
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 378–382,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Tokenization: Returning to a Long Solved Problem
A Survey, Contrastive Experiment, Recommendations, and Toolkit

Rebecca Dridan & Stephan Oepen
Institutt for Informatikk, Universitetet i Oslo

{rdridan |oe}@ifi.uio.no

Abstract
We examine some of the frequently disre-
garded subtleties of tokenization in Penn Tree-
bank style, and present a new rule-based pre-
processing toolkit that not only reproduces the
Treebank tokenization with unmatched accu-
racy, but also maintains exact stand-off point-
ers to the original text and allows flexible con-
figuration to diverse use cases (e.g. to genre-
or domain-specific idiosyncrasies).

1 Introduction—Motivation

The task of tokenization is hardly counted among the
grand challenges of NLP and is conventionally in-
terpreted as breaking up “natural language text [...]
into distinct meaningful units (or tokens)” (Kaplan,
2005). Practically speaking, however, tokeniza-
tion is often combined with other string-level pre-
processing—for example normalization of punctua-
tion (of different conventions for dashes, say), dis-
ambiguation of quotation marks (into opening vs.
closing quotes), or removal of unwanted mark-up—
where the specifics of such pre-processing depend
both on properties of the input text as well as on as-
sumptions made in downstream processing.

Applying some string-level normalization prior to
the identification of token boundaries can improve
(or simplify) tokenization, and a sub-task like the
disambiguation of quote marks would in fact be hard
to perform after tokenization, seeing that it depends
on adjacency to whitespace. In the following, we
thus assume a generalized notion of tokenization,
comprising all string-level processing up to and in-
cluding the conversion of a sequence of characters
(a string) to a sequence of token objects.1

1Obviously, some of the normalization we include in the to-
kenization task (in this generalized interpretation) could be left
to downstream analysis, where a tagger or parser, for example,
could be expected to accept non-disambiguated quote marks
(so-called straight or typewriter quotes) and disambiguate as

Arguably, even in an overtly ‘separating’ lan-
guage like English, there can be token-level ambi-
guities that ultimately can only be resolved through
parsing (see § 3 for candidate examples), and indeed
Waldron et al. (2006) entertain the idea of down-
stream processing on a token lattice. In this article,
however, we accept the tokenization conventions
and sequential nature of the Penn Treebank (PTB;
Marcus et al., 1993) as a useful point of reference—
primarily for interoperability of different NLP tools.

Still, we argue, there is remaining work to be done
on PTB-compliant tokenization (reviewed in§ 2),
both methodologically, practically, and technologi-
cally. In § 3 we observe that state-of-the-art tools
perform poorly on re-creating PTB tokenization, and
move on in § 4 to develop a modular, parameteri-
zable, and transparent framework for tokenization.
Besides improvements in tokenization accuracy and
adaptability to diverse use cases, in § 5 we further
argue that each token object should unambiguously
link back to an underlying element of the original
input, which in the case of tokenization of text we
realize through a notion of characterization.

2 Common Conventions

Due to the popularity of the PTB, its tokenization
has been a de-facto standard for two decades. Ap-
proximately, this means splitting off punctuation
into separate tokens, disambiguating straight quotes,
and separating contractions such as can’t into ca
and n’t. There are, however, many special cases—

part of syntactic analysis. However, on the (predominant) point
of view that punctuation marks form tokens in their own right,
the tokenizer would then have to adorn quote marks in some
way, as to whether they were split off the left or right periph-
ery of a larger token, to avoid unwanted syntactic ambiguity.
Further, increasing use of Unicode makes texts containing ‘na-
tively’ disambiguated quotes more common, where it would
seem unfortunate to discard linguistically pertinent information
by normalizing towards the poverty of pure ASCII punctuation.

378

documented and undocumented. In much tagging
and parsing work, PTB data has been used with
gold-standard tokens, to a point where many re-
searchers are unaware of the existence of the orig-
inal ‘raw’ (untokenized) text. Accordingly, the for-
mal definition of PTB tokenization2 has received lit-
tle attention, but reproducing PTB tokenization au-
tomatically actually is not a trivial task (see § 3).

As the NLP community has moved to process data
other than the PTB, some of the limitations of the
PTB tokenization have been recognized, and many
recently released data sets are accompanied by a
note on tokenization along the lines of: Tokenization
is similar to that used in PTB, except . . . Most ex-
ceptions are to do with hyphenation, or special forms
of named entities such as chemical names or URLs.
None of the documentation with extant data sets is
sufficient to fully reproduce the tokenization.3

The CoNLL 2008 Shared Task data actually pro-
vided two forms of tokenization: that from the PTB
(which many pre-processing tools would have been
trained on), and another form that splits (most) hy-
phenated terms. This latter convention recently
seems to be gaining ground in data sets like the
Google 1T n-gram corpus (LDC #2006T13) and
OntoNotes (Hovy et al., 2006). Clearly, as one
moves towards a more application- and domain-
driven idea of ‘correct’ tokenization, a more trans-
parent, flexible, and adaptable approach to string-
level pre-processing is called for.

3 A Contrastive Experiment

To get an overview of current tokenization methods,
we recovered and tokenized the raw text which was
the source of the (Wall Street Journal portion of the)
PTB, and compared it to the gold tokenization in the
syntactic annotation in the treebank.4 We used three
common methods of tokenization: (a) the original

2See http://www.cis.upenn.edu/~treebank/
tokenization.html for available ‘documentation’ and a
sed script for PTB-style tokenization.

3Øvrelid et al. (2010) observe that tokenizing with the GE-
NIA tagger yields mismatches in one of five sentences of the
GENIA Treebank, although the GENIA guidelines refer to
scripts that may be available on request (Tateisi & Tsujii, 2006).

4The original WSJ text was last included with the 1995 re-
lease of the PTB (LDC #95T07) and required alignment with
the treebank, with some manual correction so that the same text
is represented in both raw and parsed formats.

Tokenization Differing Levenshtein
Method Sentences Distance

tokenizer.sed 3264 11168
CoreNLP 1781 3717

C&J parser 2597 4516

Table 1: Quantitative view on tokenization differences.

PTB tokenizer.sed script; (b) the tokenizer from the
Stanford CoreNLP tools5; and (c) tokenization from
the parser of Charniak & Johnson (2005). Table 1
shows quantitative differences between each of the
three methods and the PTB, both in terms of the
number of sentences where the tokenization differs,
and also in the total Levenshtein distance (Leven-
shtein, 1966) over tokens (for a total of 49,208 sen-
tences and 1,173,750 gold-standard tokens).

Looking at the differences qualitatively, the most
consistent issue across all tokenization methods was
ambiguity of sentence-final periods. In the treebank,
final periods are always (with about 10 exceptions)
a separate token. If the sentence ends in U.S. (but
not other abbreviations, oddly), an extra period is
hallucinated, so the abbreviation also has one. In
contrast, C&J add a period to all final abbreviations,
CoreNLP groups the final period with a final abbre-
viation and hence lacks a sentence-final period to-
ken, and the sed script strips the period off U.S. The
‘correct’ choice in this case is not obvious and will
depend on how the tokens are to be used.

The majority of the discrepancies in the sed script
tokenization come from an under-restricted punctu-
ation rule that incorrectly splits on commas within
numbers or ampersands within names. Other than
that, the problematic cases are mostly shared across
tokenization methods, and include issues with cur-
rencies, Irish names, hyphenization, and quote dis-
ambiguation. In addition, C&J make some addi-
tional modifications to the text, lemmatising expres-
sions such as won’t as will and n’t.

4 REPP: A Generalized Framework

For tokenization to be studied as a first-class prob-
lem, and to enable customization and flexibility to
diverse use cases, we suggest a non-procedural,
rule-based framework dubbed REPP (Regular

5See http://nlp.stanford.edu/software/
corenlp.shtml, run in ‘strictTreebank3’ mode.

379

>wiki

#1
!([ˆ])([])}?!,;:”’]) ([ˆ]|$) \1 \2 \3

!(ˆ|[ˆ]) ([[({“‘])([ˆ]) \1 \2 \3

#
>1

:[[:space:]]+

Figure 1: Simplified examples of tokenization rules.

Expression-Based Pre-Processing)—essentially a
cascade of ordered finite-state string rewriting rules,
though transcending the formal complexity of regu-
lar languages by inclusion of (a) full perl-compatible
regular expressions and (b) fixpoint iteration over
groups of rules. In this approach, a first phase of
string-level substitutions inserts whitespace around,
for example, punctuation marks; upon completion of
string rewriting, token boundaries are stipulated be-
tween all whitespace-separated substrings (and only
these).

For a good balance of human and machine read-
ability, REPP tokenization rules are specified in a
simple, line-oriented textual form. Figure 1 shows
a (simplified) excerpt from our PTB-style tokenizer,
where the first character on each line is one of four
REPP operators, as follows: (a) ‘#’ for group forma-
tion; (b) ‘>’ for group invocation, (c) ‘!’ for substi-
tution (allowing capture groups), and (d) ‘:’ for to-
ken boundary detection.6 In Figure 1, the two rules
stripping off prefix and suffix punctuation marks ad-
jacent to whitespace (i.e. matching the tab-separated
left-hand side of the rule, to replace the match with
its right-hand side) form a numbered group (‘#1’),
which will be iterated when called (‘>1’) until none
of the rules in the group fires (a fixpoint). In this ex-
ample, conditioning on whitespace adjacency avoids
the issues observed with the PTB sed script (e.g. to-
ken boundaries within comma-separated numbers)
and also protects against infinite loops in the group.7

REPP rule sets can be organized as modules, typ-

6Strictly speaking, there are another two operators, for line-
oriented comments and automated versioning of rule files.

7For this example, the same effects seemingly could be ob-
tained without iteration (using greatly more complex rules); our
actual, non-simplified rules, however, further deal with punctu-
ation marks that can function as prefixes or suffixes, as well as
with corner cases like factor(s) or Ca[2+]. Also in mark-up re-
moval and normalization, we have found it necessary to ‘parse’
nested structures by means of iterative groups.

ically each in a file of its own, and invoked selec-
tively by name (e.g. ‘>wiki’ in Figure 1); to date,
there exist modules for quote disambiguation, (rele-
vant subsets of) various mark-up languages (HTML,
LATEX, wiki, and XML), and a handful of robust-
ness rules (e.g. seeking to identify and repair ‘sand-
wiched’ inter-token punctuation). Individual tok-
enizers are configured at run-time, by selectively ac-
tivating a set of modules (through command-line op-
tions). An open-source reference implementation of
the REPP framework (in C++) is available, together
with a library of modules for English.

5 Characterization for Traceability

Tokenization, and specifically our notion of gener-
alized tokenization which allows text normalization,
involves changes to the original text being analyzed,
rather than just additional annotation. As such, full
traceability from the token objects to the original
text is required, which we formalize as ‘character-
ization’, in terms of character position links back to
the source.8 This has the practical benefit of allow-
ing downstream analysis as direct (stand-off) anno-
tation on the source text, as seen for example in the
ACL Anthology Searchbench (Schäfer et al., 2011).

With our general regular expression replacement
rules in REPP, making precise what it means for a
token to link back to its ‘underlying’ substring re-
quires some care in the design and implementation.
Definite characterization links between the string
before (I) and after (O) the application of a sin-
gle rule can only be established in certain positions,
viz. (a) spans not matched by the rule: unchanged
text in O outside the span matched by the left-hand
side regex of the rule can always be linked back to
I; and (b) spans caught by a regex capture group:
capture groups represent the same text in the left-
and right-hand sides of a substitution, and so can be
linked back to O.9 Outside these text spans, we can
only make definite statements about characterization
links at boundary points, which include the start and
end of the full string, the start and end of the string

8If the tokenization process was only concerned with the
identification of token boundaries, characterization would be
near-trivial.

9If capture group references are used out-of-order, however,
the per-group linkage is no longer well-defined, and we resort
to the maximum-span ‘union’ of boundary points (see below).

380

matched by the rule, and the start and end of any
capture groups in the rule.

Each character in the string being processed has
a start and end position, marking the point before
and after the character in the original string. Before
processing, the end position would always be one
greater than the start position. However, if a rule
mapped a string-initial, PTB-style opening double
quote (``) to one-character Unicode “, the new first
character of the string would have start position 0,
but end position 2. In contrast, if there were a rule

!wo(n’t) will \1 (1)
applied to the string I won’t go!, all characters in the
second token of the resulting string (I will n’t go!)
will have start position 2 and end position 4. This
demonstrates one of the formal consequences of our
design: we have no reason to assign the characters ill
any start position other than 2.10 Since explicit char-
acter links between each I andO will only be estab-
lished at match or capture group boundaries, any text
from the left-hand side of a rule that should appear in
O must be explicitly linked through a capture group
reference (rather than merely written out in the right-
hand side of the rule). In other words, rule (1) above
should be preferred to the following variant (which
would result in character start and end offsets of 0
and 5 for both output tokens):

!won’t will n’t (2)
During rule application, we keep track of charac-

ter start and end positions as offsets between a string
before and after each rule application (i.e. all pairs
〈I,O〉), and these offsets are eventually traced back
to the original string at the time of final tokenization.

6 Quantitative and Qualitative Evaluation

In our own work on preparing various (non-PTB)
genres for parsing, we devised a set of REPP rules
with the goal of following the PTB conventions.
When repeating the experiment of § 3 above us-
ing REPP tokenization, we obtained an initial dif-
ference in 1505 sentences, with a Levenshtein dis-

10This subtlety will actually be invisible in the final token
objects if will remains a single token, but if subsequent rules
were to split this token further, all its output tokens would have a
start position of 2 and an end position of 4. While this example
may seem unlikely, we have come across similar scenarios in
fine-tuning actual REPP rules.

tance of 3543 (broadly comparable to CoreNLP, if
marginally more accurate).

Examining these discrepancies, we revealed some
deficiencies in our rules, as well as some peculiari-
ties of the ‘raw’ Wall Street Journal text from the
PTB distribution. A little more than 200 mismatches
were owed to improper treatment of currency sym-
bols (AU$) and decade abbreviations (’60s), which
led to the refinement of two existing rules. Notable
PTB idiosyncrasies (in the sense of deviations from
common typography) include ellipses with spaces
separating the periods and a fairly large number of
possessives (’s) being separated from their preced-
ing token. Other aspects of gold-standard PTB tok-
enization we consider unwarranted ‘damage’ to the
input text, such as hallucinating an extra period af-
ter U.S. and splitting cannot (which adds spuri-
ous ambiguity). For use cases where the goal were
strict compliance, for instance in pre-processing in-
puts for a PTB-derived parser, we added an optional
REPP module (of currently half a dozen rules) to
cater to these corner cases—in a spirit similar to the
CoreNLP mode we used in § 3. With these extra
rules, remaining tokenization discrepancies are con-
tained in 603 sentences (just over 1 %), which gives
a Levenshtein distance of 1389.

7 Discussion—Conclusion

Compared to the best-performing off-the-shelf sys-
tem in our earlier experiment (where it is reason-
able to assume that PTB data has played at least
some role in development), our results eliminate two
thirds of the remaining tokenization errors—a more
substantial reduction than recent improvements in
parsing accuracy against the PTB, for example.

Of the remaining differences, over 350 are con-
cerned with mid-sentence period ambiguity, where
at least half of those are instances where a pe-
riod was separated from an abbreviation in the
treebank—a pattern we do not wish to emulate.
Some differences in quote disambiguation also re-
main, often triggered by whitespace on both sides of
quote marks in the raw text. The final 200 or so dif-
ferences stem from manual corrections made during
treebanking, and we consider that these cases could
not be replicated automatically in any generalizable
fashion.

381

References

Charniak, E., & Johnson, M. (2005). Coarse-to-fine
n-best parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics
(pp. 173–180). Ann Arbor, USA.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L.,
& Weischedel, R. (2006). Ontonotes. The 90%
solution. In Proceedings of the Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics (pp. 57–60). New York City,
USA.

Kaplan, R. M. (2005). A method for tokenizing
text. Festschrift for Kimmo Koskenniemi on his
60th birthday. In A. Arppe, L. Carlson, K. Lindén,
J. Piitulainen, M. Suominen, M. Vainio, H. West-
erlund, & A. Yli-Jyrä (Eds.), Inquiries into words,
constraints and contexts (pp. 55 – 64). Stanford,
CA: CSLI Publications.

Levenshtein, V. (1966). Binary codes capable of cor-
recting deletions, insertions and reversals. Soviet
Physice – Doklady, 10, 707–710.

Marcus, M. P., Santorini, B., & Marcinkiewicz,
M. A. (1993). Building a large annotated corpus
of English. The Penn Treebank. Computational
Linguistics, 19, 313 – 330.

Øvrelid, L., Velldal, E., & Oepen, S. (2010). Syn-
tactic scope resolution in uncertainty analysis. In
Proceedings of the 23rd international conference
on computational linguistics (pp. 1379 – 1387).
Beijing, China.

Schäfer, U., Kiefer, B., Spurk, C., Steffen, J., &
Wang, R. (2011). The ACL Anthology Search-
bench. In Proceedings of the ACL-HLT 2011 sys-
tem demonstrations (pp. 7–13). Portland, Oregon,
USA.

Tateisi, Y., & Tsujii, J. (2006). GENIA anno-
tation guidelines for tokenization and POS tag-
ging (Technical Report # TR-NLP-UT-2006-4).
Tokyo, Japan: Tsujii Lab, University of Tokyo.

Waldron, B., Copestake, A., Schäfer, U., & Kiefer,
B. (2006). Preprocessing and tokenisation stan-
dards in DELPH-IN tools. In Proceedings of the
5th International Conference on Language Re-
sources and Evaluation (pp. 2263 – 2268). Genoa,
Italy.

382

