
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 238–242,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Using Search-Logs to Improve Query Tagging

Kuzman Ganchev Keith Hall Ryan McDonald Slav Petrov
Google, Inc.

{kuzman|kbhall|ryanmcd|slav}@google.com

Abstract

Syntactic analysis of search queries is im-
portant for a variety of information-retrieval
tasks; however, the lack of annotated data
makes training query analysis models diffi-
cult. We propose a simple, efficient proce-
dure in which part-of-speech tags are trans-
ferred from retrieval-result snippets to queries
at training time. Unlike previous work, our
final model does not require any additional re-
sources at run-time. Compared to a state-of-
the-art approach, we achieve more than 20%
relative error reduction. Additionally, we an-
notate a corpus of search queries with part-
of-speech tags, providing a resource for future
work on syntactic query analysis.

1 Introduction

Syntactic analysis of search queries is important for
a variety of tasks including better query refinement,
improved matching and better ad targeting (Barr
et al., 2008). However, search queries differ sub-
stantially from traditional forms of written language
(e.g., no capitalization, few function words, fairly
free word order, etc.), and are therefore difficult
to process with natural language processing tools
trained on standard corpora (Barr et al., 2008). In
this paper we focus on part-of-speech (POS) tagging
queries entered into commercial search engines and
compare different strategies for learning from search
logs. The search logs consist of user queries and
relevant search results retrieved by a search engine.
We use a supervised POS tagger to label the result
snippets and then transfer the tags to the queries,
producing a set of noisy labeled queries. These la-
beled queries are then added to the training data and

the tagger is retrained. We evaluate different strate-
gies for selecting which annotation to transfer and
find that using the result that was clicked by the user
gives comparable performance to using just the top
result or to aggregating over the top-k results.

The most closely related previous work is that of
Bendersky et al. (2010, 2011). In their work, un-
igram POS tag priors generated from a large cor-
pus are blended with information from the top-50
results from a search engine at prediction time. Such
an approach has the disadvantage that it necessitates
access to a search engine at run-time and is com-
putationally very expensive. We re-implement their
method and show that our direct transfer approach is
more effective, while being simpler to instrument:
since we use information from the search engine
only during training, we can train a stand-alone POS
tagger that can be run without access to additional
resources. We also perform an error analysis and
find that most of the remaining errors are due to er-
rors in POS tagging of the snippets.

2 Direct Transfer

The main intuition behind our work, Bendersky et
al. (2010) and Rüd et al. (2011), is that standard NLP
annotation tools work better on snippets returned by
a search engine than on user supplied queries. This
is because snippets are typically well-formed En-
glish sentences, while queries are not. Our goal is to
leverage this observation and use a supervised POS
tagger trained on regular English sentences to gen-
erate annotations for a large set of queries that can
be used for training a query-specific model. Perhaps
the simplest approach – but also a surprisingly pow-
erful one – is to POS tag some relevant snippets for

238

a given query, and then to transfer the tags from the
snippet tokens to matching query tokens. This “di-
rect” transfer idea is at the core of all our experi-
ments. In this work, we provide a comparison of
techniques for selecting snippets associated with the
query, as well as an evaluation of methods for align-
ing the matching words in the query to those in the
selected snippets.

Specifically, for each query1 with a corresponding
set of “relevant snippets,” we first apply the baseline
tagger to the query and all the snippets. We match
any query terms in these snippets, and copy over the
POS tag to the matching query term. Note that this
can produce multiple labelings as the relevant snip-
pet set can be very diverse and varies even for the
same query. We choose the most frequent tagging
as the canonical one and add it to our training set.
We then train a query tagger on all our training data:
the original human annotated English sentences and
also the automatically generated query training set.

The simplest way to match query tokens to snip-
pet tokens is to allow a query token to match any
snippet token. This can be problematic when we
have queries that have a token repeated with differ-
ent parts-of-speech such as in “tie a tie.” To make a
more precise matching we try a sequence of match-
ing rules: First, exact match of the query n-gram.
Then matching the terms in order, so the query “tiea

a tieb” matched to the snippet “to tie1 a neck tie2”
would match tiea:tie1 and tieb:tie2. Finally, we
match as many query terms as possible. An early
observation showed that when a query term occurs
in the result URL, e.g., searching for “irs mileage
rate” results in the page irs.gov, the query term
matching the URL domain name is usually a proper
noun. Consequently we add this rule.

In the context of search logs, a relevant snippet
set can refer to the top k snippets (including the case
where k = 1) or the snippet(s) associated with re-
sults clicked by users that issued the query. In our
experiments we found that different strategies for se-
lecting relevant snippets, such as selecting the snip-
pets of the clicked results, using the top-10 results
or using only the top result, perform similarly (see
Table 1).

1We skip navigational queries, e.g, amazon or amazon.com,
since syntactic analysis of such queries is not useful.

Query budget/NN rent/VB a/DET car/NN Clicks
Snip 1 . . . Budget/NNP Rent/NNP 2

A/NNP Car/NNP . . .
Snip 2 . . . Go/VB to/TO Budget/NNP 1

to/TO rent/VB a/DET car/NN . . .
Snip 3 . . . Rent/VB a/DET car/NN 1

from/IN Budget/NNP . . .

Figure 1: Example query and snippets as tagged by a
baseline tagger as well as associated clicks.

By contrast Bendersky et al. (2010) use a lin-
ear interpolation between a prior probability and the
snippet tagging. They define π(t|w) as the relative
frequency of tag t given by the baseline tagger to
word w in some corpus and ψ(t|w, s) as the indica-
tor function for word w in the context of snippet s
has tag t. They define the tagging of a word as

arg max
t

0.2π(t|w) + 0.8 mean
s:w∈s

ψ(t|w, s) (1)

We illustrate the difference between the two ap-
proaches in Figure 1. The numbered rows of the
table correspond to three snippets (with non-query
terms elided). The strategy that uses the clicks to se-
lect the tagging would count two examples of “Bud-
get/NNP Rent/NNP A/NNP Car/NNP” and one for
each of two other taggings. Note that snippet 1
and the query get different taggings primarily due
to orthographic variations. It would then add “bud-
get/NNP rent/NNP a/NNP car/NNP” to its training
set. The interpolation approach of Bendersky et al.
(2010) would tag the query as “budget/NNP rent/VB
a/DET car/NN”. To see why this is the case, consider
the probability for rent/VB vs rent/NNP. For rent/VB
we have 0.2 + 0.8× 2

3 , while for rent/NNP we have
0 + 0.8× 1

3 assuming that π(VB|rent) = 1.

3 Experimental Setup

We assume that we have access to labeled English
sentences from the PennTreebank (Marcus et al.,
1993) and the QuestionBank (Judge et al., 2006), as
well as large amounts of unlabeled search queries.
Each query is paired with a set of relevant results
represented by snippets (sentence fragments con-
taining the search terms), as well as information
about the order in which the results were shown to
the user and possibly the result the user clicked on.
Note that different sets of results are possible for the

239

same query, because of personalization and ranking
changes over time.

3.1 Evaluation Data

We use two data sets for evaluation. The first is the
set of 251 queries from Microsoft search logs (MS-
251) used in Bendersky et al. (2010, 2011). The
queries are annotated with three POS tags represent-
ing nouns, verbs and “other” tags (MS-251 NVX).
We additionally refine the annotation to cover 14
POS tags comprising the 12 universal tags of Petrov
et al. (2012), as well as proper nouns and a special
tag for search operator symbols such as “-” (for
excluding the subsequent word). We refer to this
evaluation set as MS-251 in our experiments. We
had two annotators annotate the whole of the MS-
251 data set. Before arbitration, the inter-annotator
agreement was 90.2%. As a reference, Barr et al.
(2008) report 79.3% when annotating queries with
19 POS tags. We then examined all the instances
where the annotators disagreed, and corrected
the discrepancy. Our annotations are available at
http://code.google.com/p/query-syntax/.

The second evaluation set consists of 500 so
called “long-tail” queries. These are queries that oc-
curred rarely in the search logs, and are typically
difficult to tag because they are searching for less-
frequent information. They do not contain naviga-
tional queries.

3.2 Baseline Model

We use a linear chain tagger trained with the aver-
aged perceptron (Collins, 2002). We use the follow-
ing features for our tagger: current word, suffixes
and prefixes of length 1 to 3; additionally we use
word cluster features (Uszkoreit and Brants, 2008)
for the current word, and transition features of the
cluster of the current and previous word. When
training on Sections 1-18 of the Penn Treebank
and testing on sections 22-24, our tagger achieves
97.22% accuracy with the Penn Treebank tag set,
which is state-of-the-art for this data set. When we
evaluate only on the 14 tags used in our experiments,
the accuracy increases to 97.88%.

We experimented with 4 baseline taggers (see Ta-
ble 2). WSJ corresponds to training on only the
standard training sections of Wall Street Journal por-
tion of the Penn Treebank. WSJ+QTB adds the

Method
MS-251

NVX MS-251 long-tail

DIRECT-CLICK 93.43 84.11 78.15
DIRECT-ALL 93.93 84.39 77.73

DIRECT-TOP-1 93.93 84.60 77.60

Table 1: Evaluation of snippet selection strategies.

QuestionBank as training data. WSJ NOCASE and
WSJ+QTB NOCASE use case-insensitive version of
the tagger (conceptually lowercasing the text before
training and before applying the tagger). As we will
see, all our baseline models are better than the base-
line reported in Bendersky et al. (2010); our lower-
cased baseline model significantly outperforms even
their best model.

4 Experiments

First, we compared different strategies for selecting
relevant snippets from which to transfer the tags.
These systems are: DIRECT-CLICK, which uses
snippets clicked on by users; DIRECT-ALL, which
uses all the returned snippets seen by the user;2

and DIRECT-TOP-1, which uses just the snippet in
the top result. Table 1 compares these systems on
our three evaluation sets. While DIRECT-ALL and
DIRECT-TOP-1 perform best on the MS-251 data
sets, DIRECT-CLICK has an advantage on the long
tail queries. However, these differences are small
(<0.6%) suggesting that any strategy for selecting
relevant snippet sets will return comparable results
when aggregated over large amounts of data.

We then compared our method to the baseline
models and a re-implementation of Bendersky et al.
(2010), which we denote BSC. We use the same
matching scheme for both BSC and our system, in-
cluding the URL matching described in Section 2.
The URL matching improves performance by 0.4-
3.0% across all models and evaluation settings.

Table 2 summarizes our final results. For com-
parison, Bendersky et al. (2010) report 91.6% for
their final system, which is comparable to our im-
plementation of their system when the baseline tag-
ger is trained on just the WSJ corpus. Our best sys-
tem achieves a 21.2% relative reduction in error on
their annotations. Some other trends become appar-

2Usually 10 results, but more if the user viewed the second
page of results.

240

Method
MS-251

NVX MS-251 long-tail

WSJ 90.54 75.07 53.06
BSC 91.74 77.82 57.65

DIRECT-CLICK 93.36 85.81 76.13
WSJ + QTB 90.18 74.86 53.48

BSC 91.74 77.54 57.65
DIRECT-CLICK 93.01 85.03 76.97
WSJ NOCASE 92.87 81.92 74.31

BSC 93.71 84.32 76.63
DIRECT-CLICK 93.50 84.46 77.48

WSJ + QTB NOCASE 93.08 82.70 74.65
BSC 93.57 83.90 77.27

DIRECT-CLICK 93.43 84.11 78.15

Table 2: Tagging accuracies for different baseline settings
and two transfer methods.DIRECT-CLICK is the approach
we propose (see text). Column MS-251 NVX evaluates
with tags from Bendersky et al. (2010). Their baseline
is 89.3% and they report 91.6% for their method. MS-
251 and Long-tail use tags from Section 3.1. We observe
snippets for 2/500 long-tail queries and 31/251 MS-251
queries.

ent in Table 2. Firstly, a large part of the benefit of
transfer has to do with case information that is avail-
able in the snippets but is missing in the query. The
uncased tagger is insensitive to this mismatch and
achieves significantly better results than the cased
taggers. However, transferring information from the
snippets provides additional benefits, significantly
improving even the uncased baseline taggers. This
is consistent with the analysis in Barr et al. (2008).
Finally, we see that the direct transfer method from
Section 2 significantly outperforms the method de-
scribed in Bendersky et al. (2010). Table 3 confirms
this trend when focusing on proper nouns, which are
particularly difficult to identify in queries.

We also manually examined a set of 40 queries
with their associated snippets, for which our best
DIRECT-CLICK system made mistakes. In 32 cases,
the errors in the query tagging could be traced back
to errors in the snippet tagging. A better snippet
tagger could alleviate that problem. In the remain-
ing 8 cases there were problems with the matching
– either the mis-tagged word was not found at all,
or it was matched incorrectly. For example one of
the results for the query “bell helmet” had a snippet
containing “Bell cycling helmets” and we failed to
match helmet to helmets.

Method P R F
WSJ + QTB NOCASE 72.12 79.80 75.77

BSC 82.87 69.05 75.33
BSC + URL 83.01 70.80 76.42

DIRECT-CLICK 79.57 76.51 78.01
DIRECT-ALL 75.88 78.38 77.11

DIRECT-TOP-1 78.38 76.40 77.38

Table 3: Precision and recall of the NNP tag on the long-
tail data for the best baseline method and the three trans-
fer methods using that baseline.

5 Related Work

Barr et al. (2008) manually annotate a corpus of
2722 queries with 19 POS tags and use it to train
and evaluate POS taggers, and also describe the lin-
guistic structures they find. Unfortunately their data
is not available so we cannot use it to compare to
their results. Rüd et al. (2011) create features based
on search engine results, that they use in an NER
system applied to queries. They report report sig-
nificant improvements when incorporating features
from the snippets. In particular, they exploit capital-
ization and query terms matching URL components;
both of which we have used in this work. Li et al.
(2009) use clicks in a product data base to train a tag-
ger for product queries, but they do not use snippets
and do not annotate syntax. Li (2010) and Manshadi
and Li (2009) also work on adding tags to queries,
but do not use snippets or search logs as a source of
information.

6 Conclusions

We described a simple method for training a search-
query POS tagger from search-logs by transfer-
ring context from relevant snippet sets to query
terms. We compared our approach to previous work,
achieving an error reduction of 20%. In contrast to
the approach proposed by Bendersky et al. (2010),
our approach does not require access to the search
engine or index when tagging a new query. By ex-
plicitly re-training our final model, it has the ability
to pool knowledge from several related queries and
incorporate the information into the model param-
eters. An area for future work is to transfer other
syntactic information, such as parse structures or su-
pertags using a similar transfer approach.

241

References
Cory Barr, Rosie Jones, and Moira Regelson. 2008.

The linguistic structure of English web-search queries.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1021–1030, Honolulu, Hawaii, October. Association
for Computational Linguistics.

M. Bendersky, W.B. Croft, and D.A. Smith. 2010.
Structural annotation of search queries using pseudo-
relevance feedback. In Proceedings of the 19th ACM
international conference on Information and knowl-
edge management, pages 1537–1540. ACM.

M. Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. In Proc. of EMNLP.

John Judge, Aoife Cahill, and Josef van Genabith. 2006.
Questionbank: Creating a corpus of parse-annotated
questions. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 497–504, Sydney, Australia, July.
Association for Computational Linguistics.

X. Li, Y.Y. Wang, and A. Acero. 2009. Extracting
structured information from user queries with semi-
supervised conditional random fields. In Proceedings
of the 32nd international ACM SIGIR conference on
Research and development in information retrieval,
pages 572–579. ACM.

X. Li. 2010. Understanding the semantic structure of
noun phrase queries. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics, pages 1337–1345. Association for Com-
putational Linguistics.

M. Manshadi and X. Li. 2009. Semantic tagging of web
search queries. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2-Volume 2, pages
861–869. Association for Computational Linguistics.

M. P. Marcus, Mary Ann Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus of
English: the Penn treebank. Computational Linguis-
tics, 19.

S. Petrov, D. Das, and R. McDonald. 2012. A universal
part-of-speech tagset. In Proc. of LREC.

Stefan Rüd, Massimiliano Ciaramita, Jens Müller, and
Hinrich Schütze. 2011. Piggyback: Using search en-
gines for robust cross-domain named entity recogni-
tion. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 965–975, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

J. Uszkoreit and T. Brants. 2008. Distributed word clus-
tering for large scale class-based language modeling in
machine translation. In Proc. of ACL.

242

