
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 43–52,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Smoothed marginal distribution constraints for language modeling

Brian Roark†◦, Cyril Allauzen◦ and Michael Riley◦
†Oregon Health & Science University, Portland, Oregon ◦Google, Inc., New York

roarkbr@gmail.com, {allauzen,riley}@google.com

Abstract

We present an algorithm for re-estimating
parameters of backoff n-gram language
models so as to preserve given marginal
distributions, along the lines of well-
known Kneser-Ney (1995) smoothing.
Unlike Kneser-Ney, our approach is de-
signed to be applied to any given smoothed
backoff model, including models that have
already been heavily pruned. As a result,
the algorithm avoids issues observed when
pruning Kneser-Ney models (Siivola et al.,
2007; Chelba et al., 2010), while retain-
ing the benefits of such marginal distribu-
tion constraints. We present experimen-
tal results for heavily pruned backoff n-
gram models, and demonstrate perplexity
and word error rate reductions when used
with various baseline smoothing methods.
An open-source version of the algorithm
has been released as part of the OpenGrm
ngram library.1

1 Introduction

Smoothed n-gram language models are the de-
facto standard statistical models of language for
a wide range of natural language applications, in-
cluding speech recognition and machine transla-
tion. Such models are trained on large text cor-
pora, by counting the frequency of n-gram col-
locations, then normalizing and smoothing (reg-
ularizing) the resulting multinomial distributions.
Standard techniques store the observed n-grams
and derive probabilities of unobserved n-grams via
their longest observed suffix and “backoff” costs
associated with the prefix histories of the unob-
served suffixes. Hence the size of the model grows
with the number of observed n-grams, which is
very large for typical training corpora.

1www.opengrm.org

Natural language applications, however, are
commonly used in scenarios requiring relatively
small footprint models. For example, applica-
tions running on mobile devices or in low latency
streaming scenarios may be required to limit the
complexity of models and algorithms to achieve
the desired operating profile. As a result, statisti-
cal language models – an important component of
many such applications – are often trained on very
large corpora, then modified to fit within some
pre-specified size bound. One method to achieve
significant space reduction is through random-
ized data structures, such as Bloom (Talbot and
Osborne, 2007) or Bloomier (Talbot and Brants,
2008) filters. These data structures permit effi-
cient querying for specific n-grams in a model
that has been stored in a fraction of the space
required to store the full, exact model, though
with some probability of false positives. Another
common approach – which we pursue in this pa-
per – is model pruning, whereby some number of
the n-grams are removed from explicit storage in
the model, so that their probability must be as-
signed via backoff smoothing. One simple prun-
ing method is count thresholding, i.e., discarding
n-grams that occur less than k times in the corpus.
Beyond count thresholding, the most widely used
pruning methods (Seymore and Rosenfeld, 1996;
Stolcke, 1998) employ greedy algorithms to re-
duce the number of stored n-grams by comparing
the stored probabilities to those that would be as-
signed via the backoff smoothing mechanism, and
removing those with the least impact according to
some criterion.

While these greedy pruning methods are highly
effective for models estimated with most com-
mon smoothing approaches, they have been shown
to be far less effective with Kneser-Ney trained
language models (Siivola et al., 2007; Chelba et
al., 2010), leading to severe degradation in model
quality relative to other standard smoothing meth-

43

4-gram models Backoff Interpolated
Perplexity n-grams Perplexity n-grams

Smoothing method full pruned (×1000) full pruned (×1000)
Absolute Discounting (Ney et al., 1994) 120.5 197.3 383.4 119.8 198.1 386.2
Witten-Bell (Witten and Bell, 1991) 118.8 196.3 380.4 121.6 202.3 396.4
Ristad (1995) 126.4 203.6 395.6 ——- N/A ——-
Katz (1987) 119.8 198.1 386.2 ——- N/A ——-
Kneser-Ney (Kneser and Ney, 1995) 114.5 285.1 388.2 115.8 274.3 398.7
Mod. Kneser-Ney (Chen and Goodman, 1998) 116.3 280.6 396.2 112.8 270.7 399.1

Table 1: Reformatted version of Table 3 in Chelba et al. (2010), demonstrating perplexity degradation of Kneser-Ney
smoothed models in contrast to other common smoothing methods. Data: English Broadcast News, 128M words training;
692K words test; 143K word vocabulary. 4-gram language models, pruned using Stolcke (1998) relative entropy pruning to
approximately 1.3% of the original size of 31,095,260 n-grams.

ods. Thus, while Kneser-Ney may be the preferred
smoothing method for large, unpruned models
– where it can achieve real improvements over
other smoothing methods – when relatively sparse,
pruned models are required, it has severely dimin-
ished utility.

Table 1 presents a slightly reformatted version
of Table 3 from Chelba et al. (2010). In their
experiments (see Table 1 caption for specifics on
training/test setup), they trained 4-gram Broad-
cast News language models using a variety of
both backoff and interpolated smoothing methods
and measured perplexity before and after Stol-
cke (1998) relative entropy based pruning. With
this size training data, the perplexity of all of
the smoothing methods other than Kneser-Ney
degrades from around 120 with the full model
to around 200 with the heavily pruned model.
Kneser-Ney smoothed models have lower perplex-
ity with the full model than the other methods by
about 5 points, but degrade with pruning to far
higher perplexity, between 270-285.

The cause of this degradation is Kneser-Ney’s
unique method for estimating smoothed language
models, which will be presented in more detail in
Section 3. Briefly, the smoothing method reesti-
mates lower-order n-gram parameters in order to
avoid over-estimating the likelihood of n-grams
that already have ample probability mass allocated
as part of higher-order n-grams. This is done via
a marginal distribution constraint which requires
the expected frequency of the lower-order n-grams
to match their observed frequency in the training
data, much as is commonly done for maximum
entropy model training. Goodman (2001) proved
that, under certain assumptions, such constraints
can only improve language models. Lower-order
n-gram parameters resulting from Kneser-Ney are
not relative frequency estimates, as with other
smoothing methods; rather they are parameters

estimated specifically for use within the larger
smoothed model.

There are (at least) a couple of reasons why such
parameters do not play well with model pruning.
First, the pruning methods commonly use lower
order n-gram probabilities to derive an estimate
of state marginals, and, since these parameters are
no longer smoothed relative frequency estimates,
they do not serve that purpose well. For this rea-
son, the widely-used SRILM toolkit recently pro-
vided switches to modify their pruning algorithm
to use another model for state marginal estimates
(Stolcke et al., 2011). Second, and perhaps more
importantly, the marginal constraints that were ap-
plied prior to smoothing will not in general be con-
sistent with the much smaller pruned model. For
example, if a bigram parameter is modified due
to the presence of some set of trigrams, and then
some or all of those trigrams are pruned from the
model, the bigram associated with the modified
parameter will be unlikely to have an overall ex-
pected frequency equal to its observed frequency
anymore. As a result, the resulting model degrades
dramatically with pruning.

In this paper, we present an algorithm that
imposes marginal distribution constraints of the
sort used in Kneser-Ney modeling on arbitrary
smoothed backoff n-gram language models. Our
approach makes use of the same sort of deriva-
tion as the original Kneser-Ney modeling, but,
among other differences, relies on smoothed es-
timates of the empirical relative frequency rather
than the unsmoothed observed frequency. The al-
gorithm can be applied after the smoothed model
has been pruned, hence avoiding the pitfalls asso-
ciated with Kneser-Ney modeling. Furthermore,
while Kneser-Ney is conventionally defined as a
variant of absolute discounting, our method can
be applied to models smoothed with any backoff
smoothing, including mixtures of models, widely

44

used for domain adaptation.
We next establish formal preliminaries and

our smoothed marginal distribution constraints
method.

2 Preliminaries

N-gram language models are typically presented
mathematically in terms of words w, the strings
(histories) h that precede them, and the suffixes
of the histories (backoffs) h′ that are used in the
smoothing recursion. Let V be a vocabulary (al-
phabet), and V ∗ a string of zero or more symbols
drawn from V . Let V k denote the set of strings
w ∈ V ∗ of length k, i.e., |w| = k. We will use
variables u, v, w, x, y, z ∈ V to denote single sym-
bols from the vocabulary; h, g ∈ V ∗ to denote his-
tory sequences preceding the specific word; and
h′, g′ ∈ V ∗ the respective backoff histories of h
and g as typically defined (see below). For a string
w = w1 . . . w|w| we can calculate the smoothed
conditional probability of each word wi in the se-
quence given the k words that preceded it, de-
pending on the order of the Markov model. Let
hki = wi−k . . . wi−1 be the previous k words in
the sequence. Then the smoothed model is defined
recursively as follows:

P(wi | hk
i) =

{
P(wi | hk

i) if c(hk
iwi) > 0

α(hk
i) P(wi | hk−1

i) otherwise

where c(hkiwi) is the count of the n-gram sequence
wi−k . . . wi in the training corpus; P is a regular-
ized probability estimate that provides some prob-
ability mass for unobserved n-grams; and α(hki)
is a factor that ensures normalization. Note that
for h = hki , the typically defined backoff history
h′ = hk−1i , i.e., the longest suffix of h that is not h
itself. When we use h′ and g′ (for notational con-
venience) in future equations, it is this definition
that we are using.

There are many ways to estimate P, includ-
ing absolute discounting (Ney et al., 1994), Katz
(1987) and Witten and Bell (1991). Interpolated
models are special cases of this form, where the P
is determined using model mixing, and the α pa-
rameter is exactly the mixing factor value for the
lower order model.

N-gram language models allow for a sparse rep-
resentation, so that only a subset of the possible n-
grams must be explicitly stored. Probabilities for
the rest of the n-grams are calculated through the
“otherwise” semantics in the equation above. For

an n-gram language model G, we will say that an
n-gram hw ∈ G if it is explicitly represented in
the model; otherwise hw 6∈ G. In the standard n-
gram formulation above, the assumption is that if
c(hkiwi) > 0 then the n-gram has a parameter; yet
with pruning, we remove many observed n-grams
from the model, hence this is no longer the ap-
propriate criterion. We reformulate the standard
equation as follows:

P(wi|hk
i) =

{
β(hk

iwi) if hk
iwi ∈ G

α(hk
i , h

k−1
i) P(wi|hk−1

i) otherwise
(1)

where β(hkiwi) is the parameter associated with
the n-gram hkiwi and α(hki , h

k−1
i) is the backoff

cost associated with going from state hki to state
hk−1i . We assume that, if hw ∈ G then all prefixes
and suffixes of hw are also in G.

Figure 1 presents a schema of an automaton rep-
resentation of an n-gram model, of the sort used in
the OpenGrm library (Roark et al., 2012). States
represent histories h, and the words w, whose
probabilities are conditioned on h, label the arcs,
leading to the history state for the subsequent
word. State labels are provided in Figure 1 as
a convenience, to show the (implicit) history en-
coded by the state, e.g., ‘xyz’ indicates that the
state represents a history with the previous three
symbols being x, y and z. Failure arcs, labeled
with a φ in Figure 1, encode an “otherwise” se-
mantics and have as destination the origin state’s
backoff history. Many higher order states will
back off to the same lower order state, specifically
those that share the same suffix.

Note that, in general, the recursive definition of
backoff may require the traversal of several back-

yz

z

xyz

u/β(xyzu)

w/β(yzw)

w/β(zw)
φ/α(xyz,yz)

φ/α(yz,z)

zw

yyz

φ/α(yyz,yz)

yzw

ε

yzu yzv

v/β(yyzv)
w/β(yyzw)

φ/α(z,ε)

φ/α(yzw,zw)

z/β(z)

Figure 1: N-gram weighted automaton schema. State labels
are presented for convenience, to specify the history implic-
itly encoded by the state.

45

off arcs before emitting a word, e.g., the highest
order states in Figure 1 needing to traverse a cou-
ple of φ arcs to reach state ‘z’. We can define
the backoff cost between a state hki and any of its
suffix states as follows. Let α(h, h) = 1 and for
m > 1,

α(hki , h
k−m
i) =

m∏

j=1

α(hk−j+1
i , hk−ji).

If hkiw 6∈ G then the probability of that n-gram
will be defined in terms of backoff to its longest
suffix hk−mi w ∈ G. Let hwG denote the longest
suffix of h such that hwGw ∈ G. Note that this
is not necessarily a proper suffix, since hwG could
be h itself or it could be ε. Then

P(w | h) = α(h, hwG) β(hwGw) (2)

which is equivalent to equation 1.

3 Marginal distribution constraints

Marginal distribution constraints attempt to match
the expected frequency of an n-gram with its ob-
served frequency. In other words, if we use the
model to randomly generate a very large corpus,
the n-grams should occur with the same rela-
tive frequency in both the generated and original
(training) corpus. Standard smoothing methods
overgenerate lower-order n-grams. Using standard
n-gram notation (where g′ is the backoff history
for g), this constraint is stated in Kneser and Ney
(1995) as

P̂(w | h′) =
∑

g:g′=h′
P(g, w | h′) (3)

where P̂ is the empirical relative frequency esti-
mate. Taking this approach, certain base smooth-
ing methods end up with very nice, easy to cal-
culate solutions based on counts. Absolute dis-
counting (Ney et al., 1994) in particular, using the
above approach, leads to the well-known Kneser-
Ney smoothing approach (Kneser and Ney, 1995;
Chen and Goodman, 1998). We will follow this
same approach, with a couple of changes. First,
we will make use of regularized estimates of rela-
tive frequency P rather than raw relative frequency
P̂. Second, rather than just looking at observed
histories h that back off to h′, we will look at
all histories (observed or not) of the length of
the longest history in the model. For notational
simplicity, suppose we have an n+1-gram model,

hence the longest history in the model is of length
n. Assume the length of the particular backoff his-
tory |h′| = k. Let V n−kh′ be the set of strings
h ∈ V n with h′ as a suffix. Then we can restate
the marginal distribution constraint in equation 3
as

P(w | h′) =
∑

h∈V n−kh′

P(h,w | h′) (4)

Next we solve for β(h′w) parameters used in
equation 1. Note that h′ is a suffix of any h ∈
V n−kh′, so conditioning probabilities on h and h′

is the same as conditioning on just h. Each of
the following derivation steps simply relies on the
chain rule or definition of conditional probability,
as well as pulling terms out of the summation.

P(w | h′) =
∑

h∈V n−kh′

P(h,w | h′)

=
∑

h∈V n−kh′

P(w | h, h′) P(h | h′)

=
∑

h∈V n−kh′

P(w | h)
P(h)∑

g∈V n−kh′

P(g)

=
1∑

g∈V n−kh′

P(g)

∑

h∈V n−kh′

P(w | h) P(h) (5)

Then, multiplying both sides by the normaliz-
ing denominator on the right-hand side and using
equation 2 to substitute α(h, hwG) β(hwGw) for
P(w | h):

P(w | h′)
∑

g∈V n−kh′

P(g) =
∑

h∈V n−kh′

P(w | h) P(h)

=
∑

h∈V n−kh′

α(h, hwG) β(hwGw) P(h) (6)

Note that we are only interested in h′w ∈ G,
hence there are two disjoint subsets of histories
h ∈ V n−kh′ that are being summed over: those
such that hwG = h′ and those such that |hwG| >
|h′|. We next separate these sums in the next step
of the derivation:

P(w | h′)
∑

g∈V n−kh′

P(g) =

∑

h∈V n−kh′:|hwG|>|h′|
α(h, hwG) β(hwGw) P(h) +

∑

h∈V n−kh′:hwG=h′

α(h, h′) β(h′w) P(h) (7)

Finally, we solve for β(h′w) in the second sum
on the right-hand side of equation 7, yielding the
formula in equation 8. Note that this equation is
the correlate of equation (6) in Kneser and Ney

46

β(h′w) =

P(w | h′)
∑

g∈V n−kh′

P(g) −
∑

h∈V n−kh′:|hwG|>|h′|
α(h, hwG) β(hwGw) P(h)

∑

h∈V n−kh′:hwG=h′

α(h, h′) P(h)
(8)

(1995), modulo the two differences noted earlier:
use of smoothed probability P rather than raw rel-
ative frequency; and summing over all history sub-
strings in V n−kh′ rather than just those with count
greater than zero, which is also a change due to
smoothing. Keep in mind, P is the target expected
frequency from a given smoothed model. Kneser-
Ney models are not useful input models, since
their P n-gram parameters are not relative fre-
quency estimates. This means that we cannot sim-
ply ‘repair’ pruned Kneser-Ney models, but must
use other smoothing methods where the smoothed
values are based on relative frequency estimation.

There are, in addition, two other important dif-
ferences in our approach from that in Kneser and
Ney (1995), which would remain as differences
even if our target expected frequency were the
unsmoothed relative frequency P̂ instead of the
smoothed estimate P. First, the sum in the nu-
merator is over histories of length n, the highest
order in the n-gram model, whereas in the Kneser-
Ney approach the sum is over histories that imme-
diately back off to h′, i.e., from the next highest
order in the n-gram model. Thus the unigram dis-
tribution is with respect to the bigram model, the
bigram model is with respect to the trigram model,
and so forth. In our optimization, we sum in-
stead over all possible history sequences of length
n. Second, an early assumption made in Kneser
and Ney (1995) is that the denominator term in
their equation (6) (our Eq. 8) is constant across all
words for a given history, which is clearly false.
We do not make this assumption. Of course, the
probabilities must be normalized, hence the final
values of β(h′w) will be proportional to the val-
ues in Eq. 8.

We briefly note that, like Kneser-Ney, if the
baseline smoothing method is consistent, then the
amount of smoothing in the limit will go to zero
and our resulting model will also be consistent.

The smoothed relative frequency estimate P and
higher order β values on the right-hand side of Eq.
8 are given values (from the input smoothed model
and previous stages in the algorithm, respectively),
implying an algorithm that estimates highest or-
ders of the model first. In addition, steady state

history probabilities P(h) must be calculated. We
turn to the estimation algorithm next.

4 Model constraint algorithm

Our algorithm takes a smoothed backoff n-gram
language model in an automaton format (see Fig-
ure 1) and returns a smoothed backoff n-gram lan-
guage model with the same topology. For all n-
grams in the model that are suffixes of other n-
grams in the model – i.e., that are backed-off to
– we calculate the weight provided by equation 8
and assign it (after normalization) to the appropri-
ate n-gram arc in the automaton. There are several
important considerations for this algorithm, which
we address in this section. First, we must provide
a probability for every state in the model. Second,
we must memoize summed values that are used
repeatedly. Finally, we must iterate the calcula-
tion of certain values that depend on the n-gram
weights being re-estimated.

4.1 Steady state probability calculation
The steady state probability P(h) is taken to be the
probability of observing h after a long word se-
quence, i.e., the state’s relative frequency in a long
sequence of randomly-generated sentences from
the model:

P(h) = lim
m→∞

∑

w1...wm

P̂(w1 . . . wmh) (9)

where P̂ is the corpus probability derived as fol-
lows: The smoothed n-gram probability model
P(w | h) is naturally extended to a sentence
s = w0 . . . wl, where w0 = <s> and wl = </s>
are the sentence initial and final words, by P(s) =∏l

i=1 P(wi | hni). The corpus probability s1 . . . sr
is taken as:

P̂(s1 . . . sr) = (1− λ)λr−1
r∏

i=1

P(si) (10)

where λ parameterizes the corpus length distri-
bution.2 Assuming the n-gram language model
automaton G has a single final state </s> into

2P̂ models words in a corpus rather than a single sen-
tence since Equation 9 tends to zero as m → ∞ otherwise.
In Markov chain terms, the corpus distribution is made irre-
ducible to allow a non-trivial stationary distribution.

47

which all </s> arcs enter, adding a λ weighted
ε arc from the </s> state to the initial state and
having a final weight 1 − λ in order to leave the
automaton at the </s> state will model this cor-
pus distribution. According to Eq. 9, P (h) is then
the stationary distribution of the finite irreducible
Markov Chain defined by this altered automaton.
There are many methods for computing such a sta-
tionary distribution; we use the well-known power
method (Stewart, 1999).

One difficulty remains to be resolved. The
backoff arcs have a special interpretation in the
automaton: they are traversed only if a word fails
to match at the higher order. These failure arcs
must be properly handled before applying stan-
dard stationary distribution calculations. A simple
approach would be for each word w′ and state h
such that hw′ /∈ G, but h′w′ ∈ G, add a w′ arc
from state h to h′w′ with weight α(h, h′)β(h′w′)
and then remove all failure arcs (see Figure 2a).
This however results in an automaton with |V | arcs
leaving every state, which is unwieldy with larger
vocabularies and n-gram orders. Instead, for each
word w and state h such that hw ∈ G, add a w arc
from state h to h′w with weight −α(h, h′)β(h′w)
and then replace all failure labels with ε labels (see
Figure 2b). In this case, the added negatively-
weighted arcs compensate for the excess probabil-
ity mass allowed by the epsilon arcs3. The number
of added arcs is no more than found in the original
model.

4.2 Accumulation of higher order values

We are summing over all possible histories of
length n in equation 8, and the steady state prob-
ability calculation outlined in the previous section
includes the probability mass for histories h 6∈ G.
The probability mass of states not inG ends up be-
ing allocated to the state representing their longest
suffix that is explicitly in G. That is the state that
would be active when these histories are encoun-
tered. Hence, once we have calculated the steady
state probabilities for each state in the smoothed
model, we only need to sum over states explicitly
in the model.

As stated earlier, the use of β(hwGw) in the
numerator of equation 8 for hwG that are larger
than h′ implies that the longer n-grams must be

3Since each negatively-weighted arc leaving a state
exactly cancels an epsilon arc followed by a matching
positively-weighted arc in each iteration of the power
method, convergence is assured.

(a) (b)

h

h'

w/β(hw)

w'/β(h'w')φ/α(h,h')

hw

h'w'
w'/α(h,h') β(h'w')

h

h'

w/β(hw)

w/β(h'w)ε/α(h,h')

hw

h'w
w/-α(h,h') β(h'w)

Figure 2: Schemata showing failure arc handling: (a) φ
removal: add w′ arc (red), delete φ arc; (b) φ replacement:
add w arc (red), replace φ by ε (red)

re-estimated first. Thus we process each history
length in descending order, finishing with the un-
igram state. Since we assume that, for every n-
gram hw ∈ G, every prefix and suffix is also
in G, we know that if h′w 6∈ G then there is
no history h such that h′ is a suffix of h and
hw ∈ G. This allows us to recursively accumu-
late the α(h, h′) P(h) in the denominator of Eq. 8.

For every n-gram, we can accumulate values re-
quired to calculate the three terms in equation 8,
and pass them along to calculate lower order n-
gram values. Note, however, that a naive imple-
mentation of an algorithm to assign these values is
O(|V |n). This is due to the fact that the denom-
inator factor must be accumulated for all higher
order states that do not have the given n-gram.
Hence, for every state h directly backing off to
h′ (order |V |), and for every n-gram arc leaving
state h′ (order |V |), some value must be accumu-
lated. This can be particularly clearly seen at the
unigram state, which has an arc for every unigram
(the size of the vocabulary): for every bigram state
(also order of the vocabulary), in the naive algo-
rithm we must look for every possible arc. Since
there are O(|V |n−2) lower order histories in the
model in the worst case, we have overall complex-
ity O(|V |n). However, we know that the number
of stored n-grams is very sparse relative to the pos-
sible number of n-grams, so the typical case com-
plexity is far lower. Importantly, the denominator
is calculated by first assuming that all higher order
states back off to the current n-gram, then subtract
out the mass associated with those that are already
observed at the higher order. In such a way, we
need only perform work for higher order n-grams
hw that are explicitly in the model. This opti-
mization achieves orders-of-magnitude speedups,
so that models take seconds to process.

Because smoothing is not necessarily con-

48

strained across n-gram orders, it is possible that
higher-order n-grams could be smoothed less than
lower order n-grams, so that the numerator of
equation 8 can be less than zero, which is not valid.
A value less than zero means that the higher or-
der n-grams will already produce the n-gram more
frequently than its smoothed expected frequency.
We set a minimum value ε for the numerator, and
any n-gram numerator value less than ε is replaced
with ε (for the current study, ε = 0.001). We
find this to be relatively infrequent, about 1% of
n-grams for most models.

4.3 Iteration

Recall that P and β terms on the right-hand side of
equation 8 are given and do not change. But there
are two other terms in the equation that change as
we update the n-gram parameters. The α(h, h′)
backoff weights in the denominator ensure nor-
malization at the higher order states, and change
as the n-gram parameters at the current state are
modified. Further, the steady state probabilities
will change as the model changes. Hence, at each
state, we must iterate the calculation of the denom-
inator term: first adjust n-gram weights and nor-
malize; then recalculate backoff weights at higher
order states and iterate. Since this only involves
the denominator term, each n-gram weight can be
updated by multiplying by the ratio of the old term
and the new term.

After the entire model has been re-estimated,
the steady state probability calculation presented
in Section 4.1 is run again and model estimation
happens again. As we shall see in the experimen-
tal results, this typically converges after just a few
iterations. At this time, we have no convergence
proofs for either of these iterative components to
the algorithm, but expect that something can be
said about this, which will be a priority in future
work.

5 Experimental results

All results presented here are for English Broad-
cast News. We received scripts for replicating the
Chelba et al. (2010) results from the authors, and
we report statistics on our replication of their pa-
per’s results in Table 2. The scripts are distributed
in such a way that the user supplies the data from
LDC98T31 (1996 CSR HUB4 Language Model
corpus) and the script breaks the collection into
training and testing sets, normalizes the text, and

Smoothing Perplexity n-grams (×1000)
method full pruned model diff
Abs.Disc. 120.4 197.1 382.3 -1.1
Witten-Bell 118.7 196.1 379.3 -1.1
Ristad 126.2 203.4 394.6 -1.1
Katz 119.7 197.9 385.1 -1.1
Kneser-Ney† 114.4 234.1 375.4 -12.7

Table 2: Replication of Chelba et al. (2010) using provided
script. Using the script, the size of the unpruned model is
31,091,219 ngrams, 4,041 fewer than Chelba et al. (2010).
† Kneser-Ney model pruned using -prune-history-lm
switch in SRILM.

trains and prunes the language models using the
SRILM toolkit (Stolcke et al., 2011). Presumably
due to minor differences in text normalization, re-
sulting in very slightly fewer n-grams in all con-
ditions, we achieve negligibly lower perplexities
(one or two tenths of a point) in all conditions, as
can be seen when comparing with Table 1. All
of the same trends result, thus that paper’s result
is successfully replicated here. Note that we ran
our Kneser-Ney pruning (noted with a † in the ta-
ble), using the new -prune-history-lm switch in
SRILM – created in response to the Chelba et al.
(2010) paper – which allows the use of another
model to calculate the state marginals for pruning.
This fixes part of the problem – perplexity does not
degrade as much as the Kneser-Ney pruned model
in Table 1 – but, as argued earlier in this paper, this
is not the sole reason for the degradation and the
perplexity remains extremely inflated.

We follow Chelba et al. (2010) in training and
test set definition, vocabulary size, and parame-
ters for reporting perplexity. Note that unigrams
in the models are never pruned, hence all models
assign probabilities over an identical vocabulary
and perplexity is comparable across models. For
all results reported here, we use the SRILM toolkit
for baseline model training and pruning, then con-
vert from the resulting ARPA format model to
an OpenFst format (Allauzen et al., 2007), as
used in the OpenGrm n-gram library (Roark et al.,
2012). We then apply the marginal distribution
constraints, and convert the result back to ARPA
format for perplexity evaluation with the SRILM
toolkit. All models are subjected to full normaliza-
tion sanity checks, as with typical model functions
in the OpenGrm library.

Recall that our algorithm assumes that, for ev-
ery n-gram in the model, all prefix and suffix n-
grams are also in the model. For pruned mod-
els, the SRILM toolkit does not impose such a
requirement, hence explicit arcs are added to the

49

Perplexity n-grams
Smoothing Pruned Pruned (×1000)

Method Model +MDC ∆ in WFST
Abs.Disc. 197.1 187.4 9.7 389.2

Witten-Bell 196.1 185.7 10.4 385.0
Ristad 203.4 190.3 13.1 395.9
Katz 197.9 187.5 10.4 390.8

AD,WB,Katz
Mixture 196.6 186.3 10.3 388.7

Table 3: Perplexity reductions achieved with marginal dis-
tribution constraints (MDC) on the heavily pruned models
from Chelba et al. (2010), and a mixture model. WFST n-
gram counts are slightly higher than ARPA format in Table 2
due to adding prefix and suffix n-grams.

model during conversion, with probability equal to
what they would receive in the the original model.
The resulting model is equivalent, but with a small
number of additional arcs in the explicit repre-
sentation (around 1% for the most heavily pruned
models).

Table 3 presents perplexity results for models
that result from applying our marginal distribution
constraints to the four heavily pruned models from
Table 2. In all four cases, we get perplexity reduc-
tions of around 10 points. We present the num-
ber of n-grams represented explicitly in the WFST,
which is a slight increase from those presented in
Table 2 due to the reintroduction of prefix and suf-
fix n-grams.

In addition to the four models reported in
Chelba et al. (2010), we produced a mixture model
by interpolating (with equal weight) smoothed n-
gram probabilities from the full (unpruned) ab-
solute discounting, Witten-Bell and Katz models,
which share the same set of n-grams. After renor-
malizing and pruning to approximately the same
size as the other models, we get commensurate
gains using this model as with the other models.

Figure 3 demonstrates the importance of iterat-
ing the steady state history calculation. All of the
methods achieve perplexity reductions with sub-
sequent iterations. Katz and absolute discounting
achieve very little reduction in the first iteration,
but catch back up in the second iteration.

The other iterative part of the algorithm, dis-
cussed in Section 4.3, is the denominator of equa-
tion 8, which changes due to adjustments in the
backoff weights required by the revised n-gram
probabilities. If we do not iteratively update the
backoff weights when reestimating the weights,
the ‘Pruned+MDC’ perplexities in Table 3 in-
crease by between 0.2–0.4 points. Hence, iterat-
ing the steady state probability calculation is quite
important, as illustrated by Figure 3; iterating the

0 1 2 3 4 5 6
180

185

190

195

200

205

Iterations of estimation (recalculating steady state probs)

P
e
rp

le
x
it
y

Witten−Bell

Ristad

Katz

Absolute Discounting

WB,AD,Katz mixture

Figure 3: Models resulting from different numbers of pa-
rameter re-estimation iterations. Iteration 0 is the baseline
pruned model.

denominator calculation much less so, at least for
these models. We noted in Section 3 that a key dif-
ference between our approach and Kneser and Ney
(1995) is that their approach treated the denomina-
tor as a constant. If we do this, the ‘Pruned+MDC’
perplexities increase by between 4.5–5.6 points,
i.e., about half of the perplexity reduction is lost
for each method. Thus, while iteration of denomi-
nator calculation may not be critical, it should not
be treated as a constant.

We now look at the impacts on system perfor-
mance we can achieve with these new models4,
and whether the perplexity differences that we ob-
serve translate to real error rate reductions.

For automatic speech recognition experiments,
we used as test set the 1997 Hub4 evaluation set
consisting of 32,689 words. The acoustic model
is a tied-state triphone GMM-based HMM whose
input features are 9-frame stacked 13-dimensional
PLP-cepstral coefficients projected down to 39 di-
mensions using LDA. The model was trained on
the 1996 and 1997 Hub4 acoustic model train-
ing sets (about 150 hours of data) using semi-tied
covariance modeling and CMLLR-based speaker
adaptive training and 4 iterations of boosted MMI.

We used a multi-pass decoding strategy: two
quick passes for adaptation supervision, CMLLR
and MLLR estimation; then a slower full decoding
pass running about 3 times slower than real time.

Table 4 presents recognition results for the
heavily pruned models that we have been con-
sidering, both for first pass decoding and rescor-
ing of the resulting lattices using failure transi-
tions rather than epsilon backoff approximations.

4For space purposes, we exclude the Ristad method from
this point forward since it is not competitive with the others.

50

Word error rate (WER)
First pass Rescoring

Smoothing Pruned Pruned Pruned Pruned
Method Model +MDC Model +MDC

Abs.Disc. 20.5 19.7 20.2 19.6
Witten-Bell 20.5 19.9 20.1 19.6

Katz 20.5 19.7 20.2 19.7
Mixture 20.5 19.6 20.2 19.6

Kneser-Neya 22.1 22.2
Kneser-Neyb 20.5 20.6

Table 4: WER reductions achieved with marginal dis-
tribution constraints (MDC) on the heavily pruned models
from Chelba et al. (2010), and a mixture model. Kneser-
Ney results are shown for: a) original pruning; and b) with
-prune-history-lm switch.

The perplexity reductions that were achieved for
these models do translate to real word error rate
reductions at both stages of between 0.5 and 0.9
percent absolute. All of these gains are sta-
tistically significant at p < 0.0001 using the
stratified shuffling test (Yeh, 2000). For pruned
Kneser-Ney models, fixing the state marginals
with the -prune-history-lm switch reduces the
WER versus the original pruned model, but no re-
ductions were achieved vs. baseline methods.

Table 5 presents perplexity and WER results
for less heavily pruned models, where the prun-
ing thresholds were set to yield approximately
1.5 million n-grams (4 times more than the pre-
vious models); and another set at around 5 mil-
lion n-grams, as well as the full, unpruned mod-
els. While the robust gains we’ve observed up to
now persist with the 1.5M n-gram models (WER
reductions significant, Witten-Bell at p < 0.02,
others at p < 0.0001), the larger models yield
diminishing gains, with no real WER improve-
ments. Performance of Witten-Bell models with
the marginal distribution constraints degrade badly
for the larger models, indicating that this method
of regularization, unmodified by aggressive prun-
ing, does not provide a well suited distribution for

this sort of optimization. We speculate that this
is due to underregularization, having noted some
floating point precision issues when allowing the
backoff recalculation to run indefinitely.

6 Summary and Future Directions
The presented method reestimates lower order
n-gram model parameters for a given smoothed
backoff model, achieving perplexity and WER re-
ductions for many smoothed models. There re-
main a number of open questions to investigate
in the future. Recall that the numerator in Eq.
8 can be less than zero, meaning that no param-
eterization would lead to a model with the target
frequency of the lower order n-gram, presumably
due to over- or under-regularization. We antic-
ipate a pre-constraint on the baseline smoothing
method, that would recognize this problem and ad-
just the smoothing to ensure that a solution does
exist. Additionally, it is clear that different reg-
ularization methods yield different behaviors, no-
tably that large, relatively lightly pruned Witten-
Bell models yield poor results. We will look to
identify the issues with such models and provide
general guidelines for prepping models prior to
processing. Finally, we would like to perform ex-
tensive controlled experimentation to examine the
relative contribution of the various aspects of our
approach.

Acknowledgments
Thanks to Ciprian Chelba and colleagues for the
scripts to replicate their results. This work was
supported in part by a Google Faculty Research
Award and NSF grant #IIS-0964102. Any opin-
ions, findings, conclusions or recommendations
expressed in this publication are those of the au-
thors and do not necessarily reflect the views of
the NSF.

M Less heavily pruned model Moderately pruned model Full model
Smoothing D ngrams WER ngrams WER ngrams WER

Method C (×106) PPL FP RS (×106) PPL FP RS (×106) PPL FP RS
Abs. N 1.53 146.6 18.1 17.9 5.19 129.1 17.0 16.6 31.1 120.4 16.2 16.1
Disc. Y 141.2 17.2 17.2 126.3 16.6 16.6 31.1 117.0 16.0 16.0

Witten- N 1.54 145.8 18.1 17.6 5.08 129.4 17.3 16.8 31.1 118.7 16.3 16.1
Bell Y 139.7 17.9 17.4 126.4 18.4 17.3 31.1 118.4 18.1 17.6
Katz N 1.57 146.6 17.8 17.7 5.10 128.9 16.8 16.6 31.1 119.7 16.2 16.1

Y 141.1 17.3 17.3 125.7 16.6 16.6 31.1 114.7 16.2 16.1
Mixture N 1.55 145.5 18.1 17.7 5.11 128.2 16.9 16.6 31.1 118.5 16.3 16.1

Y 139.2 17.3 17.2 123.6 16.6 16.4 31.1 114.6 17.3 16.4
Kneser-Ney backoff model, unpruned: 31.1 114.4 15.8 15.9

Table 5: Perplexity (PPL) and both first pass (FP) and rescoring (RS) WER reductions for less heavily pruned models using
marginal distribution constraints (MDC).

51

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Proceedings of the Twelfth International
Conference on Implementation and Application of
Automata (CIAA 2007), Lecture Notes in Computer
Science, volume 4793, pages 11–23.

Ciprian Chelba, Thorsten Brants, Will Neveitt, and
Peng Xu. 2010. Study on interaction between en-
tropy pruning and Kneser-Ney smoothing. In Pro-
ceedings of Interspeech, page 24222425.

Stanley Chen and Joshua Goodman. 1998. An em-
pirical study of smoothing techniques for language
modeling. Technical Report, TR-10-98, Harvard
University.

Joshua Goodman. 2001. A bit of progress in lan-
guage modeling. Computer Speech and Language,
15(4):403–434.

Slava M. Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recogniser. IEEE Transactions on Acoustic,
Speech, and Signal Processing, 35(3):400–401.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), pages
181–184.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modeling. Computer Speech and Lan-
guage, 8:1–38.

Eric S. Ristad. 1995. A natural law of succession.
Technical Report, CS-TR-495-95, Princeton Univer-
sity.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar soft-
ware libraries. In Proceedings of the ACL 2012 Sys-
tem Demonstrations, pages 61–66.

Kristie Seymore and Ronald Rosenfeld. 1996. Scal-
able backoff language models. In Proceedings of
the International Conference on Spoken Language
Processing (ICSLP).

Vesa Siivola, Teemu Hirsimaki, and Sami Virpioja.
2007. On growing and pruning kneserney smoothed
n-gram models. IEEE Transactions on Audio,
Speech, and Language Processing, 15(5):1617–
1624.

William J Stewart. 1999. Numerical methods for com-
puting stationary distributions of finite irreducible
markov chains. Computational Probability, pages
81–111.

Andreas Stolcke, Jing Zheng, Wen Wang, and Victor
Abrash. 2011. Srilm at sixteen: Update and out-
look. In Proceedings of the IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU).

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. In Proc. DARPA Broad-
cast News Transcription and Understanding Work-
shop, pages 270–274.

David Talbot and Thorsten Brants. 2008. Randomized
language models via perfect hash functions. In Pro-
ceedings of ACL-08: HLT, pages 505–513.

David Talbot and Miles Osborne. 2007. Smoothed
Bloom filter language models: Tera-scale LMs on
the cheap. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 468–476.

Ian H. Witten and Timothy C. Bell. 1991. The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4):1085–
1094.

A. Yeh. 2000. More accurate tests for the statistical
significance of result differences. In Proceedings of
the 18th International COLING, pages 947–953.

52

