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Abstract

This paper presents grammar error correction
for Japanese particles that uses discrimina-
tive sequence conversion, which corrects erro-
neous particles by substitution, insertion, and
deletion. The error correction task is hindered
by the difficulty of collecting large error cor-
pora. We tackle this problem by using pseudo-
error sentences generated automatically. Fur-
thermore, we apply domain adaptation, the
pseudo-error sentences are from the source
domain, and the real-error sentences are from
the target domain. Experiments show that sta-
ble improvement is achieved by using domain
adaptation.

1 Introduction

Case marks of a sentence are represented by postpo-
sitional particles in Japanese. Incorrect usage of the
particles causes serious communication errors be-
cause the cases become unclear. For example, in
the following sentence, it is unclear what must be
deleted.

mail o todoi tara sakujo onegai-shi-masu
mail ACC. arrive when delete please

“When φ has arrived an e-mail, please delete it.”

If the accusative particle o is replaced by a nomi-
native one ga, it becomes clear that the writer wants
to delete the e-mail (“When the e-mail has arrived,
please delete it.”). Such particle errors frequently
occur in sentences written by non-native Japanese
speakers.

This paper presents a method that can automat-
ically correct Japanese particle errors. This task

corresponds to preposition/article error correction in
English. For English error correction, many stud-
ies employ classifiers, which select the appropriate
prepositions/articles, by restricting the error types
to articles and frequent prepositions (Gamon, 2010;
Han et al., 2010; Rozovskaya and Roth, 2011).

On the contrary, Mizumoto et al. (2011) proposed
translator-based error correction. This approach can
handle all error types by converting the learner’s
sentences into the correct ones. Although the target
of this paper is particle error, we employ a similar
approach based on sequence conversion (Imamura
et al., 2011) since this offers excellent scalability.

The conversion approach requires pairs of the
learner’s and the correct sentences. However, col-
lecting a sufficient number of pairs is expensive. To
avoid this problem, we use additional corpus con-
sisting of pseudo-error sentences automatically gen-
erated from correct sentences that mimic the real-
errors (Rozovskaya and Roth, 2010b). Furthermore,
we apply a domain adaptation technique that re-
gards the pseudo-errors and the real-errors as the
source and the target domain, respectively, so that
the pseudo-errors better match the real-errors.

2 Error Correction by Discriminative
Sequence Conversion

We start by describing discriminative sequence con-
version. Our error correction method converts the
learner’s word sequences into the correct sequences.
Our method is similar to phrase-based statistical ma-
chine translation (PBSMT), but there are three dif-
ferences; 1) it adopts the conditional random fields,
2) it allows insertion and deletion, and 3) binary and
real features are combined. Unlike the classification
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Incorrect Particle Correct Particle Note
φ no/POSS. INS
φ o/ACC. INS

ga/NOM. o/ACC. SUB
o/ACC. ni/DAT. SUB
o/ACC. ga/NOM. SUB
wa/TOP. o/ACC. SUB
no/POSS. φ DEL

: :

Table 1: Example of Phrase Table (partial)

approach, the conversion approach can correct mul-
tiple errors of all types in a sentence.

2.1 Basic Procedure
We apply the morpheme conversion approach that
converts the results of a speech recognizer into word
sequences for language analyzer processing (Ima-
mura et al., 2011). It corrects particle errors in the
input sentences as follows.

• First, all modification candidates are obtained by
referring to a phrase table. This table, called the
confusion set (Rozovskaya and Roth, 2010a) in
the error correction task, stores pairs of incorrect
and correct particles (Table 1). The candidates are
packed into a lattice structure, called the phrase
lattice (Figure 1). To deal with unchanged words,
it also copies the input words and inserts them into
the phrase lattice.

• Next, the best phrase sequence in the phrase lat-
tice is identified based on the conditional random
fields (CRFs (Lafferty et al., 2001)). The Viterbi
algorithm is applied to the decoding because error
correction does not change the word order.

• While training, word alignment is carried out by
dynamic programming matching. From the align-
ment results, the phrase table is constructed by ac-
quiring particle errors, and the CRF models are
trained using the alignment results as supervised
data.

2.2 Insertion / Deletion
Since an insertion can be regarded as replacing an
empty word with an actual word, and deletion is the
replacement of an actual word with an empty one,
we treat these operations as substitution without dis-
tinction while learning/applying the CRF models.

mail
noun

Input Words
o

ACC.

todoi
verb

tara
PART

…

Phrase Lattice
mail o todoi tara

copy INS
copy

SUB
copy copy

<s>

Incorrect Particle

Phrase Lattice
mail
noun

no
POSS.

o
ACC.

ga
NOM.

ni
DAT.

todoi
verb

tara
PART

<s>

o
ACC.

Figure 1: Example of Phrase Lattice

However, insertion is a high cost operation be-
cause it may occur at any location and can cause
lattice size to explode. To avoid this problem, we
permit insertion only immediately after nouns.

2.3 Features
In this paper, we use mapping features and link fea-
tures. The former measure the correspondence be-
tween input and output words (similar to the trans-
lation models of PBSMT). The latter measure the
fluency of the output word sequence (similar to lan-
guage models).

The mapping features are all binary. The focusing
phrase and its two surrounding words of the input
are regarded as the window. The mapping features
are defined as the pairs of the output phrase and 1-,
2-, and 3-grams in the window.

The link features are important for the error cor-
rection task because the system has to judge output
correctness. Fortunately, CRF, which is a kind of
discriminative model, can handle features that de-
pend on each other; we mix two types of features
as follows and optimize their weights in the CRF
framework.

• N -gram features: N -grams of the output words,
from 1 to 3, are used as binary features. These
are obtained from a training corpus (paired sen-
tences). Since the feature weights are optimized
considering the entire feature space, fine-tuning
can be achieved. The accuracy becomes almost
perfect on the training corpus.

• Language model probability: This is a logarith-
mic value (real value) of the n-gram probability
of the output word sequence. One feature weight
is assigned. The n-gram language model can be
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constructed from a large sentence set because it
does not need the learner’s sentences.

Incorporating binary and real features yields a
rough approximation of generative models in semi-
supervised CRFs (Suzuki and Isozaki, 2008). It can
appropriately correct new sentences while maintain-
ing high accuracy on the training corpus.

3 Pseudo-error Sentences and Domain
Adaptation

The error corrector described in Section 2 requires
paired sentences. However, it is expensive to col-
lect them. We resolve this problem by using pseudo-
error sentences and domain adaptation.

3.1 Pseudo-Error Generation
Correct sentences, which are halves of the paired
sentences, can be easily acquired from corpora such
as newspaper articles. Pseudo-errors are generated
from them by the substitution, insertion, and dele-
tion functions according to the desired error pat-
terns.

We utilize the method of Rozovskaya and Roth
(2010b). Namely, when particles appear in the cor-
rect sentence, they are replaced by incorrect ones in
a probabilistic manner by applying the phrase table
(which stores the error patterns) in the opposite di-
rection. The error generation probabilities are rel-
ative frequencies on the training corpus. The mod-
els are learnt using both the training corpus and the
pseudo-error sentences.

3.2 Adaptation by Feature Augmentation
Although the error generation probabilities are com-
puted from the real-error corpus, the error distribu-
tion that results may be inappropriate. To better fit
the pseudo-errors to the real-errors, we apply a do-
main adaptation technique. Namely, we regard the
pseudo-error corpus as the source domain and the
real-error corpus as the target domain, and models
are learnt that fit the target domain.

In this paper, we use Daume (2007)’s feature aug-
mentation method for the domain adaptation, which
eliminates the need to change the learning algo-
rithm. This method regards the models for the
source domain as the prior distribution and learns
the models for the target domain.

Common Source Target

Feature Space

D
s

D
s

0Source Data

D
t

0 D
t

Target Data

Figure 2: Feature Augmentation

We briefly review feature augmentation. The fea-
ture space is segmented into three parts: common,
source, and target. The features extracted from the
source domain data are deployed to the common
and the source spaces, and those from the target do-
main data are deployed to the common and the target
spaces. Namely, the feature space is tripled (Figure
2).

The parameter estimation is carried out in the
usual way on the above feature space. Consequently,
the weights of the common features are emphasized
if the features are consistent between the source and
the target. With regard to domain dependent fea-
tures, the weights in the source or the target space
are emphasized.

Error correction uses only the features in the com-
mon and target spaces. The error distribution ap-
proaches that of the real-errors because the weights
of features are optimized to the target domain. In ad-
dition, it becomes robust against new sentences be-
cause the common features acquired from the source
domain can be used even when they do not appear in
the target domain.

4 Experiments

4.1 Experimental Settings
Real-error Corpus: We collected learner’s sen-
tences written by Chinese native speakers. The sen-
tences were created from English Linux manuals
and figures, and Japanese native speakers revised
them. From these sentences, only particle errors
were retained; the other errors were corrected. As
a result, we obtained 2,770 paired sentences. The
number of incorrect particles was 1,087 (8.0%) of
13,534. Note that most particles did not need to be
revised. The number of pair types of incorrect parti-
cles and their correct ones was 132.

Language Model: It was constructed from
Japanese Wikipedia articles about computers and
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Figure 3: Recall/Precision Curve (Error Generation Mag-
nification is 1.0)

Japanese Linux manuals, 527,151 sentences in total.
SRILM (Stolcke et al., 2011) was used to train a
trigram model.

Pseudo-error Corpus: The pseudo-errors were
generated using 10,000 sentences randomly selected
from the corpus for the language model. The mag-
nification of the error generation probabilities was
changed from 0.0 (i.e., no errors) to 2.0 (the relative
frequency in the real-error corpus was taken as 1.0).

Evaluation Metrics: Five-fold cross-validation
on the real-error corpus was used. We used two met-
rics: 1) Precision and recall rates of the error correc-
tion by the systems, and 2) Relative improvement,
the number of differences between improved and de-
graded particles in the output sentences (no changes
were ignored). This is a practical metric because it
denotes the number of particles that human rewriters
do not need to revise after the system correction.

4.2 Results

Figure 3 plots the precision/recall curves for the fol-
lowing four combinations of training corpora and
method.

• TRG: The models were trained using only the
real-error corpus (baseline).

• SRC: Trained using only the pseudo-error corpus.
• ALL: Trained using the real-error and pseudo-

error corpora by simply adding them.
• AUG:

The proposed method. The feature augmentation
was realized by regarding the pseudo-errors as the
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Figure 4: Relative Improvement among Error Generation
Probabilities

source domain and the real-errors as the target do-
main.

The SRC case, which uses only the pseudo-error
sentences, did not match the precision of TRG. The
ALL case matched the precision of TRG at high
recall rates. AUG, the proposed method, achieved
higher precision than TRG at high recall rates. At
the recall rate of 18%, the precision rate of AUG was
55.4%; in contrast, that of TRG was 50.5%. Fea-
ture augmentation effectively leverages the pseudo-
errors for error correction.

Figure 4 shows the relative improvement of each
method according to the error generation probabil-
ities. In this experiment, ALL achieved higher im-
provement than TRG at error generation probabili-
ties ranging from 0.0 to 0.6. Although the improve-
ments were high, we have to control the error gen-
eration probability because the improvements in the
SRC case fell as the magnification was raised. On
the other hand, AUG achieved stable improvement
regardless of the error generation probability. We
can conclude that domain adaptation to the pseudo-
error sentences is the preferred approach.

5 Conclusions

This paper presented an error correction method of
Japanese particles that uses pseudo-error generation.
We applied domain adaptation in which the pseudo-
errors are regarded as the source domain and the
real-errors as the target domain. In our experiments,
domain adaptation achieved stable improvement in
system performance regardless of the error genera-
tion probability.
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