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Abstract

This paper suggests two ways of improving
transition-based, non-projective dependency
parsing. First, we add a transition to an exist-
ing non-projective parsing algorithm, so it can
perform either projective or non-projective
parsing as needed. Second, we present a boot-
strapping technique that narrows down dis-
crepancies between gold-standard and auto-
matic parses used as features. The new ad-
dition to the algorithm shows a clear advan-
tage in parsing speed. The bootstrapping
technique gives a significant improvement to
parsing accuracy, showing near state-of-the-
art performance with respect to other parsing
approaches evaluated on the same data set.

1 Introduction

Dependency parsing has recently gained consider-
able interest because it is simple and fast, yet pro-
vides useful information for many NLP tasks (Shen
et al., 2008; Councill et al., 2010). There are two
main dependency parsing approaches (Nivre and
McDonald, 2008). One is a transition-based ap-
proach that greedily searches for local optima (high-
est scoring transitions) and uses parse history as fea-
tures to predict the next transition (Nivre, 2003).
The other is a graph-based approach that searches
for a global optimum (highest scoring tree) from
a complete graph in which vertices represent word
tokens and edges (directed and weighted) represent
dependency relations (McDonald et al., 2005).

Lately, the usefulness of the transition-based ap-
proach has drawn more attention because it gener-
ally performs noticeably faster than the graph-based

approach (Cer et al., 2010). The transition-based ap-
proach has a worst-case parsing complexity of O(n)
for projective, and O(n2) for non-projective pars-
ing (Nivre, 2008). The complexity is lower for pro-
jective parsing because it can deterministically drop
certain tokens from the search space whereas that
is not advisable for non-projective parsing. Despite
this fact, it is possible to perform non-projective
parsing in linear time in practice (Nivre, 2009). This
is because the amount of non-projective dependen-
cies is much smaller than the amount of projective
dependencies, so a parser can perform projective
parsing for most cases and perform non-projective
parsing only when it is needed. One other advan-
tage of the transition-based approach is that it can
use parse history as features to make the next pre-
diction. This parse information helps to improve
parsing accuracy without hurting parsing complex-
ity (Nivre, 2006). Most current transition-based ap-
proaches use gold-standard parses as features dur-
ing training; however, this is not necessarily what
parsers encounter during decoding. Thus, it is desir-
able to minimize the gap between gold-standard and
automatic parses for the best results.

This paper improves the engineering of different
aspects of transition-based, non-projective depen-
dency parsing. To reduce the search space, we add a
transition to an existing non-projective parsing algo-
rithm. To narrow down the discrepancies between
gold-standard and automatic parses, we present a
bootstrapping technique. The new addition to the
algorithm shows a clear advantage in parsing speed.
The bootstrapping technique gives a significant im-
provement to parsing accuracy.
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LEFT-POPL
( [λ1|i], λ2, [j|β], E ) ⇒ ( λ1 , λ2, [j|β], E ∪ {i L← j} )
∃i 6= 0, j. i 6→∗ j ∧ @k ∈ β. i→ k

LEFT-ARCL
( [λ1|i], λ2 , [j|β], E )⇒ ( λ1 , [i|λ2], [j|β], E ∪ {i L← j} )
∃i 6= 0, j. i 6→∗ j

RIGHT-ARCL
( [λ1|i], λ2 , [j|β], E )⇒ ( λ1 , [i|λ2], [j|β], E ∪ {i L→ j} )
∃i, j. i 6←∗ j

SHIFT
( λ1 , λ2, [j|β], E ) ⇒ ( [λ1 · λ2|j], [ ] , β , E )
DT: λ1 = [ ], NT: @k ∈ λ1. k → j ∨ k ← j

NO-ARC
( [λ1|i], λ2 , [j|β], E )⇒ ( λ1 , [i|λ2], [j|β], E )
default transition

Table 1: Transitions in our algorithm. For each row, the first line shows a transition and the second line shows
preconditions of the transition.

2 Reducing search space

Our algorithm is based on Choi-Nicolov’s approach
to Nivre’s list-based algorithm (Nivre, 2008). The
main difference between these two approaches is in
their implementation of the SHIFT transition. Choi-
Nicolov’s approach divides the SHIFT transition into
two, deterministic and non-deterministic SHIFT’s,
and trains the non-deterministic SHIFT with a classi-
fier so it can be predicted during decoding. Choi and
Nicolov (2009) showed that this implementation re-
duces the parsing complexity from O(n2) to linear
time in practice (a worst-case complexity is O(n2)).

We suggest another transition-based parsing ap-
proach that reduces the search space even more.
The idea is to merge transitions in Choi-Nicolov’s
non-projective algorithm with transitions in Nivre’s
projective algorithm (Nivre, 2003). Nivre’s projec-
tive algorithm has a worst-case complexity of O(n),
which is faster than any non-projective parsing al-
gorithm. Since the number of non-projective depen-
dencies is much smaller than the number of projec-
tive dependencies (Nivre and Nilsson, 2005), it is
not efficient to perform non-projective parsing for
all cases. Ideally, it is better to perform projective
parsing for most cases and perform non-projective
parsing only when it is needed. In this algorithm, we
add another transition to Choi-Nicolov’s approach,
LEFT-POP, similar to the LEFT-ARC transition in
Nivre’s projective algorithm. By adding this tran-
sition, an oracle can now choose either projective or
non-projective parsing depending on parsing states.1

1We also tried adding the RIGHT-ARC transition from
Nivre’s projective algorithm, which did not improve parsing
performance for our experiments.

Note that Nivre (2009) has a similar idea of per-
forming projective and non-projective parsing selec-
tively. That algorithm uses a SWAP transition to
reorder tokens related to non-projective dependen-
cies, and runs in linear time in practice (a worst-case
complexity is still O(n2)). Our algorithm is distin-
guished in that it does not require such reordering.

Table 1 shows transitions used in our algorithm.
All parsing states are represented as tuples (λ1, λ2,
β, E), where λ1, λ2, and β are lists of word tokens.
E is a set of labeled edges representing previously
identified dependencies. L is a dependency label and
i, j, k represent indices of their corresponding word
tokens. The initial state is ([0], [ ], [1,. . . ,n], ∅). The
0 identifier corresponds to an initial token, w0, intro-
duced as the root of the sentence. The final state is
(λ1, λ2, [ ], E), i.e., the algorithm terminates when
all tokens in β are consumed.

The algorithm uses five kinds of transitions. All
transitions are performed by comparing the last to-
ken in λ1, wi, and the first token in β, wj . Both
LEFT-POPL and LEFT-ARCL are performed when
wj is the head of wi with a dependency relation L.
The difference is that LEFT-POP removes wi from
λ1 after the transition, assuming that the token is no
longer needed in later parsing states, whereas LEFT-
ARC keeps the token so it can be the head of some
token wj<k≤n in β. This wi → wk relation causes
a non-projective dependency. RIGHT-ARCL is per-
formed whenwi is the head ofwj with a dependency
relation L. SHIFT is performed when λ1 is empty
(DT) or there is no token in λ1 that is either the head
or a dependent ofwj (NT). NO-ARC is there to move
tokens around so each token in β can be compared
to all (or some) tokens prior to it.
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It1 was2 in3 my4 interest5 to6Root0 see7 you8

SBJ
ROOT

PRD NMOD
PMOD

IM

NMOD

OBJ

Transition λ1 λ2 β E
0 [0] [ ] [1|β] ∅
1 SHIFT (NT) [λ1|1] [ ] [2|β]
2 LEFT-ARC [0] [1] [2|β] E ∪ {1←SBJ− 2}
3 RIGHT-ARC [ ] [0|λ2] [2|β] E ∪ {0 −ROOT→ 2}
4 SHIFT (DT) [λ1|2] [ ] [3|β]
5 RIGHT-ARC [λ1|1] [2] [3|β] E ∪ {2 −PRD→ 3}
6 SHIFT (NT) [λ1|3] [ ] [4|β]
7 SHIFT (NT) [λ1|4] [ ] [5|β]
8 LEFT-POP [λ1|3] [ ] [5|β] E ∪ {4←NMOD− 5}
9 RIGHT-ARC [λ1|2] [3] [5|β] E ∪ {3 −PMOD→ 5}

10 SHIFT (NT) [λ1|5] [ ] [6|β]
11 NO-ARC [λ1|3] [5] [6|β]
12 NO-ARC [λ1|2] [3|λ2] [6|β]
13 NO-ARC [λ1|1] [2|λ2] [6|β]
14 RIGHT-ARC [0] [1|λ2] [6|β] E ∪ {1 −NMOD→ 6}
15 SHIFT (NT) [λ1|6] [ ] [7|β]
16 RIGHT-ARC [λ1|5] [6] [7|β] E ∪ {6 −IM→ 7}
17 SHIFT (NT) [λ1|7] [ ] [8|β]
18 RIGHT-ARC [λ1|6] [7] [8|β] E ∪ {7 −OBJ→ 8}
19 SHIFT (NT) [λ1|8] [ ] [ ]

Table 2: Parsing states for the example sentence. After LEFT-POP is performed (#8), [w4 = my] is removed from the
search space and no longer considered in the later parsing states (e.g., between #10 and #11).

During training, the algorithm checks for the pre-
conditions of all transitions and generates training
instances with corresponding labels. During decod-
ing, the oracle decides which transition to perform
based on the parsing states. With the addition of
LEFT-POP, the oracle can choose either projective
or non-projective parsing by selecting LEFT-POP or
LEFT-ARC, respectively. Our experiments show that
this additional transition improves both parsing ac-
curacy and speed. The advantage derives from im-
proving the efficiency of the choice mechanism; it is
now simply a transition choice and requires no addi-
tional processing.

3 Bootstrapping automatic parses

Transition-based parsing has the advantage of using
parse history as features to make the next prediction.
In our algorithm, when wi and wj are compared,
subtree and head information of these tokens is par-

tially provided by previous parsing states. Graph-
based parsing can also take advantage of using parse
information. This is done by performing ‘higher-
order parsing’, which is shown to improve parsing
accuracy but also increase parsing complexity (Car-
reras, 2007; Koo and Collins, 2010).2 Transition-
based parsing is attractive because it can use parse
information without increasing complexity (Nivre,
2006). The qualification is that parse information
provided by gold-standard trees during training is
not necessarily the same kind of information pro-
vided by automatically parsed trees during decod-
ing. This can confuse a statistical model trained only
on the gold-standard trees.

To reduce the gap between gold-standard and au-
tomatic parses, we use bootstrapping on automatic
parses. First, we train a statistical model using gold-

2Second-order, non-projective, graph-based dependency
parsing is NP-hard without performing approximation.
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standard trees. Then, we parse the training data us-
ing the statistical model. During parsing, we ex-
tract features for each parsing state, consisting of
automatic parse information, and generate a train-
ing instance by joining the features with the gold-
standard label. The gold-standard label is achieved
by comparing the dependency relation between wi

and wj in the gold-standard tree. When the parsing
is done, we train a different model using the training
instances induced by the previous model. We repeat
the procedure until a stopping criteria is met.

The stopping criteria is determined by performing
cross-validation. For each stage, we perform cross-
validation to check if the average parsing accuracy
on the current cross-validation set is higher than the
one from the previous stage. We stop the procedure
when the parsing accuracy on cross-validation sets
starts decreasing. Our experiments show that this
simple bootstrapping technique gives a significant
improvement to parsing accuracy.

4 Related work

Daumé et al. (2009) presented an algorithm, called
SEARN, for integrating search and learning to solve
complex structured prediction problems. Our boot-
strapping technique can be viewed as a simplified
version of SEARN. During training, SEARN itera-
tively creates a set of new cost-sensitive examples
using a known policy. In our case, the new examples
are instances containing automatic parses induced
by the previous model. Our technique is simpli-
fied because the new examples are not cost-sensitive.
Furthermore, SEARN interpolates the current policy
with the previous policy whereas we do not per-
form such interpolation. During decoding, SEARN

generates a sequence of decisions and makes a fi-
nal prediction. In our case, the decisions are pre-
dicted dependency relations and the final prediction
is a dependency tree. SEARN has been successfully
adapted to several NLP tasks such as named entity
recognition, syntactic chunking, and POS tagging.
To the best of our knowledge, this is the first time
that this idea has been applied to transition-based
parsing and shown promising results.

Zhang and Clark (2008) suggested a transition-
based projective parsing algorithm that keeps B dif-
ferent sequences of parsing states and chooses the

one with the best score. They use beam search and
show a worst-case parsing complexity ofO(n) given
a fixed beam size. Similarly to ours, their learn-
ing mechanism using the structured perceptron al-
gorithm involves training on automatically derived
parsing states that closely resemble potential states
encountered during decoding.

5 Experiments

5.1 Corpora and learning algorithm

All models are trained and tested on English and
Czech data using automatic lemmas, POS tags,
and feats, as distributed by the CoNLL’09 shared
task (Hajič et al., 2009). We use Liblinear L2-L1
SVM for learning (L2 regularization, L1 loss; Hsieh
et al. (2008)). For our experiments, we use the fol-
lowing learning parameters: c = 0.1 (cost), e = 0.1
(termination criterion), B = 0 (bias).

5.2 Accuracy comparisons

First, we evaluate the impact of the LEFT-POP tran-
sition we add to Choi-Nicolov’s approach. To make
a fair comparison, we implemented both approaches
and built models using the exact same feature set.
The ‘CN’ and ‘Our’ rows in Table 3 show accuracies
achieved by Choi-Nicolov’s and our approaches, re-
spectively. Our approach shows higher accuracies
for all categories. Next, we evaluate the impact of
our bootstrapping technique. The ‘Our+’ row shows
accuracies achieved by our algorithm using the boot-
strapping technique. The improvement from ‘Our’
to ‘Our+’ is statistically significant for all categories
(McNemar, p < .0001). The improvment is even
more significant in a language like Czech for which
parsers generally perform more poorly.

English Czech
LAS UAS LAS UAS

CN 88.54 90.57 78.12 83.29
Our 88.62 90.66 78.30 83.47
Our+ 89.15∗ 91.18∗ 80.24∗ 85.24∗

Merlo 88.79 (3) - 80.38 (1) -
Bohnet 89.88 (1) - 80.11 (2) -

Table 3: Accuracy comparisons between different pars-
ing approaches (LAS/UAS: labeled/unlabeled attachment
score). ∗ indicates a statistically significant improvement.
(#) indicates an overall rank of the system in CoNLL’09.
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Finally, we compare our work against other state-of-
the-art systems. For the CoNLL’09 shared task, Ges-
mundo et al. (2009) introduced the best transition-
based system using synchronous syntactic-semantic
parsing (‘Merlo’), and Bohnet (2009) introduced the
best graph-based system using a maximum span-
ning tree algorithm (‘Bohnet’). Our approach shows
quite comparable results with these systems.3

5.3 Speed comparisons

Figure 1 shows average parsing speeds for each
sentence group in both English and Czech eval-
uation sets (Table 4). ‘Nivre’ is Nivre’s swap
algorithm (Nivre, 2009), of which we use the
implementation from MaltParser (maltparser.
org). The other approaches are implemented in
our open source project, called ClearParser (code.
google.com/p/clearparser). Note that fea-
tures used in MaltParser have not been optimized
for these evaluation sets. All experiments are tested
on an Intel Xeon 2.57GHz machine. For general-
ization, we run five trials for each parser, cut off
the top and bottom speeds, and average the middle
three. The loading times for machine learning mod-
els are excluded because they are independent from
the parsing algorithms. The average parsing speeds
are 2.86, 2.69, and 2.29 (in milliseconds) for Nivre,
CN, and Our+, respectively. Our approach shows
linear growth all along, even for the sentence groups
where some approaches start showing curves.
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Figure 1: Average parsing speeds with respect to sentence
groups in Table 4.

3Later, ‘Merlo’ and ‘Bohnet” introduced more advanced
systems, showing some improvements over their previous ap-
proaches (Titov et al., 2009; Bohnet, 2010).

< 10 < 20 < 30 < 40 < 50 < 60 < 70
1,415 2,289 1,714 815 285 72 18

Table 4: # of sentences in each group, extracted from both
English/Czech evaluation sets. ‘< n’ implies a group
containing sentences whose lengths are less than n.

We also measured average parsing speeds for ‘Our’,
which showed a very similar growth to ‘Our+’. The
average parsing speed of ‘Our’ was 2.20 ms; it per-
formed slightly faster than ‘Our+’ because it skipped
more nodes by performing more non-deterministic
SHIFT’s, which may or may not have been correct
decisions for the corresponding parsing states.

It is worth mentioning that the curve shown by
‘Nivre’ might be caused by implementation details
regarding feature extraction, which we included as
part of parsing. To abstract away from these im-
plementation details and focus purely on the algo-
rithms, we would need to compare the actual num-
ber of transitions performed by each parser, which
will be explored in future work.

6 Conclusion and future work

We present two ways of improving transition-based,
non-projective dependency parsing. The additional
transition gives improvements to both parsing speed
and accuracy, showing a linear time parsing speed
with respect to sentence length. The bootstrapping
technique gives a significant improvement to parsing
accuracy, showing near state-of-the-art performance
with respect to other parsing approaches. In the fu-
ture, we will test the robustness of these approaches
in more languages.
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