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Abstract

In this paper, we study the answer
sentence selection problem for ques-
tion answering. Unlike previous work,
which primarily leverages syntactic analy-
sis through dependency tree matching, we
focus on improving the performance us-
ing models of lexical semantic resources.
Experiments show that our systems can
be consistently and significantly improved
with rich lexical semantic information, re-
gardless of the choice of learning algo-
rithms. When evaluated on a bench-
mark dataset, the MAP and MRR scores
are increased by 8 to 10 points, com-
pared to one of our baseline systems using
only surface-form matching. Moreover,
our best system also outperforms pervious
work that makes use of the dependency
tree structure by a wide margin.

1 Introduction

Open-domain question answering (QA), which
fulfills a user’s information need by outputting di-
rect answers to natural language queries, is a chal-
lenging but important problem (Etzioni, 2011).
State-of-the-art QA systems often implement a
complicated pipeline architecture, consisting of
question analysis, document or passage retrieval,
answer selection and verification (Ferrucci, 2012;
Moldovan et al., 2003). In this paper, we focus
on one of the key subtasks – answer sentence se-
lection. Given a question and a set of candidate
sentences, the task is to choose the correct sen-
tence that contains the exact answer and can suf-
ficiently support the answer choice. For instance,
although both of the following sentences contain
the answer “Jack Lemmon” to the question “Who
won the best actor Oscar in 1973?” only the first
sentence is correct.

A1: Jack Lemmon won the Academy Award for
Best Actor for Save the Tiger (1973).

A2: Oscar winner Kevin Spacey said that Jack
Lemmon is remembered as always making
time for other people.

One of the benefits of answer sentence selec-
tion is that the output can be provided directly to
the user. Instead of outputting only the answer, re-
turning the whole sentence often adds more value
as the user can easily verify the correctness with-
out reading a lengthy document.

Answer sentence selection can be naturally re-
duced to a semantic text matching problem. Con-
ceptually, we would like to measure how close
the question and sentence can be matched seman-
tically. Due to the variety of word choices and
inherent ambiguities in natural languages, bag-of-
words approaches with simple surface-form word
matching tend to produce brittle results with poor
prediction accuracy (Bilotti et al., 2007). As a
result, researchers put more emphasis on exploit-
ing both the syntactic and semantic structure in
questions/sentences. Representative examples in-
clude methods based on deeper semantic anal-
ysis (Shen and Lapata, 2007; Moldovan et al.,
2007) and on tree edit-distance (Punyakanok et
al., 2004; Heilman and Smith, 2010) and quasi-
synchronous grammar (Wang et al., 2007) that
match the dependency parse trees of questions and
sentences. However, such approaches often re-
quire more computational resources. In addition
to applying a syntactic or semantic parser during
run-time, finding the best matching between struc-
tured representations of sentences is not trivial.
For example, the computational complexity of tree
matching is O(V 2L4), where V is the number of
nodes and L is the maximum depth (Tai, 1979).

Instead of focusing on the high-level seman-
tic representation, we turn our attention in this
work to improving the shallow semantic compo-
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nent, lexical semantics. We formulate answer se-
lection as a semantic matching problem with a la-
tent word-alignment structure as in (Chang et al.,
2010) and conduct a series of experimental stud-
ies on leveraging recently proposed lexical seman-
tic models. Our main contributions in this work
are two key findings. First, by incorporating the
abundant information from a variety of lexical se-
mantic models, the answer selection system can
be enhanced substantially, regardless of the choice
of learning algorithms and settings. Compared to
the previous work, our latent alignment model im-
proves the result on a benchmark dataset by a wide
margin – the mean average precision (MAP) and
mean reciprocal rank (MRR) scores are increased
by 25.6% and 18.8%, respectively. Second, while
the latent alignment model performs better than
unstructured models, the difference diminishes af-
ter adding the enhanced lexical semantics infor-
mation. This may suggest that compared to in-
troducing complex structured constraints, incorpo-
rating shallow semantic information is both more
effective and computationally inexpensive in im-
proving the performance, at least for the specific
word alignment model tested in this work.

The rest of the paper is structured as follows.
We first survey the related work in Sec. 2. Sec. 3
defines the problem of answer sentence selection,
along with the high-level description of our solu-
tion. The enhanced lexical semantic models and
the learning frameworks we explore are presented
in Sec. 4 and Sec. 5, respectively. Our experimen-
tal results on a benchmark QA dataset is shown in
Sec. 6. Finally, Sec. 7 concludes the paper.

2 Related Work

While the task of question answering has a long
history dated back to the dawn of artificial in-
telligence, early systems like STUDENT (Wino-
grad, 1977) and LUNAR (Woods, 1973) are typ-
ically designed to demonstrate natural language
understanding for a small and specific domain.
The Text REtrieval Conference (TREC) Question
Answering Track was arguably the first large-
scale evaluation of open-domain question answer-
ing (Voorhees and Tice, 2000). The task is de-
signed in an information retrieval oriented setting.
Given a factoid question along with a collection
of documents, a system is required to return the
exact answer, along with the document that sup-
ports the answer. In contrast, the Jeopardy! TV

quiz show provides another open-domain question
answering setting, in which IBM’s Watson system
famously beat the two highest ranked players (Fer-
rucci, 2012). Questions in this game are presented
in a statement form and the system needs to iden-
tify the true question and to give the exact answer.
A short sentence or paragraph to justify the answer
is not required in either TREC-QA or Jeopardy!

As any QA system can virtually be decomposed
into two major high-level components, retrieval
and selection (Echihabi and Marcu, 2003), the an-
swer selection problem is clearly critical. Limiting
the scope of an answer to a sentence is first high-
lighted by Wang et al. (2007), who argued that it
was more informative to present the whole sen-
tence instead of a short answer to users.

Observing the limitations of the bag-of-words
models, Wang et al. (2007) proposed a syntax-
driven approach, where each pair of question and
sentence are matched by their dependency trees.
The mapping is learned by a generative probabilis-
tic model based on a Quasi-synchronous Gram-
mar formulation (Smith and Eisner, 2006). This
approach was later improved by Wang and Man-
ning (2010) with a tree-edit CRF model that learns
the latent alignment structure. In contrast, gen-
eral tree matching methods based on tree-edit dis-
tance have been first proposed by Punyakanok et
al. (2004) for a similar answer selection task. Heil-
man and Smith (2010) proposed a discriminative
approach that first computes a tree kernel func-
tion between the dependency trees of the question
and candidate sentence, and then learns a classifier
based on the tree-edit features extracted.

Although lexical semantic information derived
from WordNet has been used in some of these
approaches, the research has mainly focused
on modeling the mapping between the syntac-
tic structures of questions and sentences, pro-
duced from syntactic analysis. The potential im-
provement from enhanced lexical semantic mod-
els seems to have been deliberately overlooked.1

3 Problem Definition

We consider the answer selection problem in a
supervised learning setting. For a set of ques-
tions {q1, · · · , qm}, each question qi is associated
with a list of labeled candidate answer sentences

1For example, Heilman and Smith (2010) emphasized that
“The tree edit model, which does not use lexical semantics
knowledge, produced the best result reported to date.”
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What is the fastest car in the world?

The Jaguar XJ220 is the dearest, fastest and most sought after car on the planet. 

Figure 1: An example pair of question and answer sentence, adapted from (Harabagiu and Moldovan,
2001). Words connected by solid lines are clear synonyms or hyponym/hypernym; words with weaker
semantic association are linked by dashed lines.

{(yi1 , si1), (yi1 , si2), · · · , (yin , sin)}, where yij =
1 indicates that sentence sij is a correct answer to
question qi, and 0 otherwise. Using this labeled
data, our goal is to learn a probabilistic classifier
to predict the label of a new, unseen pair of ques-
tion and sentence.

Fundamentally, what the classifier predicts is
whether the sentence “matches” the question se-
mantically. In other words, does s have the an-
swer that satisfies the semantic constraints pro-
vided in the question? Without representing the
question and sentence in logic or syntactic trees,
we take a word-alignment view for solving this
problem. We assume that there is an underly-
ing structure h that describes how q and s can
be associated through the relations of the words
in them. Figure 1 illustrates this setting using a
revised example from (Harabagiu and Moldovan,
2001). In this figure, words connected by solid
lines are clear synonyms or hyponym/hypernym;
words connected by dashed lines indicate that they
are weakly related. With this alignment structure,
features like the degree of mapping or whether all
the content words in the question can be mapped
to some words in the sentence can be extracted and
help improve the classifier. Notice that the struc-
ture representation in terms of word-alignment is
fairly general. For instance, if we assume a naive
complete bipartite matching, then effectively it re-
duces to the simple bag-of-words model.

Typically, the “ideal” alignment structure is not
available in the data, and previous work exploited
mostly syntactic analysis (e.g., dependency trees)
to reveal the latent mapping structure. In this
work, we focus our study on leveraging the low-
level semantic cues from recently proposed lexical
semantic models. As will be shown in our experi-
ments, such information not only improves a latent
structure learning method, but also makes a simple

bipartite matching approach extremely strong.2

4 Lexical Semantic Models

In this section, we introduce the lexical seman-
tic models we adopt for solving the semantic
matching problem in answer selection. To go be-
yond the simple, limited surface-form matching,
we aim to pair words that are semantically re-
lated, specifically measured by models of word
relations including synonymy/antonymy, hyper-
nymy/hyponymy (the Is-A relation) and general se-
mantic word similarity.

4.1 Synonymy and Antonymy

Among all the word relations, synonymy is per-
haps the most basic one and needs to be handled
reliably. Although sets of synonyms can be eas-
ily found in thesauri or WordNet synsets, such
resources typically cover only strict synonyms.
When comparing two words, it is more useful to
estimate the degree of synonymy as well. For in-
stance, ship and boat are not strict synonyms be-
cause a ship is usually viewed as a large boat.
Knowing that two words are somewhat synony-
mous could be valuable in determining whether
they should be mapped.

In order to estimate the degree of synonymy, we
leverage a recently proposed polarity-inducing la-
tent semantic analysis (PILSA) model (Yih et al.,
2012). Given a thesaurus, the model first con-
structs a signed d-by-n co-occurrence matrix W ,
where d is the number of word groups and n is
the size of the vocabulary. Each row consists of a

2Proposed by an anonymous reviewer, one justification of
this word-alignment approach, where syntactic analysis plays
a less important role, is that there are often few sensible com-
binations of words. For instance, knowing only the set of
words {”car”, ”fastest”, ”world”}, one may still guess cor-
rectly the question “What is the fastest car in the world?”
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group of synonyms and antonyms of a particular
sense and each column represents a unique word.
Values of the elements in each row vector are the
TFIDF values of the corresponding words in this
group. The notion of polarity is then induced by
making the values of words in the antonym groups
negative, and the matrix is generalized by a low-
rank approximation derived by singular-value de-
composition (SVD) in the end. This design has an
intriguing property – if the cosine score of two col-
umn vectors are positive, then the two correspond-
ing words tend to be synonymous; if it’s negative,
then the two words are antonymous. The degree is
measured by the absolute value.

Following the setting described in (Yih et al.,
2012), we construct a PILSA model based on the
Encarta thesaurus and enhance it with a discrimi-
native projection matrix training method. The es-
timated degrees of both synonymy and antonymy
are used our experiments.3

4.2 Hypernymy and Hyponymy

The Class-Inclusion or Is-A relation is commonly
observed between words in questions and answer
sentences. For example, to correctly answer the
question “What color is Saturn?”, it is crucial that
the selected sentence mentions a specific kind of
color, as in “Saturn is a giant gas planet with
brown and beige clouds.” Another example is
“Who wrote Moonlight Sonata?”, where compose
in “Ludwig van Beethoven composed the Moon-
light Sonata in 1801.” is one kind of write.

Traditionally, WordNet taxonomy is the linguis-
tic resource for identifying hypernyms and hy-
ponyms, applied broadly to many NLP problems.
However, WordNet has a number of well-known
limitations including its rather limited or skewed
concept distribution and the lack of the coverage
of the Is-A relation (Song et al., 2011). For in-
stance, when a word refers to a named entity, the
particular sense and meaning is often not encoded.
As a result, relations such as “Apple” is-a “com-
pany” and “Jaguar” is-a “car” cannot be found in
WordNet. Similar to the case in synonymy, the
Is-A relation defined in WordNet does not provide
a native, real-valued degree of the relation, which
can only be roughly approximated using the num-
ber of links on the taxonomy path connecting two

3Mapping two antonyms may be desired if one of them is
in the scope of negation (Morante and Blanco, 2012; Blanco
and Moldovan, 2011). However, we do not attempt to resolve
the negation scope in this work.

concepts (Resnik, 1995).
In order to remedy these issues, we aug-

ment WordNet with the Is-A relations found in
Probase (Wu et al., 2012). Probase is a knowledge
base that establishes connections between 2.7 mil-
lion concepts, discovered automatically by apply-
ing Hearst patterns (Hearst, 1992) to 1.68 billion
Web pages. Its abundant concept coverage dis-
tinguishes it from other knowledge bases, such as
Freebase (Bollacker et al., 2008) and WikiTaxon-
omy (Ponzetto and Strube, 2007). Based on the
frequency of term co-occurrences, each Is-A rela-
tion from Probase is associated with a probability
value, indicating the degree of the relation.

We verified the quality of Probase Is-A relations
using a recently proposed SemEval task of rela-
tional similarity (Jurgens et al., 2012) in a com-
panion paper (Zhila et al., 2013), where a subset
of the data is to measure the degree of two words
having a class-inclusion relation. Probase’s pre-
diction correlates well with the human annotations
and achieves a high Spearman’s rank correlation
coefficient score, ρ = 0.619. In comparison, the
previous best system (Rink and Harabagiu, 2012)
in the task only reaches ρ = 0.233. These appeal-
ing qualities make Probase a robust lexical seman-
tic model for hypernymy/hyponymy.

4.3 Semantic Word Similarity
The third lexical semantic model we introduce tar-
gets a general notion of word similarity. Unlike
synonymy and hyponymy, word similarity is only
loosely defined when two words can be associated
by some implicit relation.4 The general word sim-
ilarity model can be viewed as a “back-off” so-
lution when the exact lexical relation (e.g., part-
whole and attribute) is not available or cannot be
accurately detected.

Among various word similarity models (Agirre
et al., 2009; Reisinger and Mooney, 2010;
Gabrilovich and Markovitch, 2007; Radinsky et
al., 2011), the vector space models (VSMs) based
on the idea of distributional similarity (Turney
and Pantel, 2010) are often used as the core com-
ponent. Inspired by (Yih and Qazvinian, 2012),
which argues the importance of incorporating het-
erogeneous vector space models for measuring
word similarity, we leverage three different VSMs
in this work: Wiki term-vectors, recurrent neural

4Instead of making the distinction, word similarity here
refers to the larger set of relations commonly covered by word
relatedness (Budanitsky and Hirst, 2006).

1747



network language model (RNNLM) and a concept
vector space model learned from click-through
data. Semantic word similarity is estimated using
the cosine score of the corresponding word vectors
in these VSMs.

Contextual term-vectors created using the
Wikipedia corpus have shown to perform well
on measuring word similarity (Reisinger and
Mooney, 2010). Following the setting suggested
by Yih and Qazvinian (2012), we create term-
vectors representing about 1 million words by ag-
gregating terms within a window of [−10, 10] of
each occurrence of the target word. The vectors
are further refined by applying the same vocabu-
lary and feature pruning techniques.

A recurrent neural network language
model (Mikolov et al., 2010) aims to esti-
mate the probability of observing a word given its
preceding context. However, one by-product of
this model is the word embedding learned in its
hidden-layer, which can be viewed as capturing
the word meaning in some latent, conceptual
space. As a result, vectors of related words tend
to be close to each other. For this word similarity
model, we take a 640-dimensional version of
RNNLM vectors, which is trained using the
Broadcast News corpus of 320M words.5

The final word relatedness model is a projec-
tion model learned from the click-through data of
a commercial search engine (Gao et al., 2011).
Unlike the previous two models, which are cre-
ated or trained using a text corpus, the input for
this model is pairs of aggregated queries and ti-
tles of pages users click. This parallel data is
used to train a projection matrix for creating the
mapping between words in queries and documents
based on user feedback, using a Siamese neural
network (Yih et al., 2011). Each row vector of
this matrix is the dense vector representation of
the corresponding word in the vocabulary. Perhaps
due to its unique information source, we found this
particular word embedding seems to complement
the other two VSMs and tends to improve the word
similarity measure in general.

5 Learning QA Matching Models

In this section, we investigate the effectiveness of
various learning models for matching questions
and sentences, including the bag-of-words setting

5http://www.fit.vutbr.cz/˜imikolov/
rnnlm/

and the framework of learning latent structures.

5.1 Bag-of-Words Model

The bag-of-words model treats each question and
sentence as an unstructured bag of words. When
comparing a question with a sentence, the model
first matches each word in the question to each
word in the sentence. It then aggregates features
extracted from each of these word pairs to rep-
resent the whole question/sentence pair. A bi-
nary classifier can be trained easily using any ma-
chine learning algorithm in this standard super-
vised learning setting.

Formally, let x = (q, s) be a pair of question q
and sentence s. Let Vq = {wq1 , wq2 , · · · , wqm}
and Vs = {ws1 , ws2 , · · · , wsn} be the sets of
words in q and s, respectively. Given a word pair
(wq, ws), where wq ∈ Vq and ws ∈ Vs, feature
functions φ1, · · · , φd map it to a d-dimensional
real-valued feature vector.

We consider two aggregate functions for defin-
ing the feature vectors of the whole ques-
tion/answer pair: average and max.

Φavgj (q, s) =
1

mn

∑

wq∈Vq
ws∈Vs

φj(wq, ws) (1)

Φmaxj (q, s) = max
wq∈Vq
ws∈Vs

φj(wq, ws) (2)

Together, each question/sentence pair is repre-
sented by a 2d-dimensional feature vector.

We tested two learning algorithms in this set-
ting: logistic regression and boosted decision
trees (Friedman, 2001). The former is the log-
linear model widely used in the NLP community
and the latter is a robust non-linear learning algo-
rithm that has shown great empirical performance.

The bag-of-words model does not require an ad-
ditional inference stage as in structured learning,
which may be computationally expensive. Nev-
ertheless, its lack of structure information could
limit the expressiveness of the model and make it
difficult to capture more sophisticated semantics
in the sentences. To address this concern, we in-
vestigate models of learning latent structures next.

5.2 Learning Latent Structures

One obvious issue of the bag-of-words model is
that words in the unrelated part of the sentence
may still be paired with words in the question,
which introduces noise to the final feature vector.
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This is observed in many question/sentence pairs,
such as the one below.

Q: Which was the first movie that James Dean
was in?

A: James Dean, who began as an actor on TV
dramas, didn’t make his screen debut until
1951’s “Fixed Bayonet.”

While this sentence correctly answers the ques-
tion, the fact that James Dean began as a TV
actor is unrelated to the question. As a result,
an “ideal” word alignment structure should not
link words in this clause to those in the ques-
tion. In order to leverage the latent structured in-
formation, we adapt a recently proposed frame-
work of learning constrained latent representa-
tions (LCLR) (Chang et al., 2010). LCLR can be
viewed as a variant of Latent-SVM (Felzenszwalb
et al., 2009) with different learning formulations
and a general inference framework. The idea of
LCLR is to replace the decision function of a stan-
dard linear model θTφ(x) with

arg max
h

θTφ(x, h), (3)

where θ represents the weight vector and h repre-
sents the latent variables.

In this answer selection task, x = (q, s) rep-
resents a pair of question q and candidate sen-
tence s. As described in Sec. 3, h refers to the
latent alignment between q and s. The intuition
behinds Eq. (3) is: candidate sentence s correctly
answers question q if and only if the decision can
be supported by the best alignment h.

The objective function of LCLR is defined as:

minθ
1

2
||θ||2 + C

∑

i

ξ2i

s.t. ξi ≥ 1− yi max
h

θTφ(x, h)

Note that the alignment is latent, so LCLR uses
the binary labels in the training data as feedback
to find the alignment for each example.

The computational difficulty of the inference
problem (Eq. (3)) largely depends on the con-
straints we enforce in the alignment. Complicated
constraints may result in a difficult inference prob-
lem, which can be solved by integer linear pro-
gramming (Roth and Yih, 2007). In this work,
we considered several sets of constraints for the
alignment task, including a two-layer phrase/word

alignment structure, but found that they generally
performed the same. Therefore, we chose the
many-to-one alignment6, where inference can be
solved exactly using a simple greedy algorithm.

6 Experiments

We present our experimental results in this sec-
tion by first introducing the data and evaluation
metrics, followed by the results of existing sys-
tems and some baseline methods. We then show
the positive impact of adding information of word
relations from various lexical semantics models,
with some discussion on the limitation of the
word-matching approach.

6.1 Data & Evaluation Metrics
The answer selection dataset we used was orig-
inally created by Wang et al. (2007) based on
the QA track of past Text REtrieval Confer-
ences (TREC-QA). Questions in this dataset are
short factoid questions, such as “What is Crips’
gang color?” In average, each question is associ-
ated with approximately 33 answer candidate sen-
tences. A pair of question and sentence is judged
positive if the sentence contains the exact answer
key and can provide sufficient context as support-
ing evidence.

The training set of the data contains manu-
ally labeled 5,919 question/sentence pairs from
TREC 8-12. The development and testing sets
are both from TREC 13, which contain 1,374
and 1,866 pairs, respectively. The task is treated as
a sentence ranking problem for each question and
thus evaluated in Mean Average Precision (MAP)
and Mean Reciprocal Rank (MRR), using the offi-
cial TREC evaluation program. Following (Wang
et al., 2007), candidate sentences with more than
40 words are removed from evaluation, as well as
questions with only positive or negative candidate
sentences.

6.2 Baseline Methods
Several systems have been proposed and tested
using this dataset. Wang et al. (2007) pre-
sented a generative probabilistic model based on
a Quasi-synchronous Grammar formulation and
was later improved by Wang and Manning (2010)
with a tree-edit CRF model that learns the la-
tent alignment structure. In contrast, Heilman and

6Each word in the question needs to be linked to a word
in the sentence. Each word in the sentence can be linked to
zero or multiple words in the question.
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System MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951

Table 1: Test set results of existing methods, taken
from Table 3 of (Wang and Manning, 2010).

Dev Test
Baseline MAP MRR MAP MRR
Random 0.5243 0.5816 0.4708 0.5286
Word Cnt 0.6516 0.7216 0.6263 0.6822
Wgt Word Cnt 0.7112 0.7880 0.6531 0.7071

Table 2: Results of three baseline methods.

Smith (2010) proposed a discriminative approach
that first computes a tree kernel function between
the dependency trees of the question and candidate
sentence, and then learns a classifier based on the
tree-edit features extracted. Table 1 summarizes
their results on the test set. All these systems in-
corporated lexical semantics features derived from
WordNet and named entity features.

In order to further estimate the difficulty of
this task and dataset, we tested three simple base-
lines. The first is random scoring, which sim-
ply assigns a random score to each candidate sen-
tence. The second one, word count, is to count
how many words in the question that also occur in
the answer sentence, after removing stopwords7,
and lowering the case. Finally, the last base-
line method, weighted word count, is basically the
same as identical word matching, but the count is
re-weighted using the IDF value of the question
word. This is similar to the BM25 ranking func-
tion (Robertson et al., 1995). The results of these
three methods are shown in Table 1.

Somewhat surprisingly, we find that word count
is fairly strong and performs comparably to previ-
ous systems.8 In addition, weighting the question
words with their IDF values further improves the
results.

6.3 Incorporating Rich Lexical Semantics

We test the effectiveness of adding rich lexical
semantics information by creating examples of
different feature sets. As described in Sec. 5,

7We used a list of 101 stopwords, including articles, pro-
nouns and punctuation.

8The finding has been confirmed by the lead author
of (Wang et al., 2007).

all the features are based on the properties of
the pair of a word from the question and a
word from the candidate sentence. Stopwords
are first removed from both questions and sen-
tences and all words are lower-cased. Features
used in the experiments can be categorized into
six types: identical word matching (I), lemma
matching (L), WordNet (WN), enhanced Lexi-
cal Semantics (LS), Named Entity matching (NE)
and Answer type checking (Ans). Inspired by
the weighted word count baseline, all features ex-
cept (Ans) are weighted by the IDF value of the
question word. In other words, the IDF values help
decide the importance of word pairs to the model.

Staring from the our baseline model, weighted
word count, the identical word matching (I) fea-
ture checks whether the pair of words are the
same. Instead of checking the surface form of
the word, lemma matching (L) verifies whether
the two words have the same lemma form. Ar-
guably the most common source of word rela-
tions, WordNet (WN) provides the primitive fea-
tures of whether two words could belong to the
same synset in WordNet, could be antonyms and
whether one is a hypernym of the other. Alter-
natively, the enhanced lexical semantics (LS) fea-
tures apply the models described in Sec. 4 to the
word pair and use their estimated degree of syn-
onymy, antonymy, hyponymy and semantic relat-
edness as features. Named entity matching (NE)
checks whether two words are individually part
of some named entities with the same type. Fi-
nally, when the question word is the WH-word, we
check if the paired word belongs to some phrase
that has the correct answer type using simple rules,
such as “Who should link to a word that is part of
a named entity of type Person.” We created exam-
ples in each round of experiments by augmenting
these features in the same order, and observed how
adding different information helped improve the
model performance.

Three models are included in our study. For
the unstructured, bag-of-words setting, we tested
logistic regression (LR) and boosted decision
trees (BDT). As mentioned in Sec. 5, the features
for the whole question/sentence pair are the aver-
age and max of features of all the word pairs. For
the structured-output setting, we used the frame-
work of learning constrained latent representa-
tion (LCLR) and required that each question word
needed to be mapped to a word in the sentence.
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LR BDT LCLR
Feature set MAP MRR MAP MRR MAP MRR
1: I 0.6531 0.7071 0.6323 0.6898 0.6629 0.7279
2: I+L 0.6744 0.7223 0.6496 0.6923 0.6815 0.7270
3: I+L+WN 0.7039 0.7705 0.6798 0.7450 0.7316 0.7921
4: I+L+WN+LS 0.7339 0.8107 0.7523 0.8455 0.7626 0.8231
5: All 0.7374 0.8171 0.7495 0.8450 0.7648 0.8255

Table 3: Test results of various models and feature groups. Logistic regression (LR) and boosted decision
trees (BDT) are the two unstructured models. LCLR is the algorithm for learning latent structures.
Feature groups are identical word matching (I), lemma matching (L), WordNet (WN) and enhanced
Lexical Semantics (LS). All includes these four plus Named Entity matching (NE) and Answer type
checking (Ans).

Hyper-parameters are selected using the ones that
achieve the best MAP score on the development
set. Results of these models and feature sets are
presented in Table 3.

We make two observations from the results.
First, while incorporating more information of the
word pairs in general helps, it is clear that map-
ping words beyond surface-form matching with
the help of WordNet (Line #3 vs. #2) is impor-
tant. Moreover, when richer information from
other lexical semantic models is available, the per-
formance can be further improved (Line #4 vs.
#3). Overall, by simply incorporating more in-
formation on word relations, we gain approxi-
mately 10 points in both MAP and MRR com-
pared to surface-form matching (Line #4 vs. #2),
consistently across all three models. However,
adding more information like named entity match-
ing and answer type verification does not seem to
help much (Line #5 vs. #4). Second, while the
structured-output model usually performs better
than both unstructured models (LCLR vs. LR &
BDT), the performance gain diminishes after more
information of word pairs is available (e.g., Lines
#4 and #5).

6.4 Limitation of Word Matching Models

Although we have demonstrated the benefits of
leveraging various lexical semantic models to help
find the association between words, the problem of
question answering is nevertheless far from solved
using the word-based approach. Examining the
output of the LCLR model with all features on the
development set, we found that there were three
main sources of errors, including uncovered or in-
accurate entity relations, the lack of robust ques-
tion analysis and the need of high-level semantic

representation and inference. While the first two
can be improved by, say, using a better named en-
tity tagger, incorporating other knowledge bases
and building a question classifier, how to solve the
third problem is tricky. Below is an example:

Q: In what film is Gordon Gekko the main char-
acter?

A: He received a best actor Oscar in 1987 for his
role as Gordon Gekko in “Wall Street”.

This is a correct answer sentence because “win-
ning a best actor Oscar” implies that the role Gor-
don Gekko is the main character. It is hard to be-
lieve that a pure word-matching model would be
able to solve this type of “inferential question an-
swering” problem.

7 Conclusions

In this paper, we present an experimental study
on solving the answer selection problem using en-
hanced lexical semantic models. Following the
word-alignment paradigm, we find that the rich
lexical semantic information improves the models
consistently in the unstructured bag-of-words set-
ting and also in the framework of learning latent
structures. Another interesting finding we have
is that while the latent structured model, LCLR,
performs better than the other two unstructured
models, the difference diminishes after more in-
formation, including the enhanced lexical seman-
tic knowledge and answer type verification, has
been incorporated. This may suggest that adding
shallow semantic information is more effective
than introducing complex structured constraints,
at least for the specific word alignment model we
experimented with in this work.
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In the future, we plan to explore several di-
rections. First, although we focus on improv-
ing TREC-style open-domain question answering
in this work, we would like to apply the pro-
posed technology to other QA scenarios, such
as community-based QA (CQA). For instance,
the sentence matching technique can help map a
given question to some questions in an existing
CQA database (e.g., Yahoo! Answers). More-
over, the answer sentence selection scheme could
also be useful in extracting the most related sen-
tences from the answer text to form a summary
answer. Second, because the task of answer sen-
tence selection is very similar to paraphrase de-
tection (Dolan et al., 2004) and recognizing tex-
tual entailment (Dagan et al., 2006), we would like
to investigate whether systems for these tasks can
be improved by incorporating enhanced lexical se-
mantic knowledge as well. Finally, we would like
to improve our system for the answer sentence se-
lection task and for question answering in general.
In addition to following the directions suggested
by the error analysis presented in Sec. 6.4, we plan
to use logic-like semantic representations of ques-
tions and sentences, and explore the role of lexical
semantics for handling questions that require in-
ference.
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