
Proceedings of the ACL 2010 Conference Short Papers, pages 74–79,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Correcting Errors in a Treebank Based on
Synchronous Tree Substitution Grammar

Yoshihide Kato1 and Shigeki Matsubara2

1Information Technology Center, Nagoya University
2Graduate School of Information Science, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
yosihide@el.itc.nagoya-u.ac.jp

Abstract

This paper proposes a method of correct-
ing annotation errors in a treebank. By us-
ing a synchronous grammar, the method
transforms parse trees containing annota-
tion errors into the ones whose errors are
corrected. The synchronous grammar is
automatically induced from the treebank.
We report an experimental result of apply-
ing our method to the Penn Treebank. The
result demonstrates that our method cor-
rects syntactic annotation errors with high
precision.

1 Introduction

Annotated corpora play an important role in the
fields such as theoretical linguistic researches or
the development of NLP systems. However, they
often contain annotation errors which are caused
by a manual or semi-manual mark-up process.
These errors are problematic for corpus-based re-
searches.

To solve this problem, several error detection
and correction methods have been proposed so far
(Eskin, 2000; Nakagawa and Matsumoto, 2002;
Dickinson and Meurers, 2003a; Dickinson and
Meurers, 2003b; Ule and Simov, 2004; Murata
et al., 2005; Dickinson and Meurers, 2005; Boyd
et al., 2008). These methods detect corpus posi-
tions which are marked up incorrectly, and find
the correct labels (e.g. pos-tags) for those posi-
tions. However, the methods cannot correct errors
in structural annotation. This means that they are
insufficient to correct annotation errors in a tree-
bank.

This paper proposes a method of correcting er-
rors in structural annotation. Our method is based
on a synchronous grammar formalism, called syn-
chronous tree substitution grammar (STSG) (Eis-
ner, 2003), which defines a tree-to-tree transfor-

mation. By using an STSG, our method trans-
forms parse trees containing errors into the ones
whose errors are corrected. The grammar is au-
tomatically induced from the treebank. To select
STSG rules which are useful for error correction,
we define a score function based on the occurrence
frequencies of the rules. An experimental result
shows that the selected rules archive high preci-
sion.

This paper is organized as follows: Section 2
gives an overview of previous work. Section 3 ex-
plains our method of correcting errors in a tree-
bank. Section 4 reports an experimental result us-
ing the Penn Treebank.

2 Previous Work

This section summarizes previous methods for
correcting errors in corpus annotation and dis-
cusses their problem.

Some research addresses the detection of er-
rors in pos-annotation (Nakagawa and Matsumoto,
2002; Dickinson and Meurers, 2003a), syntactic
annotation (Dickinson and Meurers, 2003b; Ule
and Simov, 2004; Dickinson and Meurers, 2005),
and dependency annotation (Boyd et al., 2008).
These methods only detect corpus positions where
errors occur. It is unclear how we can correct the
errors.

Several methods can correct annotation errors
(Eskin, 2000; Murata et al., 2005). These meth-
ods are to correct tag-annotation errors, that is,
they simply suggest a candidate tag for each po-
sition where an error is detected. The methods
cannot correct syntactic annotation errors, because
syntactic annotation is structural. There is no ap-
proach to correct structural annotation errors.

To clarify the problem, let us consider an exam-
ple. Figure 1 depicts two parse trees annotated ac-
cording to the Penn Treebank annotation 1. The

10 and *T* are null elements.

74

S
NP VP

.DT
That

PRN
S

, NP VP
PRP
they

VBP
say

SBAR
-NONE- S

-NONE-0
T

,
,
,

MD
will

VP
VB
be

ADJP
JJ

good
PP

IN
for

NP
NNS

bonds

.

S
NP VP

.DT
That

PRN
S,

NP VP
PRP
they

VBP
say

SBAR
-NONE- S

-NONE-0
T

,
,
,

MD
will

VP
VB
be

ADJP
JJ

good
PP

IN
for

NP
NNS

bonds

.

(a) incorrect parse tree

(b) correct parse tree

Figure 1: An example of a treebank error

parse tree (a) contains errors and the parse tree
(b) is the corrected version. In the parse tree (a),
the positions of the two subtrees (, ,) are erro-
neous. To correct the errors, we need to move the
subtrees to the positions which are directly dom-
inated by the node PRN. This example demon-
strates that we need a framework of transforming
tree structures to correct structural annotation er-
rors.

3 Correcting Errors by Using
Synchronous Grammar

To solve the problem described in Section 2, this
section proposes a method of correcting structural
annotation errors by using a synchronous tree sub-
stitution grammar (STSG) (Eisner, 2003). An
STSG defines a tree-to-tree transformation. Our
method induces an STSG which transforms parse
trees containing errors into the ones whose errors
are corrected.

3.1 Synchronous Tree Substitution Grammar

First of all, we describe the STSG formalism. An
STSG defines a set of tree pairs. An STSG can be
treated as a tree transducer which takes a tree as
input and produces a tree as output. Each grammar
rule consists of the following elements:

• a pair of trees called elementary trees

PRN
S

,1 NP2 VP3 ,4

PRN

S,1

NP2 VP3

,4

source target

Figure 2: An example of an STSG rule

• a one-to-one alignment between nodes in the
elementary trees

For a tree pair ⟨t, t′⟩, the tree t and t′ are
called source and target, respectively. The non-
terminal leaves of elementary trees are called fron-
tier nodes. There exists a one-to-one alignment
between the frontier nodes in t and t′. The rule
means that the structure which matches the source
elementary tree is transformed into the structure
which is represented by the target elementary tree.
Figure 2 shows an example of an STSG rule. The
subscripts indicate the alignment. This rule can
correct the errors in the parse tree (a) depicted in
Figure 1.

An STSG derives tree pairs. Any derivation
process starts with the pair of nodes labeled with
special symbols called start symbols. A derivation
proceeds in the following steps:

1. Choose a pair of frontier nodes ⟨η, η′⟩ for
which there exists an alignment.

2. Choose a rule ⟨t, t′⟩ s.t. label(η) = root(t)
and label(η′) = root(t′) where label(η) is
the label of η and root(t) is the root label of
t.

3. Substitute t and t′ into η and η′, respectively.

Figure 3 shows a derivation process in an STSG.
In the rest of the paper, we focus on the rules

in which the source elementary tree is not identi-
cal to its target, since such identical rules cannot
contribute to error correction.

3.2 Inducing an STSG for Error Correction
This section describes a method of inducing an
STSG for error correction. The basic idea of
our method is similar to the method presented by
Dickinson and Meurers (2003b). Their method de-
tects errors by seeking word sequences satisfying
the following conditions:

• The word sequence occurs more than once in
the corpus.

75

S S

S
NP VPPRN .

S
NP VPPRN .

DT DT
That That

S
NP VPPRN .

S
NP VPPRN .

DT DT
That That

S
, NP VP ,

S,
NP VP

,

S
NP VPPRN .

S
NP VPPRN .

DT DT
That That

S
, NP VP ,

S,
NP VP

,

,
,

PRP
they

PRP
they

(a)

(b)

(c)

(d)

Figure 3: A derivation process of tree pairs in an
STSG

• Different syntactic labels are assigned to the
occurrences of the word sequence.

Unlike their method, our method seeks word se-
quences whose occurrences have different partial
parse trees. We call a collection of these word
sequences with partial parse trees pseudo paral-
lel corpus. Moreover, our method extracts STSG
rules which transform the one partial tree into the
other.

3.2.1 Constructing a Pseudo Parallel Corpus
Our method firstly constructs a pseudo parallel
corpus which represents a correspondence be-
tween parse trees containing errors and the ones
whose errors are corrected. The procedure is as
follows: Let T be the set of the parse trees oc-
curring in the corpus. We write Sub(σ) for the
set which consists of the partial parse trees in-
cluded in the parse tree σ. A pseudo parallel cor-
pus Para(T) is constructed as follows:

Para(T) = {⟨τ, τ ′⟩ | τ, τ ′ ∈
∪

σ∈T

Sub(σ)

∧ τ ̸= τ ′

∧ yield(τ) = yield(τ ′)
∧ root(τ) = root(τ ′)}

PRN
S,1

NP2 VP4
PRP3
they

VBP5
say

SBAR6
-NONE-7 S8

-NONE-90
T

,
,10
,

PRN
S

,1 NP2 VP4
PRP3
they

VBP5
say

SBAR6
-NONE-7 S8

-NONE-90
T

,
,10
,

Figure 4: An example of a partial parse tree pair
in a pseudo parallel corpus

S
NP VP

.DT
That

PRN
S,

NP VP
PRP
they

VBP
say

SBAR
-NONE- S

-NONE-0
T

,
,
,

VBD
will

ADJP
PP
IN
of

NP
PRP$
his

NNS
abilities

.

JJ
proud

Figure 5: Another example of a parse tree contain-
ing a word sequence “, they say ,”

where yield(τ) is the word sequence dominated
by τ .

Let us consider an example. If the parse trees
depicted in Figure 1 exist in the treebank T , the
pair of partial parse trees depicted in Figure 4 is
an element of Para(T). We also obtain this pair
in the case where there exists not the parse tree
(b) depicted in Figure 1 but the parse tree depicted
in Figure 5, which contains the word sequence “,
they say ,”.

3.2.2 Inducing a Grammar from a Pseudo
Parallel Corpus

Our method induces an STSG from the pseudo
parallel corpus according to the method proposed
by Cohn and Lapata (2009). Cohn and Lapata’s
method can induce an STSG which represents a
correspondence in a parallel corpus. Their method
firstly determine an alignment of nodes between
pairs of trees in the parallel corpus and extracts
STSG rules according to the alignments.

For partial parse trees τ and τ ′, we define a node
alignment C(τ, τ ′) as follows:

C(τ, τ ′) = {⟨η, η′⟩ | η ∈ Node(τ)
∧ η′ ∈ Node(τ ′)
∧ η is not the root of τ

76

∧ η′ is not the root of τ ′

∧ label(η) = label(η′)
∧ yield(η) = yield(η′)}

where Node(τ) is the set of the nodes in τ , and
yield(η) is the word sequence dominated by η.
Figure 4 shows an example of a node alignment.
The subscripts indicate the alignment.

An STSG rule is extracted by deleting nodes in
a partial parse tree pair ⟨τ, τ ′⟩ ∈ Para(T). The
procedure is as follows:

• For each ⟨η, η′⟩ ∈ C(τ, τ ′), delete the de-
scendants of η and η′.

For example, the rule shown in Figure 2 is ex-
tracted from the pair shown in Figure 4.

3.3 Rule Selection

Some rules extracted by the procedure in Section
3.2 are not useful for error correction, since the
pseudo parallel corpus contains tree pairs whose
source tree is correct or whose target tree is incor-
rect. The rules which are extracted from such pairs
can be harmful. To select rules which are use-
ful for error correction, we define a score function
which is based on the occurrence frequencies of
elementary trees in the treebank. The score func-
tion is defined as follows:

Score(⟨t, t′⟩) =
f(t′)

f(t) + f(t′)

where f(·) is the occurrence frequency in the tree-
bank. The score function ranges from 0 to 1. We
assume that the occurrence frequency of an ele-
mentary tree matching incorrect parse trees is very
low. According to this assumption, the score func-
tion Score(⟨t, t′⟩) is high when the source ele-
mentary tree t matches incorrect parse trees and
the target elementary tree t′ matches correct parse
trees. Therefore, STSG rules with high scores are
regarded to be useful for error correction.

4 An Experiment

To evaluate the effectiveness of our method, we
conducted an experiment using the Penn Treebank
(Marcus et al., 1993).

We used 49208 sentences in Wall Street Journal
sections. We induced STSG rules by applying our
method to the corpus. We obtained 8776 rules. We

PRN
, S
NP ,

PRN S
NP
NP

VP
S

NP VP

NP
NP NP

IN NP

NP
NP PP

IN NP

(1) (2)

(4)

source target

VP
, S ,
NP VP

(3) PP
IN NNSDT

PP
IN NP

DT NNS

Figure 6: Examples of error correction rules in-
duced from the Penn Treebank

measured the precision of the rules. The precision
is defined as follows:

precision =
of the positions where an error is corrected

of the positions to which some rule is applied

We manually checked whether each rule appli-
cation corrected an error, because the corrected
treebank does not exist2. Furthermore, we only
evaluated the first 100 rules which are ordered by
the score function described in Section 3.3, since
it is time-consuming and expensive to evaluate all
of the rules. These 100 rules were applied at 331
positions. The precision of the rules is 71.9%. For
each rule, we measured the precision of it. 70 rules
achieved 100% precision. These results demon-
strate that our method can correct syntactic anno-
tation errors with high precision. Moreover, 30
rules of the 70 rules transformed bracketed struc-
tures. This fact shows that the treebank contains
structural errors which cannot be dealt with by the
previous methods.

Figure 6 depicts examples of error correction
rules which achieved 100% precision. Rule (1),
(2) and (3) are rules which transform bracketed
structures. Rule (4) simply replaces a node la-
bel. Rule (1) corrects an erroneous position of a
comma (see Figure 7 (a)). Rule (2) deletes a use-
less node NP in a subject position (see Figure 7
(b)). Rule (3) inserts a node NP (see Figure 7 (c)).
Rule (4) replaces a node label NP with the cor-
rect label PP (see Figure 7 (d)). These examples
demonstrate that our method can correct syntactic
annotation errors.

Figure 8 depicts an example where our method
detected an annotation error but could not correct
it. To correct the error, we need to attach the node

2This also means that we cannot measure the recall of the
rules.

77

PRN
, S

NP ,VP
I think

PRN
, S

NP
,

VP
I think

NP

NP
S

VP

is one good one

all you need

NP
S

VP

is one good oneall you need

IN
PP

NNS
of

DT

the respondents

IN
PP

NNSof DT
the respondents

NP

NP
NP

NP

the U.S.

only two or three other major banks
IN NP

in

NP
NP

PP

the U.S.

only two or three other major banks
IN NP

in

(a) (b)

(c)

(d)

Figure 7: Examples of correcting syntactic annotation errors

S
PP SBAR,

IN
At

NP

NP

CD
10:33

,

S
PP SBAR,

IN
At

NP
CD

10:33

,

when ... when ...

Figure 8: An example where our method detected
an annotation error but could not correct it

SBAR under the node NP. We found that 22 of the
rule applications were of this type.

Figure 9 depicts a false positive example
where our method mistakenly transformed a cor-
rect syntactic structure. The score of the rule
is very high, since the source elementary tree
(TOP (NP NP VP .)) is less frequent. This
example shows that our method has a risk of
changing correct annotations of less frequent syn-
tactic structures.

5 Conclusion

This paper proposes a method of correcting er-
rors in a treebank by using a synchronous tree
substitution grammar. Our method constructs a
pseudo parallel corpus from the treebank and ex-
tracts STSG rules from the parallel corpus. The
experimental result demonstrates that we can ob-
tain error correction rules with high precision.

TOP

NP .VP

based on quotations at
five major banks

The average of interbank offered rates

NP

TOP

NP .VP

based on quotations at
five major banks

The average of interbank offered rates

S

Figure 9: A false positive example where a correct
syntactic structure was mistakenly transformed

In future work, we will explore a method of in-
creasing the recall of error correction by construct-
ing a wide-coverage STSG.

Acknowledgements

This research is partially supported by the Grant-
in-Aid for Scientific Research (B) (No. 22300051)
of JSPS and by the Kayamori Foundation of Infor-
mational Science Advancement.

78

References
Adriane Boyd, Markus Dickinson, and Detmar Meur-

ers. 2008. On detecting errors in dependency tree-
banks. Research on Language and Computation,
6(2):113–137.

Trevor Cohn and Mirella Lapata. 2009. Sentence com-
pression as tree transduction. Journal of Artificial
Intelligence Research, 34(1):637–674.

Markus Dickinson and Detmar Meurers. 2003a. De-
tecting errors in part-of-speech annotation. In Pro-
ceedings of the 10th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 107–114.

Markus Dickinson and Detmar Meurers. 2003b. De-
tecting inconsistencies in treebanks. In Proceedings
of the Second Workshop on Treebanks and Linguistic
Theories.

Markus Dickinson and W. Detmar Meurers. 2005.
Prune diseased branches to get healthy trees! how
to find erroneous local trees in a treebank and why
it matters. In Proceedings of the 4th Workshop on
Treebanks and Linguistic Theories.

Jason Eisner. 2003. Learning non-isomorphic tree
mappings for machine translation. In Proceedings of
the 41st Annual Meeting of the Association for Com-
putational Linguistics, Companion Volume, pages
205–208.

Eleazar Eskin. 2000. Detecting errors within a corpus
using anomaly detection. In Proceedings of the 1st
North American chapter of the Association for Com-
putational Linguistics Conference, pages 148–153.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: the Penn Treebank. Computa-
tional Linguistics, 19(2):310–330.

Masaki Murata, Masao Utiyama, Kiyotaka Uchimoto,
Hitoshi Isahara, and Qing Ma. 2005. Correction of
errors in a verb modality corpus for machine transla-
tion with a machine-learning method. ACM Trans-
actions on Asian Language Information Processing,
4(1):18–37.

Tetsuji Nakagawa and Yuji Matsumoto. 2002. Detect-
ing errors in corpora using support vector machines.
In Proceedings of the 19th Internatinal Conference
on Computatinal Linguistics, pages 709–715.

Tylman Ule and Kiril Simov. 2004. Unexpected pro-
ductions may well be errors. In Proceedings of 4th
International Conference on Language Resources
and Evaluation, pages 1795–1798.

79

