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Abstract

We initiate a study comparing effective-
ness of the transformed spaces learned by
recently proposed supervised, and semi-
supervised metric learning algorithms
to those generated by previously pro-
posed unsupervised dimensionality reduc-
tion methods (e.g., PCA). Through a va-
riety of experiments on different real-
world datasets, we find IDML-IT, a semi-
supervised metric learning algorithm to be
the most effective.

1 Introduction

Because of the high-dimensional nature of NLP
datasets, estimating a large number of parameters
(a parameter for each dimension), often from a
limited amount of labeled data, is a challenging
task for statistical learners. Faced with this chal-
lenge, various unsupervised dimensionality reduc-
tion methods have been developed over the years,
e.g., Principal Components Analysis (PCA).

Recently, several supervised metric learning al-
gorithms have been proposed (Davis et al., 2007;
Weinberger and Saul, 2009). IDML-IT (Dhillon et
al., 2010) is another such method which exploits
labeled as well as unlabeled data during metric
learning. These methods learn a Mahalanobis dis-
tance metric to compute distance between a pair
of data instances, which can also be interpreted as
learning a transformation of the input data, as we
shall see in Section 2.1.

In this paper, we make the following contribu-
tions:

Even though different supervised and semi-
supervised metric learning algorithms have
recently been proposed, effectiveness of the
transformed spaces learned by them in NLP
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datasets has not been studied before. In
this paper, we address that gap: we com-
pare effectiveness of classifiers trained on the
transformed spaces learned by metric learn-
ing methods to those generated by previ-
ously proposed unsupervised dimensionality
reduction methods. We find IDML-IT, a
semi-supervised metric learning algorithm to
be the most effective.

2 Metric Learning

2.1 Relationship between Metric Learning
and Linear Projection

We first establish the well-known equivalence be-
tween learning a Mahalanobis distance measure
and Euclidean distance in a linearly transformed
space of the data (Weinberger and Saul, 2009). Let
A be a d×d positive definite matrix which param-
eterizes the Mahalanobis distance, dA(xi, xj), be-
tween instances xi and xj , as shown in Equation
1. Since A is positive definite, we can decompose
it as A = P>P , where P is another matrix of size
d× d.

dA(xi, xj) = (xi − xj)>A(xi − xj) (1)

= (Pxi − Pxj)>(Pxi − Pxj)
= dEuclidean(Pxi, Pxj)

Hence, computing Mahalanobis distance pa-
rameterized by A is equivalent to first projecting
the instances into a new space using an appropriate
transformation matrix P and then computing Eu-
clidean distance in the linearly transformed space.
In this paper, we are interested in learning a better
representation of the data (i.e., projection matrix
P ), and we shall achieve that goal by learning the
corresponding Mahalanobis distance parameterA.

We shall now review two recently proposed
metric learning algorithms.
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2.2 Information-Theoretic Metric Learning
(ITML): Supervised

Information-Theoretic Metric Learning (ITML)
(Davis et al., 2007) assumes the availability of
prior knowledge about inter-instance distances. In
this scheme, two instances are considered simi-
lar if the Mahalanobis distance between them is
upper bounded, i.e., dA(xi, xj) ≤ u, where u
is a non-trivial upper bound. Similarly, two in-
stances are considered dissimilar if the distance
between them is larger than certain threshold l,
i.e., dA(xi, xj) ≥ l. Similar instances are rep-
resented by set S, while dissimilar instances are
represented by set D.

In addition to prior knowledge about inter-
instance distances, sometimes prior information
about the matrix A, denoted by A0, itself may
also be available. For example, Euclidean dis-
tance (i.e., A0 = I) may work well in some do-
mains. In such cases, we would like the learned
matrixA to be as close as possible to the prior ma-
trix A0. ITML combines these two types of prior
information, i.e., knowledge about inter-instance
distances, and prior matrix A0, in order to learn
the matrix A by solving the optimization problem
shown in (2).

min
A�0

Dld(A,A0) (2)

s.t. tr{A(xi − xj)(xi − xj)>} ≤ u,
∀(i, j) ∈ S

tr{A(xi − xj)(xi − xj)>} ≥ l,
∀(i, j) ∈ D

whereDld(A,A0) = tr(AA−1
0 )− log det(AA−1

0 )
−n, is the LogDet divergence.

To handle situations where exactly solving the
problem in (2) is not possible, slack variables may
be introduced to the ITML objective. To solve this
optimization problem, an algorithm involving re-
peated Bregman projections is presented in (Davis
et al., 2007), which we use for the experiments re-
ported in this paper.

2.3 Inference-Driven Metric Learning
(IDML): Semi-Supervised

Notations: We first define the necessary notations.
Let X be the d × n matrix of n instances in a
d-dimensional space. Out of the n instances, nl
instances are labeled, while the remaining nu in-
stances are unlabeled, with n = nl +nu. Let S be
a n × n diagonal matrix with Sii = 1 iff instance

xi is labeled. m is the total number of labels. Y
is the n×m matrix storing training label informa-
tion, if any. Ŷ is the n×m matrix of estimated la-
bel information, i.e., output of any classifier, with
Ŷil denoting score of label l at node i. .

The ITML metric learning algorithm, which we
reviewed in Section 2.2, is supervised in nature,
and hence it does not exploit widely available un-
labeled data. In this section, we review Infer-
ence Driven Metric Learning (IDML) (Algorithm
1) (Dhillon et al., 2010), a recently proposed met-
ric learning framework which combines an exist-
ing supervised metric learning algorithm (such as
ITML) along with transductive graph-based la-
bel inference to learn a new distance metric from
labeled as well as unlabeled data combined. In
self-training styled iterations, IDML alternates be-
tween metric learning and label inference; with
output of label inference used during next round
of metric learning, and so on.

IDML starts out with the assumption that ex-
isting supervised metric learning algorithms, such
as ITML, can learn a better metric if the number
of available labeled instances is increased. Since
we are focusing on the semi-supervised learning
(SSL) setting with nl labeled and nu unlabeled
instances, the idea is to automatically label the
unlabeled instances using a graph based SSL al-
gorithm, and then include instances with low as-
signed label entropy (i.e., high confidence label
assignments) in the next round of metric learning.
The number of instances added in each iteration
depends on the threshold β1. This process is con-
tinued until no new instances can be added to the
set of labeled instances, which can happen when
either all the instances are already exhausted, or
when none of the remaining unlabeled instances
can be assigned labels with high confidence.

The IDML framework is presented in Algo-
rithm 1. In Line 3, any supervised metric
learner, such as ITML, may be used as the
METRICLEARNER. Using the distance metric
learned in Line 3, a new k-NN graph is constructed
in Line 4 , whose edge weight matrix is stored in
W . In Line 5 , GRAPHLABELINF optimizes over
the newly constructed graph, the GRF objective
(Zhu et al., 2003) shown in (3).

min
Ŷ ′

tr{Ŷ ′>LŶ ′}, s.t. ŜŶ = ŜŶ
′

(3)

where L = D −W is the (unnormalized) Lapla-
1During the experiments in Section 3, we set β = 0.05
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Algorithm 1: Inference Driven Metric Learn-
ing (IDML)
Input: instancesX , training labels Y , training
instance indicator S, label entropy threshold β,
neighborhood size k
Output: Mahalanobis distance parameter A

1: Ŷ ← Y , Ŝ ← S
2: repeat
3: A← METRICLEARNER(X, Ŝ, Ŷ )
4: W ← CONSTRUCTKNNGRAPH(X,A, k)
5: Ŷ

′ ← GRAPHLABELINF(W, Ŝ, Ŷ )
6: U ← SELECTLOWENTINST(Ŷ

′
, Ŝ, β)

7: Ŷ ← Ŷ + UŶ
′

8: Ŝ ← Ŝ + U
9: until convergence (i.e., Uii = 0, ∀i)

10: return A

cian, and D is a diagonal matrix with Dii =∑
jWij . The constraint, ŜŶ = ŜŶ

′
, in (3)

makes sure that labels on training instances are not
changed during inference. In Line 6, a currently
unlabeled instance xi (i.e., Ŝii = 0) is consid-
ered a new labeled training instance, i.e., Uii = 1,
for next round of metric learning if the instance
has been assigned labels with high confidence in
the current iteration, i.e., if its label distribution
has low entropy (i.e., ENTROPY(Ŷ

′
i:) ≤ β). Fi-

nally in Line 7, training instance label information
is updated. This iterative process is continued till
no new labeled instance can be added, i.e., when
Uii = 0 ∀i. IDML returns the learned matrix A
which can be used to compute Mahalanobis dis-
tance using Equation 1.

3 Experiments

3.1 Setup

Dataset Dimension Balanced
Electronics 84816 Yes

Books 139535 Yes
Kitchen 73539 Yes
DVDs 155465 Yes

WebKB 44261 Yes

Table 1: Description of the datasets used in Sec-
tion 3. All datasets are binary with 1500 total in-
stances in each.

Description of the datasets used during experi-
ments in Section 3 are presented in Table 1. The

first four datasets – Electronics, Books, Kitchen,
and DVDs – are from the sentiment domain and
previously used in (Blitzer et al., 2007). WebKB
is a text classification dataset derived from (Sub-
ramanya and Bilmes, 2008). For details regard-
ing features and data pre-processing, we refer the
reader to the origin of these datasets cited above.
One extra preprocessing that we did was that we
only considered features which occurred more 20
times in the entire dataset to make the problem
more computationally tractable and also since the
infrequently occurring features usually contribute
noise. We use classification error (lower is better)
as the evaluation metric. We experiment with the
following ways of estimating transformation ma-
trix P :

Original2: We set P = I , where I is the
d × d identity matrix. Hence, the data is not
transformed in this case.

RP: The data is first projected into a lower
dimensional space using the Random Pro-
jection (RP) method (Bingham and Mannila,
2001). Dimensionality of the target space
was set at d

′
= logn

ε2log 1
ε

, as prescribed in

(Bingham and Mannila, 2001). We use the
projection matrix constructed by RP as P . ε
was set to 0.25 for the experiments in Sec-
tion 3, which has the effect of projecting the
data into a much lower dimensional space
(84 for the experiments in this section). This
presents an interesting evaluation setting as
we already run evaluations in much higher di-
mensional space (e.g., Original).

PCA: Data instances are first projected into
a lower dimensional space using Principal
Components Analysis (PCA) (Jolliffe, 2002)
. Following (Weinberger and Saul, 2009), di-
mensionality of the projected space was set
at 250 for all experiments. In this case, we
used the projection matrix generated by PCA
as P .

ITML: A is learned by applying ITML (see
Section 2.2) on the Original space (above),
and then we decompose A as A = P>P to
obtain P .

2Note that “Original” in the results tables refers to orig-
inal space with features occurring more than 20 times. We
also ran experiments with original set of features (without
any thresholding) and the results were worse or comparable
to the ones reported in the tables.
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Datasets Original RP PCA ITML IDML-IT
µ± σ µ± σ µ± σ µ± σ µ± σ

Electronics 31.3± 0.9 42.5± 1.0 46.4± 2.0 33.0± 1.0 30.7±0.7
Books 37.5± 1.1 45.0± 1.1 34.8± 1.4 35.0± 1.1 32.0±0.9

Kitchen 33.7± 1.0 43.0± 1.1 34.0± 1.6 30.9± 0.7 29.0±1.0
DVDs 39.0± 1.2 47.7± 1.2 36.2± 1.6 37.0± 0.8 33.9±1.0

WebKB 31.4± 0.9 33.0± 1.0 27.9± 1.3 28.9± 1.0 25.5±1.0

Table 2: Comparison of SVM % classification errors (lower is better), with 50 labeled instances (Sec.
3.2). nl=50. and nu = 1450. All results are averaged over ten trials. All hyperparameters are tuned on a
separate random split.

Datasets Original RP PCA ITML IDML-IT
µ± σ µ± σ µ± σ µ± σ µ± σ

Electronics 27.0± 0.9 40.0± 1.0 41.2± 1.0 27.5± 0.8 25.3±0.8
Books 31.0± 0.7 42.9± 0.6 31.3± 0.7 29.9± 0.5 27.7±0.7

Kitchen 26.3± 0.5 41.9± 0.7 27.0± 0.9 26.1± 0.8 24.8±0.9
DVDs 34.7± 0.4 46.8± 0.6 32.9± 0.8 34.0± 0.8 31.8±0.9

WebKB 25.7± 0.5 31.1± 0.5 24.9± 0.6 25.6± 0.4 23.9±0.4

Table 3: Comparison of SVM % classification errors (lower is better), with 100 labeled instances (Sec.
3.2). nl=100. and nu = 1400. All results are averaged over ten trials. All hyperparameters are tuned on
a separate random split.

IDML-IT: A is learned by applying IDML
(Algorithm 1) (see Section 2.3) on the Orig-
inal space (above); with ITML used as
METRICLEARNER in IDML (Line 3 in Al-
gorithm 1). In this case, we treat the set of
test instances (without their gold labels) as
the unlabeled data. In other words, we essen-
tially work in the transductive setting (Vap-
nik, 2000). Once again, we decompose A as
A = P>P to obtain P .

We also experimented with the supervised
large-margin metric learning algorithm (LMNN)
presented in (Weinberger and Saul, 2009). We
found ITML to be more effective in practice than
LMNN, and hence we report results based on
ITML only. Each input instance, x, is now pro-
jected into the transformed space as Px. We
now train different classifiers on this transformed
space. All results are averaged over ten random
trials.

3.2 Supervised Classification
We train a SVM classifier, with an RBF kernel, on
the transformed space generated by the projection
matrix P . SVM hyperparameter, C and RBF ker-
nel bandwidth, were tuned on a separate develop-
ment split. Experimental results with 50 and 100

labeled instances are shown in Table 2, and Ta-
ble 3, respectively. From these results, we observe
that IDML-IT consistently achieves the best per-
formance across all experimental settings. We also
note that in Table 3, performance difference be-
tween ITML and IDML-IT in the Electronics and
Kitchen domains are statistically significant.

3.3 Semi-Supervised Classification

In this section, we trained the GRF classifier (see
Equation 3), a graph-based semi-supervised learn-
ing (SSL) algorithm (Zhu et al., 2003), using
Gaussian kernel parameterized by A = P>P to
set edge weights. During graph construction, each
node was connected to its k nearest neighbors,
with k treated as a hyperparameter and tuned on
a separate development set. Experimental results
with 50 and 100 labeled instances are shown in
Table 4, and Table 5, respectively. As before, we
experimented with nl = 50 and nl = 100. Once
again, we observe that IDML-IT is the most effec-
tive method, with the GRF classifier trained on the
data representation learned by IDML-IT achieving
best performance in all settings. Here also, we ob-
serve that IDML-IT achieves the best performance
across all experimental settings.
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Datasets Original RP PCA ITML IDML-IT
µ± σ µ± σ µ± σ µ± σ µ± σ

Electronics 47.9± 1.1 49.0± 1.2 43.2± 0.9 34.9± 0.5 34.0±0.5
Books 50.0± 1.0 49.4± 1.0 47.9± 0.7 42.1± 0.7 40.6±0.7

Kitchen 49.8± 1.1 49.6± 0.9 48.6± 0.8 31.1± 0.5 30.0±0.5
DVDs 50.1± 0.5 49.9± 0.7 49.4± 0.6 42.1± 0.4 41.2±0.5

WebKB 33.1± 0.4 33.1± 0.3 33.1± 0.3 30.0± 0.4 28.7±0.5

Table 4: Comparison of transductive % classification errors (lower is better) over graphs constructed
using different methods (see Section 3.3), with nl = 50 and nu = 1450. All results are averaged over
ten trials. All hyperparameters are tuned on a separate random split.

Datasets Original RP PCA ITML IDML-IT
µ± σ µ± σ µ± σ µ± σ µ± σ

Electronics 43.5± 0.7 47.2± 0.8 39.1± 0.7 31.3± 0.2 30.8±0.3
Books 48.3± 0.5 48.9± 0.3 43.3± 0.4 35.2± 0.5 33.3±0.6

Kitchen 45.3± 0.6 48.2± 0.5 41.0± 0.7 30.7± 0.6 29.9±0.3
DVDs 48.6± 0.3 49.3± 0.5 45.9± 0.5 42.6± 0.4 41.7±0.3

WebKB 33.4± 0.4 33.4± 0.4 33.4± 0.3 30.4± 0.5 28.6±0.7

Table 5: Comparison of transductive % classification errors (lower is better) over graphs constructed
using different methods (see Section 3.3), with nl = 100 and nu = 1400. All results are averaged over
ten trials. All hyperparameters are tuned on a separate random split.

4 Conclusion

In this paper, we compared the effectiveness
of the transformed spaces learned by recently
proposed supervised, and semi-supervised metric
learning algorithms to those generated by previ-
ously proposed unsupervised dimensionality re-
duction methods (e.g., PCA). To the best of our
knowledge, this is the first study of its kind in-
volving NLP datasets. Through a variety of ex-
periments on different real-world NLP datasets,
we demonstrated that supervised as well as semi-
supervised classifiers trained on the space learned
by IDML-IT consistently result in the lowest clas-
sification errors. Encouraged by these early re-
sults, we plan to explore further the applicability
of IDML-IT in other NLP tasks (e.g., entity classi-
fication, word sense disambiguation, polarity lexi-
con induction, etc.) where better representation of
the data is a pre-requisite for effective learning.
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