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Abstract

It is well known that parsing accuracy suf-
fers when a model is applied to out-of-domain
data. It is also known that the most benefi-
cial data to parse a given domain is data that
matches the domain (Sekine, 1997; Gildea,
2001). Hence, an important task is to select
appropriate domains. However, most previ-
ous work on domain adaptation relied on the
implicit assumption that domains are some-
how given. As more and more data becomes
available, automatic ways to select data that is
beneficial for a new (unknown) target domain
are becoming attractive. This paper evaluates
various ways to automatically acquire related
training data for a given test set. The results
show that an unsupervised technique based on
topic models is effective – it outperforms ran-
dom data selection on both languages exam-
ined, English and Dutch. Moreover, the tech-
nique works better than manually assigned la-
bels gathered from meta-data that is available
for English.

1 Introduction and Motivation

Previous research on domain adaptation has focused
on the task of adapting a system trained on one do-
main, say newspaper text, to a particular new do-
main, say biomedical data. Usually, some amount
of (labeled or unlabeled) data from the new domain
was given – which has been determined by a human.

However, with the growth of the web, more and
more data is becoming available, where each doc-
ument “is potentially its own domain” (McClosky
et al., 2010). It is not straightforward to determine

which data or model (in case we have several source
domain models) will perform best on a new (un-
known) target domain. Therefore, an important is-
sue that arises is how to measure domain similar-
ity, i.e. whether we can find a simple yet effective
method to determine which model or data is most
beneficial for an arbitrary piece of new text. More-
over, if we had such a measure, a related question is
whether it can tell us something more about what is
actually meant by “domain”. So far, it was mostly
arbitrarily used to refer to some kind of coherent
unit (related to topic, style or genre), e.g.: newspa-
per text, biomedical abstracts, questions, fiction.

Most previous work on domain adaptation, for in-
stance Hara et al. (2005), McClosky et al. (2006),
Blitzer et al. (2006), Daumé III (2007), sidestepped
this problem of automatic domain selection and
adaptation. For parsing, to our knowledge only one
recent study has started to examine this issue (Mc-
Closky et al., 2010) – we will discuss their approach
in Section 2. Rather, an implicit assumption of all of
these studies is that domains are given, i.e. that they
are represented by the respective corpora. Thus, a
corpus has been considered a homogeneous unit. As
more data is becoming available, it is unlikely that
domains will be ‘given’. Moreover, a given corpus
might not always be as homogeneous as originally
thought (Webber, 2009; Lippincott et al., 2010). For
instance, recent work has shown that the well-known
Penn Treebank (PT) Wall Street Journal (WSJ) ac-
tually contains a variety of genres, including letters,
wit and short verse (Webber, 2009).

In this study we take a different approach. Rather
than viewing a given corpus as a monolithic entity,
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we break it down to the article-level and disregard
corpora boundaries. Given the resulting set of doc-
uments (articles), we evaluate various ways to au-
tomatically acquire related training data for a given
test set, to find answers to the following questions:

• Given a pool of data (a collection of articles
from unknown domains) and a test article, is
there a way to automatically select data that is
relevant for the new domain? If so:

• Which similarity measure is good for parsing?

• How does it compare to human-annotated data?

• Is the measure also useful for other languages
and/or tasks?

To this end, we evaluate measures of domain sim-
ilarity and feature representations and their impact
on dependency parsing accuracy. Given a collection
of annotated articles, and a new article that we want
to parse, we want to select the most similar articles
to train the best parser for that new article.

In the following, we will first compare automatic
measures to human-annotated labels by examining
parsing performance within subdomains of the Penn
Treebank WSJ. Then, we extend the experiments to
the domain adaptation scenario. Experiments were
performed on two languages: English and Dutch.
The empirical results show that a simple measure
based on topic distributions is effective for both lan-
guages and works well also for Part-of-Speech tag-
ging. As the approach is based on plain surface-
level information (words) and it finds related data in
a completely unsupervised fashion, it can be easily
applied to other tasks or languages for which anno-
tated (or automatically annotated) data is available.

2 Related Work

The work most related to ours is McClosky et al.
(2010). They try to find the best combination of
source models to parse data from a new domain,
which is related to Plank and Sima’an (2008). In
the latter, unlabeled data was used to create sev-
eral parsers by weighting trees in the WSJ accord-
ing to their similarity to the subdomain. McClosky
et al. (2010) coined the term multiple source domain
adaptation. Inspired by work on parsing accuracy

prediction (Ravi et al., 2008), they train a linear re-
gression model to predict the best (linear interpola-
tion) of source domain models. Similar to us, Mc-
Closky et al. (2010) regard a target domain as mix-
ture of source domains, but they focus on phrase-
structure parsing. Furthermore, our approach differs
from theirs in two respects: we do not treat source
corpora as one entity and try to mix models, but
rather consider articles as base units and try to find
subsets of related articles (the most similar articles);
moreover, instead of creating a supervised model (in
their case to predict parsing accuracy), our approach
is ‘simplistic’: we apply measures of domain simi-
larity directly (in an unsupervised fashion), without
the necessity to train a supervised model.

Two other related studies are (Lippincott et al.,
2010; Van Asch and Daelemans, 2010). Van Asch
and Daelemans (2010) explore a measure of domain
difference (Renyi divergence) between pairs of do-
mains and its correlation to Part-of-Speech tagging
accuracy. Their empirical results show a linear cor-
relation between the measure and the performance
loss. Their goal is different, but related: rather than
finding related data for a new domain, they want to
estimate the loss in accuracy of a PoS tagger when
applied to a new domain. We will briefly discuss
results obtained with the Renyi divergence in Sec-
tion 5.1. Lippincott et al. (2010) examine subdomain
variation in biomedicine corpora and propose aware-
ness of NLP tools to such variation. However, they
did not yet evaluate the effect on a practical task,
thus our study is somewhat complementary to theirs.

The issue of data selection has recently been ex-
amined for Language Modeling (Moore and Lewis,
2010). A subset of the available data is automati-
cally selected as training data for a Language Model
based on a scoring mechanism that compares cross-
entropy scores. Their approach considerably outper-
formed random selection and two previous proposed
approaches both based on perplexity scoring.1

3 Measures of Domain Similarity

3.1 Measuring Similarity Automatically

Feature Representations A similarity function
may be defined over any set of events that are con-

1We tested data selection by perplexity scoring, but found
the Language Models too small to be useful in our setting.
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sidered to be relevant for the task at hand. For
parsing, these might be words, characters, n-grams
(of words or characters), Part-of-Speech (PoS) tags,
bilexical dependencies, syntactic rules, etc. How-
ever, to obtain more abstract types such as PoS tags
or dependency relations, one would first need to
gather respective labels. The necessary tools for this
are again trained on particular corpora, and will suf-
fer from domain shifts, rendering labels noisy.

Therefore, we want to gauge the effect of the sim-
plest representation possible: plain surface charac-
teristics (unlabeled text). This has the advantage
that we do not need to rely on additional supervised
tools; moreover, it is interesting to know how far we
can get with this level of information only.

We examine the following feature representa-
tions: relative frequencies of words, relative fre-
quencies of character tetragrams, and topic mod-
els. Our motivation was as follows. Relative fre-
quencies of words are a simple and effective rep-
resentation used e.g. in text classification (Manning
and Schütze, 1999), while character n-grams have
proven successful in genre classification (Wu et al.,
2010). Topic models (Blei et al., 2003; Steyvers
and Griffiths, 2007) can be considered an advanced
model over word distributions: every article is repre-
sented by a topic distribution, which in turn is a dis-
tribution over words. Similarity between documents
can be measured by comparing topic distributions.

Similarity Functions There are many possible
similarity (or distance) functions. They fall broadly
into two categories: probabilistically-motivated and
geometrically-motivated functions. The similarity
functions examined in this study will be described
in the following.

The Kullback-Leibler (KL) divergence D(q||r) is
a classical measure of ‘distance’2 between two prob-
ability distributions, and is defined as: D(q||r) =∑

y q(y) log q(y)
r(y) . It is a non-negative, additive,

asymmetric measure, and 0 iff the two distributions
are identical. However, the KL-divergence is unde-
fined if there exists an event y such that q(y) > 0
but r(y) = 0, which is a property that “makes it
unsuitable for distributions derived via maximum-
likelihood estimates” (Lee, 2001).

2It is not a proper distance metric since it is asymmetric.

One option to overcome this limitation is to apply
smoothing techniques to gather non-zero estimates
for all y. The alternative, examined in this paper, is
to consider an approximation to the KL divergence,
such as the Jensen-Shannon (JS) divergence (Lin,
1991) and the skew divergence (Lee, 2001).

The Jensen-Shannon divergence, which is sym-
metric, computes the KL-divergence between q, r,
and the average between the two. We use the JS
divergence as defined in Lee (2001): JS(q, r) =
1
2 [D(q||avg(q, r)) + D(r||avg(q, r))]. The asym-
metric skew divergence sα, proposed by Lee (2001),
mixes one distribution with the other by a degree de-
fined by α ∈ [0, 1): sα(q, r, α) = D(q||αr + (1 −
α)q). As α approaches 1, the skew divergence ap-
proximates the KL-divergence.

An alternative way to measure similarity is to
consider the distributions as vectors and apply
geometrically-motivated distance functions. This
family of similarity functions includes the cosine
cos(q, r) = q(y) · r(y)/||q(y)||||r(y)||, euclidean
euc(q, r) =

√∑
y(q(y)− r(y))2 and variational

(also known as L1 or Manhattan) distance function,
defined as var(q, r) =

∑
y |q(y)− r(y)|.

3.2 Human-annotated data

In contrast to the automatic measures devised in the
previous section, we might have access to human an-
notated data. That is, use label information such as
topic or genre to define the set of similar articles.

Genre For the Penn Treebank (PT) Wall Street
Journal (WSJ) section, more specifically, the subset
available in the Penn Discourse Treebank, there ex-
ists a partition of the data by genre (Webber, 2009).
Every article is assigned one of the following genre
labels: news, letters, highlights, essays, errata, wit
and short verse, quarterly progress reports, notable
and quotable. This classification has been made on
the basis of meta-data (Webber, 2009). It is well-
known that there is no meta-data directly associated
with the individual WSJ files in the Penn Treebank.
However, meta-data can be obtained by looking at
the articles in the ACL/DCI corpus (LDC99T42),
and a mapping file that aligns document numbers of
DCI (DOCNO) to WSJ keys (Webber, 2009). An
example document is given in Figure 1. The meta-
data field HL contains headlines, SO source info, and
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the IN field includes topic markers.

<DOC><DOCNO> 891102-0186. </DOCNO>
<WSJKEY> wsj_0008 </WSJKEY>
<AN> 891102-0186. </AN>
<HL> U.S. Savings Bonds Sales
@ Suspended by Debt Limit </HL>
<DD> 11/02/89 </DD>
<SO> WALL STREET JOURNAL (J) </SO>
<IN> FINANCIAL, ACCOUNTING, LEASING (FIN)
BOND MARKET NEWS (BON) </IN>
<GV> TREASURY DEPARTMENT (TRE) </GV>
<DATELINE> WASHINGTON </DATELINE>
<TXT>
<p><s>
The federal government suspended sales of U.S.
savings bonds because Congress hasn’t lifted
the ceiling on government debt.</s></p> [...]

Figure 1: Example of ACL/DCI article. We have aug-
mented it with the WSJ filename (WSJKEY).

Topic On the basis of the same meta-data, we
devised a classification of the Penn Treebank WSJ
by topic. That is, while the genre division has been
mostly made on the basis of headlines, we use the
information of the IN field. Every article is assigned
one, more than one or none of a predefined set of
keywords. While their origin remains unclear,3

these keywords seem to come from a controlled
vocabulary. There are 76 distinct topic markers.
The three most frequent keywords are: TENDER

OFFERS, MERGERS, ACQUISITIONS (TNM),
EARNINGS (ERN), STOCK MARKET, OFFERINGS

(STK). This reflects the fact that a lot of arti-
cles come from the financial domain. But the
corpus also contains articles from more distant do-
mains, like MARKETING, ADVERTISING (MKT),
COMPUTERS AND INFORMATION TECHNOLOGY

(CPR), HEALTH CARE PROVIDERS, MEDICINE,

DENTISTRY (HEA), PETROLEUM (PET).

4 Experimental Setup

4.1 Tools & Evaluation

The parsing system used in this study is the MST
parser (McDonald et al., 2005), a state-of-the-art
data-driven graph-based dependency parser. It is

3It is not known what IN stands for, as also stated in Mark
Liberman’s notes in the readme of the ACL/DCI corpus. How-
ever, a reviewer suggested that IN might stand for “index terms”
which seems plausible.

a system that can be trained on a variety of lan-
guages given training data in CoNLL format (Buch-
holz and Marsi, 2006). Additionally, the parser im-
plements both projective and non-projective pars-
ing algorithms. The projective algorithm is used for
the experiments on English, while the non-projective
variant is used for Dutch. We train the parser using
default settings. MST takes PoS-tagged data as in-
put; we use gold-standard tags in the experiments.

We estimate topic models using Latent Dirichlet
Allocation (Blei et al., 2003) implemented in the
MALLET4 toolkit. Like Lippincott et al. (2010),
we set the number of topics to 100, and otherwise
use standard settings (no further optimization). We
experimented with the removal of stopwords, but
found no deteriorating effect while keeping them.
Thus, all experiments are carried out on data where
stopwords were not removed.

We implemented the similarity measures pre-
sented in Section 3.1. For skew divergence, that re-
quires parameter α, we set α = .99 (close to KL
divergence) since that has shown previously to work
best (Lee, 2001). Additionally, we evaluate the ap-
proach on English PoS tagging using two different
taggers: MXPOST, the MaxEnt tagger of Ratna-
parkhi5 and Citar,6 a trigram HMM tagger.

In all experiments, parsing performance is mea-
sured as Labeled Attachment Score (LAS), the per-
centage of tokens with correct dependency edge and
label. To compute LAS, we use the CoNLL 2007
evaluation script7 with punctuation tokens excluded
from scoring (as was the default setting in CoNLL
2006). PoS tagging accuracy is measured as the per-
centage of correctly labeled words out of all words.
Statistical significance is determined by Approxi-
mate Randomization Test (Noreen, 1989; Yeh, 2000)
with 10,000 iterations.

4.2 Data

English - WSJ For English, we use the portion of
the Penn Treebank Wall Street Journal (WSJ) that
has been made available in the CoNLL 2008 shared

4http://mallet.cs.umass.edu/
5ftp://ftp.cis.upenn.edu/pub/adwait/jmx/
6Citar has been implemented by Daniël de Kok and is avail-

able at: https://github.com/danieldk/citar
7http://nextens.uvt.nl/depparse-wiki/
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task. This data has been automatically converted8

into dependency structure, and contains three files:
the training set (sections 02-21), development set
(section 24) and test set (section 23).

Since we use articles as basic units, we actually
split the data to get back original article boundaries.9

This led to a total of 2,034 articles (1 million words).
Further statistics on the datasets are given in Ta-
ble 1. In the first set of experiments on WSJ subdo-
mains, we consider articles from section 23 and 24
that contain at least 50 sentences as test sets (target
domains). This amounted to 22 test articles.

EN: WSJ WSJ+G+B Dutch

articles 2,034 3,776 51,454
sentences 43,117 77,422 1,663,032
words 1,051,997 1,784,543 20,953,850

Table 1: Overview of the datasets for English and Dutch.

To test whether we have a reasonable system,
we performed a sanity check and trained the MST
parser on the training section (02-21). The result
on the standard test set (section 23) is identical to
previously reported results (excluding punctuation
tokens: LAS 87.50, Unlabeled Attachment Score
(UAS) 90.75; with punctuation tokens: LAS 87.07,
UAS 89.95). The latter has been reported in (Sur-
deanu and Manning, 2010).

English - Genia (G) & Brown (B) For the Do-
main Adaptation experiments, we added 1,552 ar-
ticles from the GENIA10 treebank (biomedical ab-
stracts from Medline) and 190 files from the Brown
corpus to the pool of data. We converted the data
to CoNLL format with the LTH converter (Johans-
son and Nugues, 2007). The size of the test files is,
respectively: Genia 1,360 sentences with an aver-
age number of 26.20 words per sentence; the Brown
test set is the same as used in the CoNLL 2008
shared task and contains 426 sentences with a mean
of 16.80 words.

8Using the LTH converter: http://nlp.cs.lth.se/
software/treebank_converter/

9This was a non-trivial task, as we actually noticed that some
sentences have been omitted from the CoNLL 2008 shared task.

10We use the GENIA distribution in Penn Treebank for-
mat available at http://bllip.cs.brown.edu/download/
genia1.0-division-rel1.tar.gz

5 Experiments on English

5.1 Experiments within the WSJ

In the first set of experiments, we focus on the WSJ
and evaluate the similarity functions to gather re-
lated data for a given test article. We have 22 WSJ
articles as test set, sampled from sections 23 and
24. Regarding feature representations, we examined
three possibilities: relative frequencies of words, rel-
ative frequencies of character tetragrams (both un-
smoothed) and document topic distributions.

In the following, we only discuss representations
based on words or topic models as we found charac-
ter tetragrams less stable; they performed sometimes
like their word-based counterparts but other times,
considerably worse.

Results of Similarity Measures Table 2 com-
pares the effect of the different ways to select re-
lated data in comparison to the random baseline for
increasing amounts of training data. The table gives
the average over 22 test articles (rather than show-
ing individual tables for the 22 articles). We select
articles up to various thresholds that specify the to-
tal number of sentences selected in each round (e.g.
0.3k, 1.2k, etc.).11 In more detail, Table 2 shows the
result of applying various similarity functions (intro-
duced in Section 3.1) over the two different feature
representations (w: words; tm: topic model) for in-
creasing amounts of data. We additionally provide
results of using the Renyi divergence.12

Clearly, as more and more data is selected, the
differences become smaller, because we are close
to the data limit. However, for all data points less
than 38k (97%), selection by jensen-shannon, varia-
tional and cosine similarity outperform random data
selection significantly for both types of feature rep-
resentations (words and topic model). For selection
by topic models, this additionally holds for the eu-
clidean measure.

From the various measures we can see that se-
lection by jensen-shannon divergence and varia-
tional distance perform best, followed by cosine
similarity, skew divergence, euclidean and renyi.

11Rather than choosing k articles, as article length may differ.
12The Renyi divergence (Rényi, 1961), also used by Van

Asch and Daelemans (2010), is defined as Dα(q, r) = 1/(α−
1) log(

∑
qαr1−α).
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1% 3% 25% 49% 97%
(0.3k) (1.2k) (9.6k) (19.2k) (38k)

random 70.61 77.21 82.98 84.48 85.51

w-js 74.07? 79.41? 83.98? 84.94? 85.68
w-var 74.07? 79.60? 83.82? 84.94? 85.45
w-skw 74.20? 78.95? 83.68? 84.60 85.55
w-cos 73.77? 79.30? 83.87? 84.96? 85.59
w-euc 73.85? 78.90? 83.52? 84.68 85.57
w-ryi 73.41? 78.31 83.76? 84.46 85.46

tm-js 74.23? 79.49? 84.04? 85.01? 85.45
tm-var 74.29? 79.59? 83.93? 84.94? 85.43
tm-skw 74.13? 79.42? 84.13? 84.82 85.73
tm-cos 74.04? 79.27? 84.14? 84.99? 85.42
tm-euc 74.27? 79.53? 83.93? 85.15? 85.62
tm-ryi 71.26 78.64? 83.79? 84.85 85.58

Table 2: Comparison of similarity measures based
on words (w) and topic model (tm): parsing accu-
racy for increasing amounts of training data as average
over 22 WSJ articles (js=jensen-shannon; cos=cosine;
skw=skew; var=variational; euc=euclidean; ryi=renyi).
Best score (per representation) underlined, best overall
score bold; ? indicates significantly better (p < 0.05)
than random.

Renyi divergence does not perform as well as other
probabilistically-motivated functions. Regarding
feature representations, the representation based on
topic models works slightly better than the respec-
tive word-based measure (cf. Table 2) and often
achieves the overall best score (boldface).

Overall, the differences in accuracy between the
various similarity measures are small; but interest-
ingly, the overlap between them is not that large.
Table 3 and Table 4 show the overlap (in terms of
proportion of identically selected articles) between
pairs of similarity measures. As shown in Table 3,
for all measures there is only a small overlap with
the random baseline (around 10%-14%). Despite
similar performance, topic model selection has inter-
estingly no substantial overlap with any other word-
based similarity measures: their overlap is at most
41.6%. Moreover, Table 4 compares the overlap of
the various similarity functions within a certain fea-
ture representation (here x stands for either topic
model – left value – or words – right value). The
table shows that there is quite some overlap be-
tween jensen-shannon, variational and skew diver-

gence on one side, and cosine and euclidean on
the other side, i.e. between probabilistically- and
geometrically-motivated functions. Variational has
a higher overlap with the probabilistic functions. In-
terestingly, the ‘peaks’ in Table 4 (underlined, i.e.
the highest pair-wise overlaps) are the same for the
different feature representations.

In the following we analyze selection by topic
model and words, as they are relatively different
from each other, despite similar performance. For
the word-based model, we use jensen-shannon as
similarity function, as it turned out to be the best
measure. For topic model, we use the simpler vari-
ational metric. However, very similar results were
achieved using jensen-shannon. Cosine and eu-
clidean did not perform as well.

ran w-js w-var w-skw w-cos w-euc

ran – 10.3 10.4 10.0 10.4 10.2
tm-js 12.1 41.6 39.6 36.0 29.3 28.6
tm-var 12.3 40.8 39.3 34.9 29.3 28.5
tm-skw 11.8 40.9 39.7 36.8 30.0 30.1
tm-cos 14.0 31.7 30.7 27.3 24.1 23.2
tm-euc 14.6 27.5 27.2 23.4 22.6 22.1

Table 3: Average overlap (in %) of similarity measure:
random selection (ran) vs. measures based on words (w)
and topic model (tm).

x=tm/w x-js x-var x-skw x-cos x-euc

tm/w-var 76/74 – 60/63 55/48 49/47
tm/w-skw 69/72 60/63 – 48/41 42/42
tm/w-cos 57/42 55/48 48/41 – 62/71
tm/w-euc 47/41 49/47 42/42 62/71 –

Table 4: Average overlap (in %) for different feature
representations x as tm/w, where tm=topic model and
w=words. Highest pair-wise overlap is underlined.

Automatic Measure vs. Human labels The next
question is how these automatic measures compare
to human-annotated data. We compare word-based
and topic model selection (by using jensen-shannon
and variational, respectively) to selection based on
human-given labels: genre and topic. For genre, we
randomly select larger amounts of training data for
a given test article from the same genre. For topic,
the approach is similar, but as an article might have
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several topic markers (keywords in the IN field), we
rank articles by proportion of overlapping keywords.

●

●

●

●

●

●

0 5000 10000 15000 20000

76
78

80
82

84
86

Average

number of sentences

A
cc

ur
ac

y

● random
words−js
topic model−var
genre
topic (IN fields)

Figure 2: Comparison of automatic measures (words us-
ing jensen-shannon and topic model using variational)
with human-annotated labels (genre/topic). Automatic
measures outperform human labels (p < 0.05).

Figure 2 shows that human-labels do actually not
perform better than the automatic measures. Both
are close to random selection. Moreover, the line
of selection by topic marker (IN fields) stops early
– we believe the reason for this is that the IN fields
are too fine-grained, which limits the number of ar-
ticles that are considered relevant for a given test
article. However, manually aggregating articles on
similar topics did not improve topic-based selection
either. We conclude that the automatic selection
techniques perform significantly better than human-
annotated data, at least within the WSJ domain con-
sidered here.

5.2 Domain Adaptation Results

Until now, we compared similarity measures by re-
stricting ourselves to articles from the WSJ. In this
section, we extend the experiments to the domain
adaptation scenario. We augment the pool of WSJ
articles with articles coming from two other corpora:
Genia and Brown. We want to gauge the effective-
ness of the domain similarity measures in the multi-
domain setting, where articles are selected from the
pool of data without knowing their identity (which
corpus the articles came from).

The test sets are the standard evaluation sets from
the three corpora: the standard WSJ (section 23)

and Brown test set from CoNLL 2008 (they contain
2,399 and 426 sentences, respectively) and the Ge-
nia test set (1,370 sentences). As a reference, we
give results of models trained on the respective cor-
pora (per-corpus models; i.e. if we consider corpora
boundaries and train a model on the respective do-
main – this model is ‘supervised’ in the sense that it
knows from which corpus the test article came from)
as well as a baseline model trained on all data, i.e.
the union of all three corpora (wsj+genia+brown),
which is a standard baseline in domain adapta-
tion (Daumé III, 2007; McClosky et al., 2010).

WSJ Brown Genia
(38k) (28k) (19k)

random 86.58 73.81 83.77
per-corpus 87.50 81.55 86.63
union 87.05 79.12 81.57
topic model (var) 87.11? 81.76♦ 86.77♦
words (js) 86.30 81.47♦ 86.44♦

Table 5: Domain Adaptation Results on English (signifi-
cantly better: ? than random; ♦ than random and union).

The learning curves are shown in Figure 3, the
scores for a specific amount of data are given in
Table 5. The performance of the reference mod-
els (per-corpus and union in Table 5) are indicated
in Figure 3 with horizontal lines: the dashed line
represents the per-corpus performance (‘supervised’
model); the solid line shows the performance of the
union baseline trained on all available data (77k sen-
tences). For the former, the vertical dashed lines in-
dicate the amount of data the model was trained on
(e.g. 23k sentences for Brown).

Simply taking all available data has a deteriorat-
ing effect: on all three test sets, the performance of
the union model is below the presumably best per-
formance of a model trained on the respective corpus
(per-corpus model).

The empirical results show that automatic data se-
lection by topic model outperforms random selec-
tion on all three test sets and the union baseline in
two out of three cases. More specifically, selection
by topic model outperforms random selection sig-
nificantly on all three test sets and all points in the
graph (p < 0.001). Selection by the word-based
measure (words-js) achieves a significant improve-
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Figure 3: Domain Adaptation Results for English Parsing with Increasing Amounts of Training Data. The vertical line
represents the amount of data the per-corpus model is trained on.

ment over the random baseline on two out of the
three test sets – it falls below the random baseline on
the WSJ test set. Thus, selection by topic model per-
forms best – it achieves better performance than the
union baseline with comparatively little data (Genia:
4k; Brown: 19k – in comparison: union has 77k).
Moreover, it comes very close to the supervised per-
corpus model performance13 with a similar amount
of data (cf. vertical dashed line). This is a very good
result, given that the technique disregards the origin
of the articles and just uses plain words as informa-
tion. It automatically finds data that is beneficial for
an unknown target domain.

So far we examined domain similarity measures
for parsing, and concluded that selection by topic
model performs best, closely followed by word-
based selection using the jensen-shannon diver-
gence. The question that remains is whether the
measure is more widely applicable: How does it per-
form on another language and task?

PoS tagging We perform similar Domain Adap-
tation experiments on WSJ, Genia and Brown for
PoS tagging. We use two taggers (HMM and Max-
Ent) and the same three test articles as before. The
results are shown in Figure 4 (it depicts the aver-
age over the three test sets, WSJ, Genia, Brown, for
space reasons). The left figure shows the perfor-
mance of the HMM tagger; on the right is the Max-
Ent tagger. The graphs show that automatic train-
ing data selection outperforms random data selec-

13On Genia and Brown (cf. Table 5) there is no significant
difference between topic model and per-corpus model.

tion, and again topic model selection performs best,
closely followed by words-js. This confirms previ-
ous findings and shows that the domain similarity
measures are effective also for this task.
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Figure 4: PoS tagging results, average over 3 test sets.

6 Experiments on Dutch

For Dutch, we evaluate the approach on a bigger and
more varied dataset. It contains in total over 50k ar-
ticles and 20 million words (cf. Table 1). In con-
trast to the English data, only a small portion of the
dataset is manually annotated: 281 articles.14

Since we want to evaluate the performance of
different similarity measures, we want to keep the
influence of noise as low as possible. Therefore,
we annotated the remaining articles with a parsing
system that is more accurate (Plank and van No-
ord, 2010), the Alpino parser (van Noord, 2006).
Note that using a more accurate parsing system to
train another parser has recently also been proposed
by Petrov et al. (2010) as uptraining. Alpino is a

14http://www.let.rug.nl/vannoord/Lassy/
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parser tailored to Dutch, that has been developed
over the last ten years, and reaches an accuracy level
of 90% on general newspaper text. It uses a condi-
tional MaxEnt model as parse selection component.
Details of the parser are given in (van Noord, 2006).
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Figure 5: Result on Dutch; average over 30 articles.

Data and Results The Dutch dataset contains
articles from a variety of sources: Wikipedia15,
EMEA16 (documents from the European Medicines
Agency) and the Dutch parallel corpus17 (DPC), that
covers a variety of subdomains. The Dutch arti-
cles were parsed with Alpino and automatically con-
verted to CoNLL format with the treebank conver-
sion software from CoNLL 2006, where PoS tags
have been replaced with more fine-grained Alpino
tags as that had a positive effect on MST. The 281
annotated articles come from all three sources. As
with English, we consider as test set articles with
at least 50 sentences, from which 30 are randomly
sampled.

The results on Dutch are shown in Figure 5. Do-
main similarity measures clearly outperform random
data selection also in this setting with another lan-
guage and a considerably larger pool of data (20 mil-
lion words; 51k articles).

7 Discussion

In this paper we have shown the effectiveness of a
simple technique that considers only plain words as
domain selection measure for two tasks, dependency

15http://ilps.science.uva.nl/WikiXML/
16http://urd.let.rug.nl/tiedeman/OPUS/EMEA.php
17http://www.kuleuven-kortrijk.be/DPC

parsing and PoS tagging. Interestingly, human-
annotated labels did not perform better than the au-
tomatic measures. The best technique is based on
topic models, and compares document topic distri-
butions estimated by LDA (Blei et al., 2003) using
the variational metric (very similar results were ob-
tained using jensen-shannon). Topic model selec-
tion significantly outperforms random data selection
on both examined languages, English and Dutch,
and has a positive effect on PoS tagging. More-
over, it outperformed a standard Domain Adapta-
tion baseline (union) on two out of three test sets.
Topic model is closely followed by the word-based
measure using jensen-shannon divergence. By ex-
amining the overlap between word-based and topic
model-based techniques, we found that despite sim-
ilar performance their overlap is rather small. Given
these results and the fact that no optimization has
been done for the topic model itself, results are en-
couraging: there might be an even better measure
that exploits the information from both techniques.
So far, we tested a simple combination of the two by
selecting half of the articles by a measure based on
words and the other half by a measure based on topic
models (by testing different metrics). However, this
simple combination technique did not improve re-
sults yet – topic model alone still performed best.

Overall, plain surface characteristics seem to
carry important information of what kind of data is
relevant for a given domain. Undoubtedly, parsing
accuracy will be influenced by more factors than lex-
ical information. Nevertheless, as we have seen, lex-
ical differences constitute an important factor.

Applying divergence measures over syntactic pat-
terns, adding additional articles to the pool of
data (by uptraining (Petrov et al., 2010), selftrain-
ing (McClosky et al., 2006) or active learning (Hwa,
2004)), gauging the effect of weighting instances
according to their similarity to the test data (Jiang
and Zhai, 2007; Plank and Sima’an, 2008), as well
as analyzing differences between gathered data are
venues for further research.
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Jan Hajič. 2005. Non-projective Dependency Parsing
using Spanning Tree Algorithms. In Proceedings of
Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 523–530, Vancouver, British Columbia,
Canada, October. Association for Computational Lin-
guistics.

Robert C. Moore and William Lewis. 2010. Intelligent
Selection of Language Model Training Data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220–224, Uppsala, Sweden, July. Association
for Computational Linguistics.

Eric W. Noreen. 1989. Computer-Intensive Methods
for Testing Hypotheses: An Introduction. Wiley-
Interscience.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and
Hiyan Alshawi. 2010. Uptraining for Accurate Deter-
ministic Question Parsing. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 705–713, Cambridge, MA,
October. Association for Computational Linguistics.

Barbara Plank and Khalil Sima’an. 2008. Subdomain
Sensitive Statistical Parsing using Raw Corpora. In
Proceedings of the 6th International Conference on
Language Resources and Evaluation, Marrakech, Mo-
rocco, May.

Barbara Plank and Gertjan van Noord. 2010. Grammar-
Driven versus Data-Driven: Which Parsing System Is
More Affected by Domain Shifts? In Proceedings of
the 2010 Workshop on NLP and Linguistics: Finding
the Common Ground, pages 25–33, Uppsala, Sweden,
July. Association for Computational Linguistics.

Sujith Ravi, Kevin Knight, and Radu Soricut. 2008. Au-
tomatic Prediction of Parser Accuracy. In EMNLP
’08: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 887–

1575



896, Morristown, NJ, USA. Association for Computa-
tional Linguistics.
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