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Abstract

In order to extract entities of a fine-grained
category from semi-structured data in web
pages, existing information extraction sys-
tems rely on seed examples or redundancy
across multiple web pages. In this paper,
we consider a new zero-shot learning task
of extracting entities specified by a natural
language query (in place of seeds) given
only a single web page. Our approach de-
fines a log-linear model over latent extrac-
tion predicates, which select lists of enti-
ties from the web page. The main chal-
lenge is to define features on widely vary-
ing candidate entity lists. We tackle this by
abstracting list elements and using aggre-
gate statistics to define features. Finally,
we created a new dataset of diverse queries
and web pages, and show that our system
achieves significantly better accuracy than
a natural baseline.

1 Introduction

We consider the task of extracting entities of
a given category (e.g., hiking trails) from web
pages. Previous approaches either (i) assume that
the same entities appear on multiple web pages,
or (ii) require information such as seed examples
(Etzioni et al., 2005; Wang and Cohen, 2009;
Dalvi et al., 2012). These approaches work well
for common categories but encounter data sparsity
problems for more specific categories, such as the
products of a small company or the dishes at a lo-
cal restaurant. In this context, we may have only a
single web page that contains the information we
need and no seed examples.

In this paper, we propose a novel task, zero-
shot entity extraction, where the specification
of the desired entities is provided as a natural
language query. Given a query (e.g., hiking
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Figure 1: Entity extraction typically requires ad-
ditional knowledge such as a small set of seed ex-
amples or depends on multiple web pages. In our
setting, we take as input a natural language query
and extract entities from a single web page.

trails near Baltimore) and a web page (e.g.,
http://www.everytrail.com/best/
hiking-baltimore-maryland), the goal is
to extract all entities corresponding to the query
on that page (e.g., Avalon Super Loop, etc.).
Figure 1 summarizes the task setup.

The task introduces two challenges. Given a
single web page to extract entities from, we can
no longer rely on the redundancy of entities across
multiple web pages. Furthermore, in the zero-shot
learning paradigm (Larochelle et al., 2008), where
entire categories might be unseen during training,
the system must generalize to new queries and web
pages without the additional aid of seed examples.

To tackle these challenges, we cast the task as
a structured prediction problem where the input
is the query and the web page, and the output is
a list of entities, mediated by a latent extraction
predicate. To generalize across different inputs,
we rely on two types of features: structural fea-
tures, which look at the layout and placement of
the entities being extracted; and denotation fea-
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tures, which look at the list of entities as a whole
and assess their linguistic coherence. When defin-
ing features on lists, one technical challenge is be-
ing robust to widely varying list sizes. We ap-
proach this challenge by defining features over a
histogram of abstract tokens derived from the list
elements.

For evaluation, we created the OPENWEB

dataset comprising natural language queries from
the Google Suggest API and diverse web pages re-
turned from web search. Despite the variety of
queries and web pages, our system still achieves
a test accuracy of 40.5% and an accuracy at 5 of
55.8%.

2 Problem statement

We define the zero-shot entity extraction task as
follows: let x be a natural language query (e.g.,
hiking trails near Baltimore), and w be a web
page. Our goal is to construct a mapping from
(x,w) to a list of entities y (e.g., [Avalon Super
Loop, Patapsco Valley State Park, . . . ]) which are
extracted from the web page.

Ideally, we would want our data to be anno-
tated with the correct entity lists y, but this would
be very expensive to obtain. We instead define
each training and test example as a triple (x,w, c),
where the compatibility function c maps each y to
c(y) ∈ {0, 1} denoting the (approximate) correct-
ness of the list y. In this paper, an entity list y is
compatible (c(y) = 1) when the first, second, and
last elements of y match the annotation; otherwise,
it is incompatible (c(y) = 0).

2.1 Dataset

To experiment with a diverse set of queries and
web pages, we created a new dataset, OPENWEB,
using web pages from Google search results.1 We
use the method from Berant et al. (2013) to gen-
erate search queries by performing a breadth-first
search over the query space. Specifically, we
use the Google Suggest API, which takes a par-
tial query (e.g., “list of movies”) and out-
puts several complete queries (e.g., “list of hor-
ror movies”). We start with seed partial queries
“list of • ” where • is one or two initial let-
ters. In each step, we call the Google Suggest API
on the partial queries to obtain complete queries,

1The OPENWEB dataset and our code base are available
for download at http://www-nlp.stanford.edu/
software/web-entity-extractor-ACL2014.

Full query New partial queries
list of X IN Y list of X
where IN is a preposition list of X
(list of [hotels]X in [Guam]Y ) list of X IN

list of IN Y
list of X CC Y list of X
where CC is a conjunction list of X
(list of [food]X and [drink]Y ) list of Y

list of Y
list of X w list of w
(list of [good 2012]X [movies]w) list of w

list of X

Table 1: Rules for generating new partial queries
from complete queries. (X and Y are sequences
of words; w is a single word.)

and then apply the transformation rules in Table 1
to generate more partial queries from complete
queries. We run the procedure until we obtained
100K queries.

Afterwards, we downloaded the top 2–3 Google
search results of each query, sanitized the web
pages, and randomly submitted 8000 query / web
page pairs to Amazon Mechanical Turk (AMT).
Each AMT worker must either mark the web page
as irrelevant or extract the first, second, and last
entities from the page. We only included exam-
ples where at least two AMT workers agreed on
the answer.

The resulting OPENWEB dataset consists of
2773 examples from 2269 distinct queries.
Among these queries, there are 894 headwords
ranging from common categories (e.g., movies,
companies, characters) to more specific ones (e.g.,
enzymes, proverbs, headgears). The dataset con-
tains web pages from 1438 web domains, of which
83% appear only once in our dataset.

Figure 2 shows some queries and web pages
from the OPENWEB dataset. Besides the wide
range of queries, another main challenge of the
dataset comes from the diverse data representa-
tion formats, including complex tables, grids, lists,
headings, and paragraphs.

3 Approach

Figure 3 shows the framework of our system.
Given a query x and a web page w, the system
generates a set Z(w) of extraction predicates z
which can extract entities from semi-structured
data in w. Section 3.1 describes extraction pred-
icates in more detail. Afterwards, the system
chooses z ∈ Z(w) that maximizes the model
probability pθ(z | x,w), and then executes z on
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Queries

airlines of italy
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bf3 submachine guns

badminton tournaments

foods high in dha

technical colleges in south carolina

songs on glee season 5

singers who use auto tune

san francisco radio stations

actors from boston

Examples (web page, query)

airlines of italy natural causes of global warming lsu football coaches

Figure 2: Some examples illustrating the diversity of queries and web pages from the OPENWEB dataset.
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Figure 3: An overview of our system. The system
uses the input query x and web page w to produce
a list of entities y via an extraction predicate z.

w to get the list of entities y = JzKw. Section 3.2
describes the model and the training procedure,
while Section 3.3 presents the features used in our
model.

3.1 Extraction predicates

We represent each web page w as a DOM tree, a
common representation among wrapper induction
and web information extraction systems (Sahuguet
and Azavant, 1999; Liu et al., 2000; Crescenzi et
al., 2001). The text of any DOM tree node that is
shorter than 140 characters is a candidate entity.
However, without further restrictions, the number
of possible entity lists grows exponentially with
the number of candidate entities.

To make the problem tractable, we introduce an
extraction predicate z as an intermediate represen-
tation for extracting entities from w. In our sys-
tem, we let an extraction predicate be a simplified
XML path (XPath) such as

/html[1]/body[1]/table[2]/tr/td[1]

Informally, an extraction predicate is a list of
path entries. Each path entry is either a tag (e.g.,

tr), which selects all children with that tag; or a
tag and an index i (e.g., td[1]), which selects
only the ith child with that tag. The denotation
y = JzKw of an extraction predicate z is the list of
entities selected by the XPath. Figure 4 illustrates
the execution of the extraction predicate above on
a DOM tree.

In the literature, many information extraction
systems employ more versatile extraction predi-
cates (Wang and Cohen, 2009; Fumarola et al.,
2011). However, despite the simplicity, we are
able to find an extraction predicate that extracts
a compatible entity list in 69.7% of the develop-
ment examples. In some examples, we cannot ex-
tract a compatible list due to unrecoverable issues
such as incorrect annotation. Section 4.4 provides
a detailed analysis of these issues. Additionally,
extraction predicates can be easily extended to in-
crease the coverage. For example, by introduc-
ing new index types [1:] (selects all but the first
node) and [:-1] (selects all but the last node),
we can increase the coverage to 76.2%.

Extraction predicate generation. We generate
a set Z(w) of extraction predicates for a given
web page w as follows. For each node in
the DOM tree, we find an extraction predicate
which selects only that node, and then gener-
alizes the predicate by removing any subset of
the indices of the last k path entries. For in-
stance, when k = 2, an extraction predicate
ending in .../tr[5]/td[2] will be general-
ized to .../tr[5]/td[2], .../tr/td[2],
.../tr[5]/td, and .../tr/td. In all ex-
periments, we use k = 8, which gives at most 28

generalized predicates for each original predicate.
This generalization step allows the system to se-
lect multiple nodes with the same structure (e.g.,
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Hilton Area 7.8 miles
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Wildlands Loop 4.4 miles

Mckeldin Area 16.7 miles

Greenbury Point 3.7 miles

Governer Bridge Natural Area 3.1 miles

Figure 4: A simplified example of a DOM tree w and an extraction predicate z, which selects a list of
entity strings y = JzKw from the page (highlighted in red).

table cells from the same column or list items from
the same section of the page).

Out of all generalized extraction predicates, we
retain the ones that extract at least two entities
from w. Note that several extraction predicates
may select the same list of nodes and thus produce
the same list of entities.

The procedure above gives a manageable num-
ber of extraction predicates. Among the devel-
opment examples of the OPENWEB dataset, we
generate an average of 8449 extraction predicates
per example, which evaluate to an average of 1209
unique entity lists.

3.2 Modeling

Given a query x and a web page w, we define
a log-linear distribution over all extraction predi-
cates z ∈ Z(w) as

pθ(z | x,w) ∝ exp{θ>φ(x,w, z)}, (1)

where θ ∈ Rd is the parameter vector and
φ(x,w, z) is the feature vector, which will be de-
fined in Section 3.3.

To train the model, we find a parameter vec-
tor θ that maximizes the regularized log marginal
probability of the compatibility function being sat-
isfied. In other words, given training data D =
{(x(i), w(i), c(i))}ni=1, we find θ that maximizes

n∑
i=1

log pθ(c(i) = 1 | x(i), w(i))− λ

2
‖θ‖22

where

pθ(c = 1 | x,w) =
∑

z∈Z(w)

pθ(z | x,w) · c(JzKw).

Note that c(JzKw) = 1 when the entity list y =JzKw selected by z is compatible with the annota-
tion; otherwise, c(JzKw) = 0.

We use AdaGrad, an online gradient descent
with an adaptive per-feature step size (Duchi et al.,
2010), making 5 passes over the training data. We
use λ = 0.01 obtained from cross-validation for
all experiments.

3.3 Features

To construct the log-linear model, we define a fea-
ture vector φ(x,w, z) for each query x, web page
w, and extraction predicate z. The final feature
vector is the concatenation of structural features
φs(w, z), which consider the selected nodes in
the DOM tree, and denotation features φd(x, y),
which look at the extracted entities.

We will use the query hiking trails near Balti-
more and the web page in Figure 4 as a running
example. Figure 5 lists some features extracted
from the example.

3.3.1 Recipe for defining features on lists

One main focus of our work is finding good fea-
ture representations for a list of objects (DOM tree
nodes for structural features and entity strings for
denotation features). One approach is to define the
feature vector of a list to be the sum of the feature
vectors of individual elements. This is commonly
done in structured prediction, where the elements
are local configurations (e.g., rule applications in
parsing). However, this approach raises a normal-
ization issue when we have to compare and rank
lists of drastically different sizes.

As an alternative, we propose a recipe for gen-
erating features from a list as follows:
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Structural feature Value
Features on selected nodes:

TAG-MAJORITY = td 1
INDEX-ENTROPY 0.0

Features on parent nodes:
CHILDRENCOUNT-MAJORITY = 2 1
PARENT-SINGLE 1
INDEX-ENTROPY 1.0
HEADHOLE (The first node is skipped) 1

Features on grandparent nodes:
PAGECOVERAGE 0.6

. . . . . .

Selected entities

Avalon Super Loop

Hilton Area

Avalon Loop

Wildlands Loop

Mckeldin Area

Greenbury Point

Governer Bridge Natural Area

Denotation feature Value
WORDSCOUNT-MEAN 2.42
PHRASESHAPE-MAJORITY = Aa Aa 1
PHRASESHAPE-MAJORITYRATIO 0.71
WORDSHAPE-MAJORITY = Aa 1
PHRASEPOS-MAJORITY = NNP NN 1
LASTWORD-ENTROPY 0.74
WORDPOS = NN (normalized count) 0.53
. . . . . .

Figure 5: A small subset of features from the example hiking trails near Baltimore in Figure 4.
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Figure 6: The recipe for defining features on a
list of objects: (i) the abstraction step converts list
elements into abstract tokens; (ii) the aggregation
step defines features using the histogram of the ab-
stract tokens.

Step 1: Abstraction. We map each list element
into an abstract token. For example, we can map
each DOM tree node onto an integer equal to the
number of children, or map each entity string onto
its part-of-speech tag sequence.

Step 2: Aggregation. We create a histogram of
the abstract tokens and define features on proper-
ties of the histogram. Generally, we use ENTROPY

(entropy normalized to the maximum value of 1),
MAJORITY (mode), MAJORITYRATIO (percent-
age of tokens sharing the majority value), and
SINGLE (whether all tokens are identical). For
abstract tokens with finitely many possible values
(e.g., part-of-speech), we also use the normalized

histogram count of each possible value as a fea-
ture. And for real-valued abstract tokens, we also
use the mean and the standard deviation. In the
actual system, we convert real-valued features (en-
tropy, histogram count, mean, and standard devia-
tion) into indicator features by binning.

Figure 6 summarizes the steps explained above.
We use this recipe for defining both structural and
denotation features, which are discussed below.

3.3.2 Structural features
Although different web pages represent data in
different formats, they still share some common
hierarchical structures in the DOM tree. To cap-
ture this, we define structural features φs(w, z),
which consider the properties of the selected nodes
in the DOM tree, as follows:

Features on selected nodes. We apply our
recipe on the list of nodes in w selected by z using
the following abstract tokens:
• TAG, ID, CLASS, etc. (HTML attributes)

• CHILDRENCOUNT and SIBLINGSCOUNT

(number of children and siblings)

• INDEX (position among its siblings)

• PARENT (parent node; e.g., PARENT-SINGLE

means that all nodes share the same parent.)
Additionally, we define the following features

based on the coverage of all selected nodes:
• NOHOLE, HEADHOLE, etc. (node coverage

in the same DOM tree level; e.g., HEAD-
HOLE activates when the first sibling of the
selected nodes is not selected.)
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• PAGECOVERAGE (node coverage relative to
the entire tree; we use depth-first traversal
timestamps to estimate the fraction of nodes
in the subtrees of the selected nodes.)

Features on ancestor nodes. We also define the
same feature set on the list of ancestors of the se-
lected nodes in the DOM tree. In our experiments,
we traverse up to 5 levels of ancestors and define
features from the nodes in each level.

3.3.3 Denotation features
Structural features are not powerful enough to dis-
tinguish between entity lists appearing in similar
structures such as columns of the same table or
fields of the same record. To solve this ambiguity,
we introduce denotation features φd(x, y) which
considers the coherence or appropriateness of the
selected entity strings y = JzKw.

We observe that the correct entities often share
some linguistic statistics. For instance, entities in
many categories (e.g., people and place names)
usually have only 2–3 word tokens, most of which
are proper nouns. On the other hand, random
words on the web page tend to have more diverse
lengths and part-of-speech tags.

We apply our recipe on the list of selected enti-
ties using the following abstract tokens:
• WORDSCOUNT (number of words)

• PHRASESHAPE (abstract shape of the phrase;
e.g., Barack Obama becomes Aa Aa)

• WORDSHAPE (abstract shape of each word;
the number of abstract tokens will be the total
number of words over all selected entities)

• FIRSTWORD and LASTWORD

• PHRASEPOS and WORDPOS (part-of-
speech tags for whole phrases and individual
words)

4 Experiments

In this section we evaluate our system on the
OPENWEB dataset.

4.1 Evaluation metrics
Accuracy. As the main metric, we use a notion
of accuracy based on compatibility; specifically,
we define the accuracy as the fraction of examples
where the system predicts a compatible entity list
as defined in Section 2. We also report accuracy
at 5, the fraction of examples where the top five
predictions contain a compatible entity list.

Path suffix pattern (multiset) Count
{a, table, tbody, td[*], tr} 1792
{a, tbody, td[*], text, tr} 1591
{a, table[*], tbody, td[*], tr} 1325
{div, table, tbody, td[*], tr} 1259
{b, div, div, div, div[*]} 1156
{div[*], table, tbody, td[*], tr} 1059
{div, table[*], tbody, td[*], tr} 844
{table, tbody, td[*], text, tr} 828
{div[*], table[*], tbody, td[*], tr} 793
{a, table, tbody, td, tr} 743

Table 2: Top 10 path suffix patterns found by the
baseline learner in the development data. Since
we allow path entries to be permuted, each suffix
pattern is represented by a multiset of path entries.
The notation [*] denotes any path entry index.

To see how our compatibility-based accuracy
tracks exact correctness, we sampled 100 web
pages which have at least one valid extraction
predicate and manually annotated the full list of
entities. We found that in 85% of the examples,
the longest compatible list y is the correct list of
entities, and many lists in the remaining 15% miss
the correct list by only a few entities.

Oracle. In some examples, our system cannot
find any list of entities that is compatible with the
gold annotation. The oracle score is the fraction
of examples in which the system can find at least
one compatible list.

4.2 Baseline
As a baseline, we list the suffixes of the cor-
rect extraction predicates in the training data, and
then sort the resulting suffix patterns by frequency.
To improve generalization, we treat path entries
with different indices (e.g., td[1] vs. td[2]) as
equivalent and allow path entries to be permuted.
Table 2 lists the top 10 suffix patterns from the de-
velopment data. At test time, we choose an extrac-
tion predicate with the most frequent suffix pat-
tern. The baseline should work considerably well
if the web pages were relatively homogeneous.

4.3 Main results
We held out 30% of the dataset as test data. For the
results on development data, we report the average
across 10 random 80-20 splits. Table 3 shows the
results. The system gets an accuracy of 41.1% and
40.5% for the development and test data, respec-
tively. If we consider the top 5 lists of entities, the
accuracy increases to 58.4% on the development
data and 55.8% on the test data.
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Development data Test data
Acc A@5 Acc A@5

Baseline 10.8 ± 1.3 25.6 ± 2.0 10.3 20.9
Our system 41.1 ± 3.4 58.4 ± 2.7 40.5 55.8
Oracle 68.7 ± 2.4 68.7 ± 2.4 66.6 66.6

Table 3: Main results on the OPENWEB dataset
using the default set of features. (Acc = accuracy,
A@5 = accuracy at 5)

4.4 Error analysis
We now investigate the errors made by our system
using the development data. We classify the er-
rors into two types: (i) coverage errors, which are
when the system cannot find any entity list satis-
fying the compatibility function; and (ii) ranking
errors, which are when a compatible list of entities
exists, but the system outputs an incompatible list.

Tables 4 and 5 show the breakdown of cover-
age and ranking errors from an experiment on the
development data.

Analysis of coverage errors. From Table 4,
about 36% of coverage errors happen when the
extraction predicate for the correct entities also
captures unrelated parts of the web page (Reason
C1). For example, many Wikipedia articles have
the See Also section that lists related articles in an
unordered list (/ul/li/a), which causes a prob-
lem when the entities are also represented in the
same format.

Another main source of errors is the in-
consistency in HTML tag usage (Reason C2).
For instance, some web pages use <b> and
<strong> tags for bold texts interchangeably,
or switch between <b><a>...</a></b> and
<a><b>...</b></a> across entities. We ex-
pect that this problem can be solved by normaliz-
ing the web page, using an alternative web page
representation (Cohen et al., 2002; Wang and Co-
hen, 2009; Fumarola et al., 2011), or leveraging
more expressive extraction predicates (Dalvi et al.,
2011).

One interesting source of errors is Reason C3,
where we need to filter the selected entities to
match the complex requirement in the query. For
example, the query tech companies in China re-
quires the system to select only the company
names with China in the corresponding location
column. To handle such queries, we need a deeper
understanding of the relation between the linguis-
tic structure of the query and the hierarchical
structure of the web page. Tackling this error re-

Setting Acc A@5
All features 41.1 ± 3.4 58.4 ± 2.7
Oracle 68.7 ± 2.4 68.7 ± 2.4
(Section 4.5)
Structural features only 36.2 ± 1.9 54.5 ± 2.5
Denotation features only 19.8 ± 2.5 41.7 ± 2.7
(Section 4.6)
Structural + query-denotation 41.7 ± 2.5 58.1 ± 2.4
Query-denotation features only 25.0 ± 2.3 48.0 ± 2.7
Concat. a random web page +

structural + denotation 19.3 ± 2.6 41.2 ± 2.3
Concat. a random web page +

structural + query-denotation 29.2 ± 1.7 49.2 ± 2.2
(Section 4.7)
Add 1 seed entity 52.9 ± 3.0 66.5 ± 2.5

Table 6: System accuracy with different feature
and input settings on the development data. (Acc
= accuracy, A@5 = accuracy at 5)

quires compositionality and is critical to general-
ize to more complex queries.

Analysis of ranking errors. From Table 5, a
large number of errors are attributed to the system
selecting non-content elements such as navigation
links and content headings (Reason R1). Feature
analysis reveals that both structural and linguis-
tic statistics of these non-content elements can be
more coherent than those of the correct entities.
We suspect that since many of our features try to
capture the coherence of entities, the system some-
times erroneously favors the more homonogenous
non-content parts of the page. To disfavor these
parts, One possible solution is to add visual fea-
tures that capture how the web page is rendered
and favor more salient parts of the page. (Liu et al.,
2003; Song et al., 2004; Zhu et al., 2005; Zheng et
al., 2007).

4.5 Feature variations

We now investigate the contribution of each fea-
ture type. The ablation results on the development
set over 10 random splits are shown in Table 6.
We observe that denotation features improves ac-
curacy on top of structural features.

Table 7 shows an example of an error that is
eliminated by each feature type. Generally, if
the entities are represented as records (e.g., rows
of a table), then denotation features will help the
system select the correct field from each record.
On the other hand, structural features prevent the
system from selecting random entities outside the
main part of the page.
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Reason Short example Count
C1 Answers and contextual elements are selected

by the same extraction predicate.
Select entries in See Also section in addition to the con-
tent because they are all list entries.

48

C2 HTML tag usage is inconsistent. The page uses both b and strong for headers. 16
C3 The query applies to only some sections of the

matching entities.
Need to select only companies in China from the table
of all Asian companies.

20

C4 Answers are embedded in running text. Answers are in a comma-separated list. 13
C5 Text normalization issues. Selected Silent Night Lyrics instead of Silent Night. 19
C6 Other issues. Incorrect annotation. / Entities are permuted when the

web page is rendered. / etc.
18

Total 134

Table 4: Breakdown of coverage errors from the development data.

Reason Short example Count
R1 Select non-content strings. Select navigation links, headers, footers, or sidebars. 25
R2 Select entities from a wrong field. Select book authors instead of book names. 22
R3 Select entities from the wrong section(s). For the query schools in Texas, select all schools on the

page, or select the schools in Alabama instead.
19

R4 Also select headers or footers. Select the table header in addition to the answers. 7
R5 Select only entities with a particular formatting. From a list of answers, select only anchored (a) entities. 4
R6 Select headings instead of the contents or vice

versa.
Select the categories of rums in h2 tags instead of the
rum names in the tables.

2

R7 Other issues. Incorrect annotation. / Multiple sets of answers appear
on the same page. / etc.

9

Total 88

Table 5: Breakdown of ranking errors from the development data.

All features Structural only Denotation only
The Sun CIRC: 2,279,492 Paperboy Australia
Daily Mail CIRC: 1,821,684 Paperboy UK
Daily Mirror CIRC: 1,032,144 Paperboy Home Page
. . . . . . . . .

Table 7: System outputs for the query UK news-
papers with different feature sets. Without deno-
tation features, the system selects the daily circu-
lation of each newspaper instead of the newspaper
names. And without structural features, the sys-
tem selects the hidden navigation links from the
top of the page.

4.6 Incorporating query information

So far, note that all our features depend only on
the extraction predicate z and not the input query
x. Remarkably, we were still able to obtain rea-
sonable results. One explanation is that since we
obtained the web pages from a search engine, the
most prominent entities on the web pages, such as
entities in table cells in the middle of the page, are
likely to be good independent of the query.

However, different queries often denote enti-
ties with different linguistic properties. For exam-
ple, queries mayors of Chicago and universities in
Chicago will produce entities of different lengths,
part-of-speech sequences, and word distributions.
This suggests incorporating features that depend

on the query.
To explore the potential of query informa-

tion, we conduct the following oracle experi-
ment. We replace each denotation feature f(y)
with a corresponding query-denotation feature
(f(y), g(x)), where g(x) is the category of the
query x. We manually classified all queries in our
dataset into 7 categories: person, media title, loca-
tion/organization, abtract entity, word/phrase, ob-
ject name, and miscellaneous.

Table 8 shows some examples where adding
these query-denotation features improves the se-
lected entity lists by favoring answers that are
more suitable to the query category. However, Ta-
ble 6 shows that these new features do not signifi-
cantly improve the accuracy of our original system
on the development data.

We suspect that any gains offered by the query-
denotation features are subsumed by the structural
features. To test this hypothesis, we conducted
two experiments, the results of which are shown
in Table 6. First, we removed structural features
and found that using query-denotation features im-
proves accuracy significantly over using denota-
tion features alone from 19.8% to 25.0%. Second,
we created a modified dataset where the web page
in each example is a concatenation of the orig-
inal web page and an unrelated web page. On
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Query euclid’s elements book titles soft drugs professional athletes with concussions
Default
features

“Prematter”, “Book I.”,
“Book II.”, “Book III.”, . . .

“Hard drugs”, “Soft drugs”,
“Some drugs cannot be
classified that way”, . . .

“Pistons-Knicks Game Becomes Site
of Incredible Dance Battle”, “Toronto
Mayor Rob Ford Attends . . . ”, . . .

Structural
+ Query-
Denotation

(category = media title)
“Book I. The fundamentals . . . ”,
“Book II. Geometric algebra”, . . .

(category = object name)
“methamphetamine”,
“psilocybin”, “caffeine”

(category = person)
“Mike Richter”, “Stu Grimson”,
“Geoff Courtnall”, . . .

Table 8: System outputs after changing denotation features into query-denotation features.

this modified dataset, the prominent entities may
not be the answers to the query. Here, query-
denotation features improves accuracy over deno-
tation features alone from 19.3% to 29.2%.

4.7 Comparison with other problem settings

Since zero-shot entity extraction is a new task,
we cannot directly compare our system with other
systems. However, we can mimic the settings of
other tasks. In one experiment, we augment each
input query with a single seed entity (the second
annotated entity in our experiments); this setting
is suggestive of Wang and Cohen (2009). Table 6
shows that this augmentation increases accuracy
from 41.1% to 52.9%, suggesting that our sys-
tem can perform substantially better with a small
amount of additional supervision.

5 Discussion

Our work shares a base with the wrapper induc-
tion literature (Kushmerick, 1997) in that it lever-
ages regularities of web page structures. However,
wrapper induction usually focuses on a small set
of web domains, where the web pages in each do-
main follow a fixed template (Muslea et al., 2001;
Crescenzi et al., 2001; Cohen et al., 2002; Arasu
and Garcia-Molina, 2003). Later work in web data
extraction attempts to generalize across different
web pages, but relies on either restricted data for-
mats (Wong et al., 2009) or prior knowledge of
web page structures with respect to the type of data
to extract (Zhang et al., 2013).

In our case, we only have the natural language
query, which presents the more difficult problem
of associating the entity class in the query (e.g.,
hiking trails) to concrete entities (e.g., Avalon Su-
per Loop). In contrast to information extraction
systems that extract homogeneous records from
web pages (Liu et al., 2003; Zheng et al., 2009),
our system must choose the correct field from each
record and also identify the relevant part of the
page based on the query.

Another related line of work is information ex-
traction from text, which relies on natural lan-
guage patterns to extract categories and relations
of entities. One classic example is Hearst pat-
terns (Hearst, 1992; Etzioni et al., 2005), which
can learn new entities and extraction patterns from
seed examples. More recent approaches also
leverage semi-structured data to obtain more ro-
bust extraction patterns (Mintz et al., 2009; Hoff-
mann et al., 2011; Surdeanu et al., 2012; Riedel
et al., 2013). Although our work focuses on semi-
structured web pages rather than raw text, we use
linguistic patterns of queries and entities as a sig-
nal for extracting appropriate answers.

Additionally, our efforts can be viewed as build-
ing a lexicon on the fly. In recent years, there
has been a drive to scale semantic parsing to large
databases such as Freebase (Cai and Yates, 2013;
Berant et al., 2013; Kwiatkowski et al., 2013).
However, despite the best efforts of information
extraction, such databases will always lag behind
the open web. For example, Berant et al. (2013)
found that less than 10% of naturally occurring
questions are answerable by a simple Freebase
query. By using the semi-structured data from the
web as a knowledge base, we hope to increase fact
coverage for semantic parsing.

Finally, as pointed out in the error analysis, we
need to filter or aggregate the selected entities for
complex queries (e.g., tech companies in China for
a web page with all Asian tech companies). In fu-
ture work, we would like to explore the issue of
compositionality in queries by aligning linguistic
structures in natural language with the relative po-
sition of entities on web pages.
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