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Abstract

State-of-the-art bootstrapping systems rely on
expert-crafted semantic constraints such as
negative categories to reduce semantic drift.
Unfortunately, their use introduces a substan-
tial amount of supervised knowledge. We
present the Relation Guided Bootstrapping
(RGB) algorithm, which simultaneously ex-
tracts lexicons and open relationships to guide
lexicon growth and reduce semantic drift.
This removes the necessity for manually craft-
ing category and relationship constraints, and
manually generating negative categories.

1 Introduction

Many approaches to extracting semantic lexicons
extend the unsupervised bootstrapping framework
(Riloff and Shepherd, 1997). These use a small set
of seed examples from the target lexicon to identify
contextual patterns which are then used to extract
new lexicon items (Riloff and Jones, 1999).

Bootstrappers are prone to semantic drift, caused
by selection of poor candidate terms or patterns
(Curran et al., 2007), which can be reduced by
semantically constraining the candidates. Multi-
category bootstrappers, such as NOMEN (Yangar-
ber et al., 2002) and WMEB (McIntosh and Curran,
2008), reduce semantic drift by extracting multiple
categories simultaneously in competition.

The inclusion of manually-crafted negative cate-
gories to multi-category bootstrappers achieves the
best results, by clarifying the boundaries between
categories (Yangarber et al., 2002). For exam-
ple, female names are often bootstrapped with

the negative categories flowers (e.g. Rose, Iris)
and gem stones (e.g. Ruby, Pearl) (Curran et al.,
2007). Unfortunately, negative categories are dif-
ficult to design, introducing a substantial amount
of human expertise into an otherwise unsupervised
framework. McIntosh (2010) made some progress
towards automatically learning useful negative cate-
gories during bootstrapping.

In this work we identify an unsupervised source
of semantic constraints inspired by the Coupled Pat-
tern Learner (CPL, Carlson et al. (2010)). In CPL,
relation bootstrapping is coupled with lexicon boot-
strapping in order to control semantic drift in the
target relation’s arguments. Semantic constraints
on categories and relations are manually crafted in
CPL. For example, a candidate of the relation IS-
CEOOF will only be extracted if its arguments can
be extracted into the ceo and company lexicons
and a ceo is constrained to not be a celebrity
or politician. Negative examples such as IS-
CEOOF(Sergey Brin, Google) are also introduced to
clarify boundary conditions. CPL employs a large
number of these manually-crafted constraints to im-
prove precision at the expense of recall (only 18 IS-
CEOOF instances were extracted). In our approach,
we exploit open relation bootstrapping to minimise
semantic drift, without any manual seeding of rela-
tions or pre-defined category lexicon combinations.

Orthogonal to these seeded and constraint-based
methods is the relation-independent Open Informa-
tion Extraction (OPENIE) paradigm. OPENIE sys-
tems, such as TEXTRUNNER (Banko et al., 2007),
define neither lexicon categories nor predefined re-
lationships. They extract relation tuples by exploit-
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ing broad syntactic patterns that are likely to indi-
cate relations. This enables the extraction of inter-
esting and unanticipated relations from text. How-
ever these patterns are often too broad, resulting in
the extraction of tuples that do not represent rela-
tions at all. As a result, heavy (supervised) post-
processing or use of supervised information is nec-
essary. For example, Christensen et al. (2010) im-
prove TEXTRUNNER precision by using deep pars-
ing information via semantic role labelling.

2 Relation Guided Bootstrapping

Rather than relying on manually-crafted category
and relation constraints, Relation Guided Bootstrap-
ping (RGB) automatically detects, seeds and boot-
straps open relations between the target categories.
These relations anchor categories together, e.g. IS-
CEOOF and ISFOUNDEROF anchor person and
company, preventing them from drifting into other
categories. Relations can also identify new terms.
We demonstrate that this relation guidance effec-
tively reduces semantic drift, with performance ap-
proaching manually-crafted constraints.

RGB can be applied to any multi-category boot-
strapper, and in these experiments we use WMEB

(McIntosh and Curran, 2008), as shown in Figure 1.
RGB alternates between two phases of WMEB, one
for terms and the other for relations, with a one-off
relation discovery phase in between.

Term Extraction
The first stage of RGB follows the term extraction

process of WMEB. Each category is initialised by a
set of hand-picked seed terms. In each iteration, a
category’s terms are used to identify candidate pat-
terns that can match the terms in the text. Seman-
tic drift is reduced by forcing the categories to be
mutually exclusive (i.e. patterns must be nominated
by only one category). The remaining patterns are
ranked according to reliability and relevance, and
the top-n patterns are then added to the pattern set.1

The reliability of a pattern for a given category is
the number of extracted terms in the category’s lex-
icon that match the pattern. A pattern’s relevance
weight is defined as the sum of the χ2 values be-
tween the pattern (p) and each of the lexicon terms

1In this work, n is set to 5.
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Figure 1: Relation Guided Bootstrapping framework

(t): weight(p) =
∑

t∈T χ
2(p, t). These metrics are

symmetrical for both candidate terms and pattern.
In WMEB’s term selection phase, a category’s pat-

tern set is used to identify candidate terms. Like the
candidate patterns, terms matching multiple cate-
gories are excluded. The remaining terms are ranked
and the top-n terms are added to the lexicon.

Relation Discovery
In CPL (Carlson et al., 2010), a relation is instanti-

ated with manually-crafted seed tuples and patterns.
In RGB, the relations and their seeds are automati-
cally identified in relation discovery. Relation dis-
covery is only performed once after the first 20 iter-
ations of term extraction, which ensures the lexicons
have adequate coverage to form potential relations.

Each ordered pair of categories (C1, C2) = R1,2

is checked for open (not pre-defined) relations be-
tween C1 and C2. This check removes all pairs of
terms, tuples (t1, t2) ∈ C1 × C2 with freq(t1, t2) <
5 and a cooccurrence score χ2(t1, t2) ≤ 0.2 If R1,2

has fewer than 10 remaining tuples, it is discarded.
The tuples for R1,2 are then used to find its ini-

tial set of relation patterns. Each pattern must match
more than one tuple and must be mutually exclusive
between the relations. If fewer than n relation pat-
terns are found forR1,2, it is discarded. At this stage

2This cut-off is used as the χ2 statistic is sensitive to low
frequencies.
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TYPE 5gm 5gm + 4gm 5gm + DC

Terms 1 347 002
Patterns 4 090 412
Tuples 2 114 243 3 470 206 14 369 673
Relation Patterns 5 523 473 10 317 703 31 867 250

Table 1: Statistics of three filtered MEDLINE datasets

we have identified the open relations that link cate-
gories together and their initial extraction patterns.

Using the initial relation patterns, the top-n mu-
tually exclusive seed tuples are identified for the re-
lation R1,2. In CPL, these tuple seeds are manually
crafted. Note that R1,2 can represent multiple rela-
tions betweenC1 andC2, which may not apply to all
of the seeds, e.g. isCeoOf and isEmployedBy.
We discover two types of relations, inter-category
relations where C1 6= C2, and intra-category rela-
tions where C1 = C2.

Relation Extraction
The relation extraction phase involves running

WMEB over tuples rather than terms. If multiple re-
lations are found, e.g. R1,2 and R2,3, these are boot-
strapped simultaneously, competing with each other
for tuples and relation patterns. Mutual exclusion
constraints between the relations are also forced.

In each iteration, a relation’s set of tuples is used
to identify candidate relation patterns, as for term
extraction. The top-n non-overlapping patterns are
extracted for each relation, and are used to identify
the top-n candidate tuples. The tuples are scored
similarly to the relation patterns, and any tuple iden-
tified by multiple relations is excluded.

For tuple extraction, a relation R1,2 is constrained
to only consider candidates where either t1 or t2
has previously been extracted into C1 or C2, respec-
tively. To extract a candidate tuple with an unknown
term, the term must also be a valid candidate of its
associated category. That is, the term must match
at least one pattern assigned to the category and not
match patterns assigned to another category.

This type-checking anchors relations to the cat-
egories they link together, limiting their drift into
other relations. It also provides guided term growth
in the categories they link. The growth is “guided”
because the relations define, semantically coher-
ent subregions of the category search spaces. For
example, ISCEOOF defines the subregion ceo

CAT DESCRIPTION

ANTI Antibodies: MAb IgG IgM rituximab infliximab
CELL Cells: RBC HUVEC BAEC VSMC SMC
CLNE Cell lines: PC12 CHO HeLa Jurkat COS
DISE Diseases: asthma hepatitis tuberculosis HIV malaria

DRUG Drugs: acetylcholine carbachol heparin penicillin
tetracyclin

FUNC Molecular functions and processes:
kinase ligase acetyltransferase helicase binding

MUTN Mutations: Leiden C677T C282Y 35delG null
PROT Proteins and genes: p53 actin collagen albumin IL-6
SIGN Signs and symptoms: anemia cough fever

hypertension hyperglycemia
TUMR Tumors: lymphoma sarcoma melanoma

neuroblastoma osteosarcoma

Table 2: The MEDLINE semantic categories

within person. This guidance reduces semantic
drift.

3 Experimental Setup

To compare the effectiveness of RGB we consider
the task of extracting biomedical semantic lexi-
cons, building on the work of McIntosh and Curran
(2008). Note however the method is equally appli-
cable to any corpus and set of semantic categories.

The corpus consists of approximately 18.5 mil-
lion MEDLINE abstracts (up to Nov 2009). The text
was tokenised and POS-tagged using bio-specific
NLP tools (Grover et al., 2006), and parsed using
the biomedical C&C CCG parser (Rimell and Clark,
2009; Clark and Curran, 2007).

The term extraction data is formed from the raw
5-grams (t1, t2, t3, t4, t5), where the set of candi-
date terms correspond to the middle tokens (t3) and
the patterns are formed from the surrounding tokens
(t1, t2, t4, t5). The relation extraction data is also
formed from the 5-grams. The candidate tuples cor-
respond to the tokens (t1, t5) and the patterns are
formed from the intervening tokens (t2, t3, t4).

The second relation dataset (5gm + 4gm), also in-
cludes length 2 patterns formed from 4-grams. The
final relation dataset (5gm + DC) includes depen-
dency chains up to length 5 as the patterns between
terms (Greenwood et al., 2005). These chains are
formed using the Stanford dependencies generated
by the Rimell and Clark (2009) parser. All candi-
dates occurring less than 10 times were filtered. The
sizes of the resulting datasets are shown in Table 1.
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1-500 501-1000 1-1000
WMEB 76.1 56.4 66.3
+negative 86.9 68.7 77.8
intra-RGB 75.7 62.7 69.2
+negative 87.4 72.4 79.9
inter-RGB 80.5 69.9 75.1
+negative 87.7 76.4 82.0
mixed-RGB 74.7 69.9 72.3
+negative 87.9 73.5 80.7

Table 3: Performance comparison of WMEB and RGB

We follow McIntosh and Curran (2009) in us-
ing the 10 biomedical semantic categories and
their hand-picked seeds in Table 2, and manu-
ally crafted negative categories: amino acid,
animal, body part and organism. Our eval-
uation process involved manually judging each ex-
tracted term and we calculate the average precision
of the top-1000 terms over the 10 target categories.
We do not calculate recall, due to the open-ended
nature of the categories.

4 Results and Discussion

Table 3 compares the performance of WMEB and
RGB, with and without the negative categories. For
RGB, we compare intra-, inter- and mixed relation
types, and use the 5gm format of tuples and relation
patterns. In WMEB, drift dominates in the later iter-
ations with ∼19% precision drop between the first
and last 500 terms. The manually-crafted negative
categories give a substantial boost in precision on
both the first and last 500 terms (+11.5% overall).

Over the top 1000 terms, RGB significantly out-
performs the corresponding WMEB with and with-
out negative categories (p < 0.05).3 In particu-
lar, inter-RGB significantly improves upon WMEB

with no negative categories (501-1000: +13.5%,
1-1000: +8.8%). In similar experiments, NEG-
FINDER, used during bootstrapping, was shown to
increase precision by ∼5% (McIntosh, 2010). Inter-
RGB without negatives approaches the precision of
WMEB with the negatives, trailing only by 2.7%
overall. This demonstrates that RGB effectively re-
duces the reliance on manually-crafted negative cat-
egories for lexicon bootstrapping.

The use of intra-category relations was far less

3Significance was tested using intensive randomisation tests.

INTER-RGB 1-500 501-1000 1-1000
5gm 80.5 69.9 75.1
+negative 87.7 76.4 82.0
5gm + 4gm 79.6 71.5 75.5
+negative 87.7 76.1 81.9
5gm + DC 77.2 70.1 73.5
+negative 86.6 80.2 83.5

Table 4: Comparison of different relation pattern types

effective than inter-category relations, and the com-
bination of intra- and inter- was less effective than
just using inter-category relations. In intra-RGB the
categories are more susceptible to single-category
drift. The additional constraints provided by anchor-
ing two categories appear to make inter-RGB less
susceptible to drift. Many intra-category relations
represent listings commonly identified by conjunc-
tions. However, these patterns are identified by mul-
tiple intra-category relations and are excluded.

Through manual inspection of inter-RGB’s tuples
and patterns, we identified numerous meaningful re-
lations, such as isExpressedIn(prot, cell).
Relations like this helped to reduce semantic drift
within the CELL lexicon by up to 23%.

Table 4 compares the effect of different relation
pattern representations on the performance of inter-
RGB. The 5gm+4gm data, which doubles the num-
ber of possible candidate relation patterns, performs
similarly to the 5gm representation. Adding depen-
dency chains decreased and increased precision de-
pending on whether negative categories were used.

In Wu and Weld (2010), the performance of an
OPENIE system was significantly improved by us-
ing patterns formed from dependency parses. How-
ever in our DC experiments, the earlier bootstrap-
ping iterations were less precise than the simple
5gm+4gm and 5gm representations. Since the
chains can be as short as two dependencies, some
of these patterns may not be specific enough. These
results demonstrate that useful open relations can be
represented using only n-grams.

5 Conclusion

In this paper, we have proposed Relation Guided
Bootstrapping (RGB), an unsupervised approach to
discovering and seeding open relations to constrain
semantic lexicon bootstrapping.
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Previous work used manually-crafted lexical and
relation constraints to improve relation extraction
(Carlson et al., 2010). We turn this idea on its head,
by using open relation extraction to provide con-
straints for lexicon bootstrapping, and automatically
discover the open relations and their seeds from the
expanding bootstrapped lexicons.

RGB effectively reduces semantic drift delivering
performance comparable to state-of-the-art systems
that rely on manually-crafted negative constraints.
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