problem (Eq. 1) is formulated over
weighted edges in a transformed dependency tree
and is subject to a number of constraints. Edge
weight is defined as a linear function over a fea-
ture set: w(e) = w · f(e).

F (X) =
∑
e∈E

xe × w(e) (1)

In our reimplementation we followed the algo-
rithm as described by Filippova and Altun (2013).
The compression tree is obtained in two steps.
First, the input tree is transformed with determin-
istic rules, most of which aim at collapsing indis-
pensable modifiers with their heads (determiners,
auxiliary verbs, negation, multi-word expressions,
etc.). Then a sub-tree maximizing the objective
function is found under a number of constraints.

Apart from the structural constrains from the
original system which ensure that the output is a
valid tree, the constraints we add state that:

1. tree size in edges must be in [3, 6],
2. entity mentions must be retained,
3. subject of the clause must be retained,
4. the sub-tree must be covered by a single

clause – exactly one finite verb must used.
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Since we consider compressions with different
lengths as candidates, from this set we select the
one with the maximum averaged edge weight as
the final compression. Figure 3 illustrates the
use of the compressor for obtaining event pat-
terns. Dashed edges are dropped as a result of
constrained compression so that the output is John
Smith married Mary Brown and the event pattern
is PER married PER. Note that the root of a sub-
clause is allowed to be the top-level node in the
extracted compression.

Compared with patterns obtaines with heuris-
tics, compression patterns should retain preposi-
tional verb arguments whose removal would ren-
der the pattern ungrammatical. As an example
consider [C. Zeta-Jones] and [M. Douglas] filed
for divorce. The heuristics-based pattern is PER
and PER filed which is incomplete. Unlike it,
the compression-based method keeps the essential
prepositional phrase for divorce in the pattern be-
cause the average edge weight is greater for the
tree with the prepositional phrase.

4 Memory-based pattern extraction

Neither heuristics-based, nor compression-based
methods provide a guarantee that the extracted
pattern is grammatically correct. In this sec-
tion we introduce an extraction technique which
makes it considerably more likely because it only
extracts patterns which have been observed as
full sentences in a human-written text (Sec. 4.1).
However, this memory-based method also poses
a problem not encountered by the two previous
methods: how to search over the vast space of ob-
served headlines and sentences to extract a pattern
from a given sentence? Our trie-based solution,
which we present in the remainder of this sec-
tion, makes it possible to compare a dependency
graph against millions of observed grammatical
utterances in a fraction of a second.

4.1 A tree-trie to store them all. . .

Our objective is to construct a compact representa-
tion of hundreds of millions of observed sentences
that can fit in the memory of a standard worksta-
tion. This data structure should make it possible
to efficiently identify the sub-trees of a sentence
that match any complete utterance previously ob-
served. To this end, we build a trie of depen-
dency trees (which we call a tree-trie) by scan-
ning all the dependency parses in the news training

Algorithm 2 STORE(T, I): store the dependency tree T
in the tree-trie I .

1: /* Entry point /*
2: L← T.LINEARIZE()
3: STORERECURSION(I.ROOT(), L, 0)
4: return M
5: /* Procedures /*
6: procedure STORERECURSION(n, L, o)
7: if o == L.LENGTH() then
8: n.ADDTREESTRUCTURE(L.STRUCTURE())
9: return

10: if not n.HASCHILD(L.TOKEN(o)) then
11: n.ADDCHILD(L.TOKEN(o))

12: n′ ← n.GETCHILD(L.TOKEN(o))
13: STORERECURSION(n′, L, o + 1)

data, and index each tree in the tree-trie accord-
ing to Algorithm 2. For better clarity, the process
is also described graphically in Figure 4. First,
each dependency tree (a) is linearized, resulting
in a data structure that consists of two aligned se-
quences (b). The first sequence (tokens) encodes
word/parent-relation pairs, while the second se-
quence (structure) encodes the offsets of parent
nodes in the linearized tree. As an example, the
first word “The” is a determiner (“det”) for the sec-
ond node (offset 1) in the sequence, which is “cat”.
In turn, “cat” is the subject (“nsubj”) of the node
in position 2, i.e., “sleeps”. As described in Algo-
rithm 2, we recursively store the token sequence
in the trie, each word/relation pair being stored in
a node. When the token sequence is completely
consumed, we store in the current trie node the
structure of the linearized tree. Combining struc-
tural information with the sequential information
encoded by each path in the trie makes it possi-
ble to rebuild a complete dependency graph. Fig-
ure 4(c) shows an example trie encoding 4 differ-
ent sentences. We highlighted in bold the path cor-
responding to the linearized form (b) of the exam-
ple parse tree (a).

The figure shows that the tree contains two
kinds of nodes: end-of-sentence (EOS) nodes
(red) and non-terminal nodes (in blue). EOS nodes
do not necessarily coincide with trie leaves, as it
is possible to observe complete sentences embed-
ded in longer ones. EOS nodes differ from non-
terminal nodes in that they store one or more struc-
tural sequences corresponding to different syntac-
tic representations of observed sentences with the
same tokens.

Space-complexity and generalization. Storing
all the observed sentences in a single trie requires
huge amounts of memory. To make it possible to
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root Our sources report John Smith married Mary Brown in Baltimore yesterday

root
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subj
subj

obj
in

tmod

Figure 3: Transformed dependency tree with a sub-tree expressing an event pattern.

The cat sleeps under the table

root

nsubjdet
prep

pobj
det

(a)

The
det

cat
nsubj

sleeps
ROOT

under
prep

the
det

table
pobj

1 2 -1 2 5 3

(b)

The
det

dog

nsubj

barked
ROOT
1,2,-1

cat
nsubj

sleeps
ROOT
1,2,-1 soundly

advmod
1,2,-1,2

under
prep

the
det

table
pobj

1,2,-1,2,5,3

(c)

Figure 4: A dependency tree (a), its linearized form (b) and the resulting path in a trie (c), in bold.

store a complete tree-trie in memory, we adopt the
following strategy. We replace the surface form of
entity nodes with the coarse entity type (e.g., PER,
LOC, ORG) of the entity. Similarly, we replace
proper nouns with the placeholder “[P]”, thus sig-
nificantly reducing lexical sparsity. Then, we en-
code each distinct word/relation pair as a 32-bit
unsigned integer. Assuming a maximum tree size
of 255 nodes, we represent structure sequences as
vectors of type unsigned char (8 bit per element).
Finally, we store trie-node children as sorted vec-
tors instead of hash maps to reduce memory foot-
print. As a result, we are able to load a trie encod-
ing 400M input dependency parses, 170M distinct
nodes and 48M distinct sentence structures in un-
der 10GB of RAM.

4.2 . . . and in the vastness match them

At lookup time, we want to use the tree-trie to
identify all sub-graphs of an input dependency tree
T that match at least a complete observed sen-
tence. To do so, we need to identify all paths in
the trie that match any sub-sequence s of the lin-
earized sequence of T nodes. Whenever we en-
counter an EOS node e, we verify if any of the
structures stored at e matches the sub-tree gener-
ated by s. If so, then we have a positive match.
As a sentence might embed many shorter utter-
ances, each input T will generally yield multiple
matches. For example, querying the tree-trie in
Figure 4(c) with the input tree shown in (a) would
yield two results, as both The cat sleeps and The
cat sleeps under the table are complete utterances

stored in the trie.

Algorithm 3 LOOKUP(T, I): Lookup for matches of sub-
set of tree T in the trie index I .

1: /* Entry point /*
2: L← T.LINEARIZE()
3: M ← ∅
4: LOOKUPRECURSIVE(T, L, 0, I.ROOT(), ∅, M)
5: return M
6: /* Procedures /*
7: procedure LOOKUPRECURSIVE(T, L, o, n, P, M )
8: for all i ∈ [o, L.LENGTH()) do
9: if n.HASCHILD(L.TOKEN(i)) then

10: n′ ← n.GETCHILD(L.TOKEN(i))
11: P ′ ← P ∪ {i}
12: for all S ∈ n′.TREESTRUCTURES() do
13: if L.ISCOMPATIBLE(S, P ′) then
14: M ←M ∪ {T.GETNODES(P ′)}
15: LOOKUPRECURSIVE(L, i, o + 1, n′, P ′, M)

Algorithm 3 describes the lookup process in
more detail. The first step consists in the lineariza-
tion of the input tree T . Then, we recursively tra-
verse the trie calling LOOKUPRECURSIVE. The
inputs of this procedure are: the input tree T , its
linearization L and an offset o (starting at 0), the
trie node currently being traversed n (starting with
the root), the set of offsets in L that constitute a
partial match P (initially empty) and the set of
complete matches found M . We recursively tra-
verse all the nodes in the trie that yield a partial
match with any sub-sequence of the linearized to-
kens of T . At each step, we scan all the tokens
in L in the range [o, L.LENGTH()) looking for to-
kens matching any of the children of n. If a match-
ing node is found, a new partial match P ′ is con-
structed by extending P with the matching token
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Figure 5: Time complexity of lookup operations
for inputs of different sizes.

offset i (line 11), and the recursion continues from
the matching trie node n′ and offset i (line 15).
Every time a partial match is found, we verify if
the partial match is compatible with any of the
tree structures stored in the matching node. If that
is the case, we identify the corresponding set of
matching nodes in T and add it to the result M
(lines 12-14). A pattern is generated from each
complete match returned by LOOKUP after apply-
ing a simple heuristic: for each verb node v in the
match, we enforce that negations and auxiliaries in
T depending from x are also included in the pat-
tern.

Time complexity of lookups. Let k be the max-
imum fan-out of trie nodes, d be the depth of
the trie and n be the size of an input tree (num-
ber of nodes). If trie node children are hashed
(which has a negative effect on space complex-
ity), then worst case complexity of LOOKUP() is
O(nk)d−1. If they are stored as sorted lists, as in
our memory-efficient implementation, theoretical
complexity becomes O(nk log(k))d−1. It should
be noted that worst case complexity can only be
observed under extremely unlikely circumstances,
i.e., that at every step of the recursion all the nodes
in the tail of the linearized tree match a child of
the current node. Also, in the actual trie used in
our experiments the average branching factor k is
very small. We observed that a trie storing 400M
sentences (170M nodes) has an average branching
factor of 1.02. While the root of the trie has unsur-
prisingly many children (210K, all the observed
first sentence words), already at depth 2 the aver-
age fan-out is 13.7, and at level 3 it is 4.9.

For an empirical analysis of lookup complexity,
Figure 5 plots, in black, wall-clock lookup time

as a function of tree size n for a random sample
of 1,600 inputs. As shown by the polynomial re-
gression curve (red), observed lookup complexity
is approximately cubic with a very small constant
factor. In general, we can see that for sentences of
common length (20-50 words) a lookup operation
can be completed in well under one second.

5 Evaluation

5.1 Experimental settings
All the models for the experiments that we present
have been trained using the same corpus of
news crawled from the web between 2008 and
2013. The news have been processed with a to-
kenizer, a sentence splitter (Gillick and Favre,
2009), a part-of-speech tagger and dependency
parser (Nivre, 2006), a co-reference resolution
module (Haghighi and Klein, 2009) and an entity
linker based on Wikipedia and Freebase (Milne
and Witten, 2008). We use Freebase types as fine-
grained named entity types, so we are also able to
label e.g. instances of sports teams as such instead
of the coarser label ORG.

Next, the news have been grouped based on
temporal closeness (Zhang and Weld, 2013) and
cosine similarity (using tf·idf weights). For each
of the three pattern extraction methods we used the
same summarization pipeline (as shown above in
Figure 2):

1. Run pattern extraction on the news.

2. For every news collection Coll and entity set
E, generate a set containing all the extracted
patterns from news in Coll mentioning all
the entities in E. These are patterns that are
likely to be paraphrasing each other.

3. Run a clustering algorithm to group together
patterns that typically co-occur in the sets
generated in the previous step. There are
many choices for clustering algorithms (Al-
fonseca et al., 2013; Zhang and Weld, 2013).
Following Alfonseca et al. (2013) we use in
this work a Noisy-OR Bayesian Network be-
cause it has already been applied for abstrac-
tive summarization (albeit multi-document),
it provides an easily interpretable probabilis-
tic clustering, and training can be easily par-
allelized to be able to handle large training
sets. The hidden events in the Bayesian net-
work represent pattern clusters. When train-
ing is done, for each extraction pattern pj
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Original sentence Abstractive summary (method)

Two-time defending overall World Cup champion Marcel Hirscher won the
challenging giant slalom on the Gran Risa course with two solid runs Sunday
and attributed his victory to a fixed screw in his equipment setup.

Marcel Hirscher has won the giant
slalom. (C)

Zodiac Aerospace posted a 7.9 percent rise in first-quarter revenue, below mar-
ket expectations, but reaffirmed its full-year financial targets.

Zodiac Aerospace has reported a rise in
profits. (C)

Australian free-agent closer Grant Balfour has agreed to terms with the Balti-
more Orioles on a two-year deal, the Baltimore Sun reported on Tuesday citing
multiple industry sources.

Balfour will join the Baltimore Orioles.
(H)

Paul Rudd is ’Ant-Man’: 5 reasons he needs an ’Agents of SHIELD’ appear-
ance.

Paul Rudd to play Ant-Man. (H)

Millwall defender Karleigh Osborne has joined Bristol City on a two-and-a-half
year deal after a successful loan spell.

Bristol City have signed Karleigh Os-
borne. (M)

Simon Hoggart, one of the Spectator’s best-loved columnists, died yesterday
after fighting pancreatic cancer for over three years.

Simon Hoggart passed away yesterday.
(M)

Table 1: Abstraction examples from compression (C), heuristic (H) and memory-based (M) patterns.

Method Extractions Abstractions

HEURISTIC 24,630 956
COMPRESSION 15,687 657
MEMORY-BASED 11,459 967

Table 2: Patterns extracted in each method, before
Noisy-OR inference.

and pattern cluster ci, the network provides
p(pj |ci) —the probability that ci will gener-
ate pj— and p(ci|pj) —the probability that,
given a pattern pj , ci was the hidden event
that generated it.

At generation time we proceed in the following
way:

1. Given the title or first sentence of a news ar-
ticle, run the same pattern extraction method
that was used in training and, if possible, ob-
tain a pattern p involving some entities.

2. Find the model clusters that contain this pat-
tern, Cp = {ci such that p(ci|p) > 0}.

3. Return a ranked list of model patterns
output = {(pj , score(pj))}, scored as fol-
lows:

score(pj) =
∏

ci∈Cp

p(pj |ci)p(ci|p)

where p was the input pattern.

4. Replace the entity placeholders in the top-
scored patterns pj with the entities that were
actually mentioned in the input news article.

In all cases the parameters of the network were
predefined as 20,000 nodes in the hidden layer
(model clusters) and 40 Expectation Maximization
(EM) training iterations. Training was distributed
across 20 machines with 10 GB of memory each.

For testing we used 37,584 news crawled dur-
ing December 2013, which had not been used for
training the models. Table 3 shows one pattern
cluster example from each of the three trained
models. The table shows only the surface form
of the pattern for simplicity.

Pattern cluster (MEMORY-BASED)
organization1 gets organization0 nod for drug
organization1 gets organization0 nod for tablets
organization0 approves organization1 drug
organizations0 approves organization1 ’s drug
organization1 gets organization0 nod for capsules

Pattern cluster (HEURISTIC)
organization0 to buy organization1

organization0 to acquire organization1

organization0 buys organization1

organization0 acquires organization1

organization0 to acquire organizations1
organization0 buys organizations1
organization0 acquires organizations1
organization0 agrees to buy organization1

organization0 snaps up organization1

organization0 to purchase organizations1
organization0 is to acquire organization1

organization0 has agreed to buy organization1

organization0 announces acquisition of organizations1
organization0 may bid for organization1

organization1 sold to organization0

organization1 acquired by organization0

Pattern cluster (COMPRESSION)
the sports team1 have acquired person0 from the sports team2

the sports team1 acquired person0 from the sports team2

the sports team2 have traded person0 to the sports team1

sports team1 acquired the rights to person0 from sports team2

sports team2 acquired from sports team1 in exchange for person0

sports team2 have acquired from the sports team1 in exchange for person0

Table 3: Examples of pattern clusters. In each
cluster ci, patterns are sorted by p(pj |ci).
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5.2 Results

Table 2 shows the number of extracted patterns
from the test set, and the number of abstractive
event descriptions produced.

As expected, the number of extracted patterns
using the memory-based model is smaller than
with the two other models, which are based on
generic rules and are less restricted in what they
can generate. As mentioned, the memory-based
model can only extract previously-seen structures.
Compared to this model, with heuristics we can
obtain patterns for more than twice more news ar-
ticles. At the same time, looking at the number
of summary sentences generated they are com-
parable, meaning that a larger proportion of the
memory-based patterns actually appeared in the
pattern clusters and could be used to produce sum-
maries. This is also consistent with the fact that us-
ing heuristics the space of extracted patterns is ba-
sically unbounded and many new patterns can be
generated that were previously unseen –and these
cannot generate abstractions. A positive outcome
is that restricting the syntactic structure of the ex-
tracted patterns to what has been observed in past
news does not negatively affect end-to-end cover-
age when generating the abstractive summaries.

Table 1 shows some of the abstractive sum-
maries generated with the different methods. For
manually evaluating their quality, a random sam-
ple of 100 original sentences was selected for each
method. The top ranked summary for each origi-
nal sentence was sent to human raters for evalua-
tion, and received three different ratings. None of
the raters had any involvement in the development
of the work or the writing of the paper, and a con-
straint was added that no rater could rate more than
50 abstractions. Raters were presented with the
original sentence and the compressed abstraction,
and were asked to rate it along two dimensions, in
both cases using a 5-point Likert scale:

• Readability: whether the abstracted com-
pression is grammatically correct.

• Informativeness: whether the abstracted
compression conveys the most important in-
formation from the original sentence.

Inter-judge agreement was measured using the
Intra-Class Correlation (ICC) (Shrout and Fleiss,
1979; Cicchetti, 1994). The ICC for readability
was 0.37 (95% confidence interval [0.32, 0.41]),

Method Readability Informativeness

HEURISTIC 3.95 3.07
COMPRESSION 3.98 2.35
MEMORY-BASED 4.20 3.70

Table 4: Results for the three methods when rating
the top-ranked abstraction.

and for informativeness it was 0.64 (95% confi-
dence interval [0,60, 0.67]), representing fair and
substantial reliability.

Table 4 shows the results when rating the top
ranked abstraction using either of the three dif-
ferent models for pattern extraction. The abstrac-
tions produced with the memory-based method are
more readable than those produced with the other
two methods (statistically significant with 95%
confidence).

Regarding informativeness, the differences be-
tween the methods are bigger, because the first two
methods have a proportionally larger number of
items with a high readability but a low informa-
tiveness score. For each method, we have man-
ually reviewed the 25 items where the difference
between readability and informativeness was the
largest, to understand in which cases grammatical,
yet irrelevant compressions are produced. The re-
sults are shown in Table 5. Be+adjective includes
examples where the pattern is of the form Entity is
Adjective, which the compression-based systems
extracts often represents an incomplete extraction.
Wrong inference contains the cases where patterns
that are related but not equivalent are clustered,
e.g. Person arrived in Country and Person arrived
in Country for talks. Info. missing represents cases
where very relevant information has been dropped
and the summary sentence is not complete. Pos-
sibility contains cases where the original sentence
described a possibility and the compression states
it as a fact, or vice versa. Disambiguation are en-
tity disambiguations errors, and Opposite contains
cases of patterns clustered together that are op-
posite along some dimension, e.g. Person quits
TV Program and Person to return to TV Program.

The method with the largest drop between the
readability and informativeness scores is COM-
PRESSION. As can be seen, many of these mis-
takes are due to relevant information being miss-
ing in the summary sentence. This is also the
largest source of errors for the HEURISTIC system.
For the MEMORY-BASED system, the drop in read-
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Method Be+adjective Wrong inference Info. missing Possibility Disambiguation Opposite

HEURISTIC 0 7 14 3 1 0
COMPRESSION 3 10 10 0 0 2
MEMORY-BASED 0 17 4 2 0 2

Table 5: Sources of errors for the top 25 items with high readability and low informativeness.

Original sentence Pattern extracted (method) Abstraction

David Moyes is happy to use tough love on Adnan Januzaj
to ensure the Manchester United youngster fulfils his mas-
sive potential.

David Moyes is happy. (C) Fortune will start to favour
David Moyes.

The Democratic People’s Republic of Korea will “achieve
nothing by making threats or provocation,” the United
States said Friday.

The United States said Fri-
day. (C, H)

United States officials said
Friday.

EU targets Real and Barca over illegal state aid.
EU targets Real Madrid.
(H)

EU is going after Real
Madrid.

EU warns Israel over settlement construction EU warns Israel. (M) EU says Israel needs re-
forms.

Table 6: Examples of compression (C), heuristic (H) and memory-based (M) patterns that led to abstrac-
tions with high readability but a low informativeness score. Both incomplete summary sentences and
wrong inferences can be observed.

ability score is much smaller, so there were less of
these examples. And most of these examples be-
long to the class of wrong inferences (patterns that
are related but not equivalent, so we should not
abstract one of them from the other, but they were
clustered together in the model). Our conclusion
is that the examples with missing information are
not such a big problem with the MEMORY-BASED

system, as using the trie is an additional safeguard
that the generated titles are complete statements,
but the method is not preventing the wrong infer-
ence errors so this class of errors become the dom-
inant class by a large margin.

Some examples with high readability but low
informativeness are shown in Table 6.

6 Conclusions

Most Open-IE systems are based on linguistically-
motivated heuristics for learning patterns that ex-
press relations between entities or events. How-
ever, it is common for these patterns to be incom-
plete or ungrammatical, and therefore they are not
suitable for abstractive summary generation of the
relation or event mentioned in the text.

In this paper, we describe a memory-based ap-
proach in which we use a corpus of past news
to learn valid syntactic sentence structures. We
discuss the theoretical time complexity of look-
ing up extraction patterns in a large corpus of

syntactic structures stored as a trie and demon-
strate empirically that this method is effective in
practice. Finally, the evaluation shows that sum-
mary sentences produced by this method outper-
form heuristics and compression-based ones both
in terms of readability and informativeness. The
problem of generating incomplete summary sen-
tences, which was the main source of informative-
ness errors for the alternative methods, becomes a
minor problem with the memory-based approach.
Yet, there are some cases in which also the mem-
ory based approach extracts correct but misleading
utterances, e.g., a pattern like PER passed away
from the sentence PER passed the ball away. To
solve this class of problems, a possible research
direction would be the inclusion of more complex
linguistic features in the tree-trie, such as verb sub-
categorization frames.

As another direction for future work, more ef-
fort is needed in making sure that no incorrect in-
ferences are made with this model. These happen
when a more specific pattern is clustered together
with a less specific pattern, or when two non-
equivalent patterns often co-occur in news as two
events are somewhat correlated in real life, but it is
generally incorrect to infer one from the other. Im-
provements in the pattern-clustering model, out-
side the scope of this paper, will be required.

900



References
Enrique Alfonseca, Daniele Pighin, and Guillermo

Garrido. 2013. HEADY: News headline abstraction
through event pattern clustering. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics, Sofia, Bulgaria, 4–9 August
2013, pages 1243–1253.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics, Portland,
OR, 19–24 June 2011.

Domenic V Cicchetti. 1994. Guidelines, criteria, and
rules of thumb for evaluating normed and standard-
ized assessment instruments in psychology. Psycho-
logical Assessment, 6(4):284.

James Clarke and Mirella Lapata. 2008. Global in-
ference for sentence compression: An integer linear
programming approach. Journal of Artificial Intelli-
gence Research, 31:399–429.
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