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Abstract

An important relation in information ex-
traction is the part-whole relation. On-
tological studies mention several types of
this relation. In this paper, we show
that the traditional practice of initializ-
ing minimally-supervised algorithms with
a single set that mixes seeds of different
types fails to capture the wide variety of
part-whole patterns and tuples. The re-
sults obtained with mixed seeds ultimately
converge to one of the part-whole relation
types. We also demonstrate that all the
different types of part-whole relations can
still be discovered, regardless of the type
characterized by the initializing seeds. We
performed our experiments with a state-of-
the-art information extraction algorithm.

1 Introduction

A fundamental semantic relation in many dis-
ciplines such as linguistics, cognitive science,
and conceptual modelling is the part-whole rela-
tion, which exists between parts and the wholes
they compise (Winston et al., 1987; Gerstl and
Pribbenow, 1995). Different types of part-whole
relations, classified in various taxonomies, are
mentioned in literature (Winston et al., 1987;
Odell, 1994; Gerstl and Pribbenow, 1995; Keet
and Artale, 2008). The taxonomy of Keet and Ar-
tale (2008), for instance, distinguishes part-whole
relations based on their transitivity, and on the
semantic classes of entities they sub-categorize.
Part-whole relations are also crucial for many in-
formation extraction (IE) tasks (Girju et al., 2006).
Annotated corpora and semantic dictionaries used
in IE, such as the ACE corpus1 and WordNet (Fell-
baum, 1998), include examples of part-whole re-
lations. Also, previous relation extraction work,

1http://projects.ldc.upenn.edu/ace/

such as Berland and Charniak (1999) and Girju et
al. (2006), have specifically targeted the discovery
of part-whole relations from text. Furthermore,
part-whole relations are de-facto benchmarks for
evaluating the performance of general relation ex-
traction systems (Pantel and Pennacchiotti, 2006;
Beamer et al., 2008; Pyysalo et al., 2009). How-
ever, these relation extraction efforts have over-
looked the ontological distinctions between the
different types of part-whole relations. They as-
sume the existence of a single relation, subsuming
the different part-whole relation types.

In this paper, we show that enforcing the onto-
logical distinctions between the different types of
part-whole relations enable information extraction
systems to capture a wider variety of both generic
and specialised part-whole lexico-syntactic pat-
terns and tuples. Specifically, we address 3 major
questions.

1. Is information extraction (IE) harder when
learning the individual types of part-whole
relations? That is, we determine whether the
performance of state-of-the-art IE systems in
learning the individual part-whole relation
types increases (due to more coherency in
the relations’ linguistic realizations) or drops
(due to fewer examples), compared to the tra-
ditional practice of considering a single part-
whole relation.

2. Are the patterns and tuples discovered when
focusing on a specific part-whole relation
type confined to that particular type? That
is, we investgate whether IE systems discover
examples representative of the different types
by targetting one particular part-whole rela-
tion type.

3. Are more distinct examples discovered when
IE systems learn the individual part-whole re-
lation types? That is, we determine whether
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a wider variety of unique patterns and tuples
are extracted when IE systems target the dif-
ferent types of part-whole relations instead of
considering a single part-whole relation that
subsumes all the different types.

To answer these questions, we bootstrapped
a minimally-supervised relation extraction algo-
rithm, based on Espresso (Pantel and Pennac-
chiotti, 2006), with different seed-sets for the vari-
ous types of part-whole relations, and analyzed the
harvested tuples and patterns.

2 Previous Work

Investigations on the part-whole relations span
across many disciplines, such as conceptual mod-
eling (Artale et al., 1996; Keet, 2006; Keet and
Artale, 2008), which focus on the ontological
aspects, and linguistics and cognitive sciences,
which focus on natural language semantics. Sev-
eral linguistically-motivated taxonomies (Odell,
1994; Gerstl and Pribbenow, 1995), based on the
work of Winston et al. (1987), have been proposed
to clarify the semantics of the different part-whole
relations types across these various disciplines.
Keet and Artale (2008) developed a formal taxon-
omy, distinguishing transitive mereological part-
whole relations from intransitive meronymic ones.
Meronymic relations identified are: 1) member-
of, between a physical object (or role) and an ag-
gregation, e.g. player-team, 2) constituted-of, be-
tween a physical object and an amount of mat-
ter e.g. clay-statue, 3) sub-quantity-of, between
amounts of matter or units, e.g. oxygen-water
or m-km, and 4)participates-in, between an entity
and a process e.g. enzyme-reaction. Mereologi-
cal relations are: 1)involved-in, between a phase
and a process, e.g. chewing-eating, 2) located-
in, between an entity and its 2-dimensional re-
gion, e.g. city-region, 3)contained-in, between
an entity and its 3-dimensional region, e.g.tool-
trunk, and 4)structural part-of, between integrals
and their (functional) components, e.g. engine-
car. This taxonomy further discriminates between
part-whole relation types by enforcing semantical
selectional restrictions, in the form of DOLCE on-
tology (Gangemi et al., 2002) classes, on their en-
tities.

In NLP, information extraction (IE) techniques,
for discovering part-whole relations from text have
also been developed. Berland and Charniak (1999)
use manually-crafted patterns, similar to Hearst

(1992), and on initial “seeds” denoting “whole”
objects (e.g. building) to harvest possible “part”
objects (e.g. room) from the North Americal
News Corpus (NANC) of 1 million words. They
rank their results with measures like log-likelihood
(Dunning, 1993), and report a maximum accuracy
of 70% over their top-20 results. In the super-
vised approaches in Girju et al. (2003) and Girju
et al. (2006), lexical patterns expressing part-
whole relations between WordNet concept pairs
are manually extracted from 20,000 sentences of
the L.A Times and SemCor corpora (Miller et
al., 1993), and used to generate a training cor-
pus, with manually-annotated positive and nega-
tive examples of part-whole relations. Classifica-
tion rules, induced over the training data, achieve
a precision of 80.95% and recall of 75.91% in pre-
dicting whether an unseen pattern encode a part-
whole relation. Van Hage et al. (2006) acquire
503 part-whole pairs from dedicated thesauri (e.g.
AGROVOC2) to learn 91 reliable part-whole pat-
terns. They substituted the patterns’ “part” ar-
guments with known entities to formulate web-
search queries. Corresponding “whole” entities
were then discovered from documents in the query
results with a precision of 74%. The part-whole
relation is also a benchmark to evaluate the perfor-
mance of general information extraction systems.
The Espresso algorithm (Pantel and Pennacchiotti,
2006) achieves a precision of 80% in learning part-
whole relations from the Acquaint (TREC-9) cor-
pus of nearly 6M words. Despite the reasonable
performance of the above IE systems in discov-
ering part-whole relations, they overlook the on-
tological distinctions between the different rela-
tion types. For example, Girju et al. (2003) and
Girju et al. (2006) assume a single part-whole re-
lation, encompassing all the different types men-
tioned in the taxonomy of Winston et al. (1987).
Similarly, the minimally-supervised Espresso al-
gorithm (Pantel and Pennacchiotti, 2006) is ini-
tialized with a single set that mixes seeds of
heterogeneous types, such as leader-panel and
oxygen-water, which respectively correspond to
the member-of and sub-quantity-of relations in the
taxonomy of Keet and Artale (2008).

2http://aims.fao.org/website/
AGROVOC-Thesaurus/sub
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3 Methodology

Our aim is to compare the relations harvested
when a minimally-supervised IE algorithm is ini-
tialized with separate sets of seeds for each type of
part-whole relation, and when it is initialized fol-
lowing the traditional practice of a single set that
mixes seeds of the different types. To distinguish
between types of part-whole relations, we commit
to the taxonomy of Keet and Artale (2008) (Keet’s
taxonomy), which uses sound ontological for-
malisms to unambiguously discrimate the relation
types. Also, this taxonomy classifies the various
part-whole relations introduced in literature, in-
cluding ontologically-motivated mereological re-
lations and linguistically-motivated meronymic
ones. We adopt a 3-step approach to address our
questions from section 1.

1. Define prototypical seeds (part-whole tuples)
as follows:

• (Separate) sets of seeds for each type of
part-whole relation in Keet’s taxonomy.
• A single set that mixes seeds denot-

ing all the different part-whole relations
types.

2. Part-whole relations extraction from a corpus
by initializing a minimally-supervised IE al-
gorithm with the seed-sets

3. Evaluation of the harvested relations to de-
termine performance gain/loss, types of part-
whole relations extracted, and distinct and
unique patterns and tuples discovered.

The corpora and IE algorithm we used, and the
seed-sets construction are described below. Re-
sults are presented in the next section.

3.1 Corpora
We used the English and Dutch Wikipedia texts
since their broad-coverage and size ensures that
they include sufficient lexical realizations of the
different types of part-whole relations. Wikipedia
has also been targeted by recent IE efforts (Nguyen
et al., 2007; Wu and Weld, 2007). However, while
they exploited the structured features (e.g. in-
foboxes), we only consider the unstructured texts.
The English corpus size is approximately 470M
words (∼ 80% of the August 2007 dump), while
for Dutch, we use the full text collection (Febru-
ary 2008 dump) of approximately 110M words.

We parsed the English and Dutch corpora respec-
tively with the Stanford3 (Klein and Manning,
2003) and the Alpino4 (van Noord, 2006) parsers,
and formalized the relations between terms (enti-
ties) as dependency paths. A dependency path is
the shortest path of lexico-syntactic elements, i.e.
shortest lexico-syntactic pattern, connecting enti-
ties (proper and common nouns) in their parse-
trees. Such a formalization has been successfully
employed in previous IE tasks (see Stevenson and
Greenwood (2009) for an overview). Compared
to traditional surface-pattern representations, used
by Pantel and Pennacchiotti (2006), dependency
paths abstract from surface texts to capture long
range dependencies between terms. They also al-
leviate the manual authoring of large numbers of
surface patterns. In our formalization, we substi-
tute entities in the dependency paths with generic
placeholders PART and WHOLE. Below, we show
two dependency paths (1-b) and (2-b), respectively
derived from English and Dutch Wikipedia sen-
tences (1-a) and (2-a), and denoting the relations
between sample-song, and alkaloı̈de-plant.

(1) a. The song “Mao Tse Tung Said” by
Alabama 3 contains samples of a
speech by Jim Jones

b. WHOLE+nsubj← contains→ dobj+PART

(2) a. Alle delen van de planten bevatten al-
kaloı̈den en zijn daarmee giftig (All
parts of the plants contain alkaloids
and therefore are poisonous)

b. WHOLE+obj1+van+mod+deel+su ←
bevat→ obj1+PART

In our experiments, we only consider those en-
tity pairs (tuples), patterns, and co-occuring pairs-
patterns with a minimum frequency of 10 in the
English corpus, and 5 in the Dutch corpus. Statis-
tics on the number of tuples and patterns preserved
after applying the frequency cut-off are given in
Table 1.

3.2 Information Extraction Algorithm

As IE algorithm for extracting part-whole rela-
tions from our texts, we relied on Espresso, a
minimally-supervised algorithm, as described by
Pantel and Pennacchiotti (2006). They show

3http://nlp.stanford.edu/software/
lex-parser.shtml

4http://www.let.rug.nl/˜vannoord/alp/
Alpino
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English Dutch
words 470.0 110.0
pairs 328.0 28.8
unique pairs 6.7 1.4
patterns 238.0 54.0
unique patterns 2.0 0.9

Table 1: Corpus Statistics in millions

that the algorithm achieves state-of-the-art perfor-
mance when initialized with relatively small seed-
sets over the Acquaint corpus (∼ 6M words). Re-
call is improved with web search queries as addi-
tional source of information.

Espresso extracts surface patterns connecting
the seeds (tuples) in a corpus. The reliability of
a pattern p, r(p), given a set of input tuples I , is
computed using (3), as its average strength of as-
sociation with each tuple,i, weighted by each tu-
ple’s reliability, rι(i).

(3) rπ(p) =

∑
i∈I

(
pmi(i,p)
maxpmi×rι(i)

)
|I|

In this equation, pmi(i, p) is the pointwise mutual
information score (Church and Hanks, 1990) be-
tween a pattern, p (e.g. consist-of), and a tuple,
i (e.g. engine-car), and maxpmi is the maximum
PMI score between all patterns and tuples. The re-
liability of the initializing seeds is set to 1.

The top-k most reliable patterns are selected to
find new tuples. The reliability of each tuple i,
rι(i) is computed according to (4), where P is the
set of harvested patterns. The top-m most reliable
tuples are used to infer new patterns.

(4) rι(i) =

∑
i∈I

(
pmi(i,p)
maxpmi×rπ(p)

)
|P |

The recursive discovery of patterns from tuples
and vice-versa is repeated until a threshold num-
ber of patterns and/or tuples have been extracted.
In our implementation, we maintain the core of the
original Espresso algorithm, which pertains to es-
timating the reliability of patterns and tuples.

Pantel and Pennacchiotti (2006) mention that
their method is independent of the way patterns
are formulated. Thus, instead of relying on surface
patterns, we use dependency paths (as described
above). Another difference is that while Pantel and
Pennacchiotti (2006) complement their small cor-
pus with documents retrieved from the web, we
only rely on patterns extracted from our (much

larger) corpora. Finally, we did not apply the dis-
counting factor suggested in Pantel and Pennac-
chiotti (2006) to correct for the fact that PMI over-
estimates the importance of low-frequency events.
Instead, as explained above, we applied a general
frequency cut-off.5

3.3 Seed Selection
Initially,we selected seeds from WordNet (Fell-
baum, 1998) (for English) and EuroWordNet
(Vossen, 1998) (for Dutch) to initialize the IE al-
gorithm. However, we found that these pairs,
such as acinos-mother of thyme or radarscherm-
radarapparatuur (radar screen - radar equipment,
hardly co-occured with reasonable frequency in
Wikipedia sentences, hindering pattern extraction.
We therefore adopted the following strategy.

We searched our corpora for archetypal pat-
terns, e.g. contain , which characterize all the dif-
ferent types of part-whole relations. The tuples
sub-categorized by these patterns in the English
texts were automatically6 typed to appropriate
DOLCE ontology7 classes, corresponding to those
employed by Keet and Artale for constraining the
entity pairs participating in different types of part-
whole relations. The types of part-whole relations
instantiated by the tuples could then be determined
based on their ontological classes. Separate sets of
20 tuples, with each set corresponding to a specific
relation type in the taxonomy of Keet and Artale
(Keet’s taxonomy), were then created. For exam-
ple, the English Wikipedia tuple t1 =actor-cast
was used as a seed to discover member-of part-
whole relations since both its elements were typed
to the SOCIAL OBJECT class of the DOLCE ontol-
ogy, and according to Keet’s taxonomy, they in-
stantiate a member-of relation. Seeds for extract-
ing relations from the Dutch corpus were defined
in a similar way, except that we manually deter-
mined their ontological classes based on the class
glossary of DOLCE.

Below, we only report on the member-of and
sub-quantity-of meronymic relations, and on the
located-in, contained-in and structural part-of
mereological relations. We were unable to find
sufficient seeds for the constituted-of meronymic

5We experimented with the suggested discounting factor
for PMI, but were not able to improve over the accuracy scores
reported later.

6Using the Java-OWL API, from http://protege.
stanford.edu/plugins/owl/api/

7OWL Version 0.72, downloaded from http://www.
loa-cnr.it/DOLCE.html/
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Lg Part Whole # Type

EN grave church 155 contain
NL beeld kerk 120 contain

(statue) (church)

EN city region 3735 located
NL abdij gemeente 36 located

(abbey) (community)

EN actor cast 432 member
NL club voetbal bond 178 member

(club) (soccer union)

EN engine car 3509 structural
NL geheugen computer 14 structural

(memory) (computer)

EN alcohol wine 260 subquant
NL alcohol bier 28 subquant

(alcohol) (beer)

Table 2: Seeds used for learning part-whole rela-
tions (contained-in, located-in, member-of, struc-
tural part-of, sub-quantity-of).

relations (e.g. clay-statue). Also, we did not ex-
periment with the participates-in and involved-in
relations since their lexical realizations in our cor-
pora are sparse, and they contain at least one ver-
bal argument, whereas we only targeted patterns
connecting nomimals. Sample seeds, their corpus
frequency, and the part-whole relation type they
instantiate from the English (EN) and Dutch (NL)
corpora are illustrated in Table 2. Besides the
five specialized seed-sets of 20 prototypical tuples
for the aforementioned relations, we also defined
a general set of mixed seeds, which combines four
seeds from each of the specialized sets.

4 Experiments and Evaluation

We initialized our IE algorithm with the seed-sets
to extract part-whole relations from our corpora.
The same parameters as Pantel and Pennacchiotti
(2006) were used. That is, the 10 most reliable
patterns inferred from the initial seeds are boot-
strapped to induce 100 part-whole tuples. In each
subsequent iteration, we learn one additional pat-
tern and 100 additional tuples. We evaluated our
results after 5 iterations since the performance in
later iterations was almost constant. The results
are discussed next.

meronomic mereological
memb subq cont struc locat gen

EN 0.67 0.74 0.70 0.82 0.75 0.80
NL 0.68 0.60 0.60 0.60 0.70 0.71

Table 3: Precision for seed-sets representing spe-
cific types of part-whole relations (member-of,
sub-quantity-of, contained-in, structural part-of
and located-in), and for the general set composed
of all types.

4.1 Precision of Extracted Relations

Two human judges manually evaluated the tuples
extracted from the English and Dutch corpora per
seed-set in each iteration of our algorithm. Tuples
that unambiguously instantiated part-whole rela-
tions were considered true positives. Those that
did not were considered false positives. Ambigu-
ous tuples were discarded. The precision of the
tuples discovered by the different seed-sets in the
last iteration of our algorithm are in Table 3.

These results reveal that the precision of har-
vested tuples varies depending on the part-whole
relation type that the initializing seeds denote.
Mereological seeds (cont, struct, locat sets) out-
performed their meronymic counterparts (memb,
subq) in extracting relations with higher precision
from the English texts. This could be attributed to
their formal ontological grounding, making them
less ambiguous than the linguistically-motivated
meronymic relations (Keet, 2006; Keet and Ar-
tale, 2008). The precision variations were less dis-
cernible for tuples extracted from the Dutch cor-
pus, although the best precision was still achieved
with mereological located-in seeds. We also no-
ticed that the precision of tuples extracted from
both the English and Dutch corpora by the gen-
eral set of mixed seeds was as high as the max-
imum precision obtained by the individual sets
of specialized seeds over these two corpora, i.e.
0.80 (general seeds) vs. 0.82 (structural part-
of seeds) for English, and 0.71 (general seeds)
vs. 0.70 (located-in seeds) for Dutch. Based
on these findings, we address our first question,
and conclude that 1) the type of relation instan-
tiated by the initializing seeds affects the perfor-
mance of IE algorithms, with mereological seeds
being in general more fertile than their meronymic
counterparts, and generating higher-precision tu-
ples; 2) the precision achieved when initializing
IE algorithms with a general set, which mixes
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seeds of heterogeneous part-whole relation types,
is comparable to the best results obtained with in-
dividual sets of specialized seeds, denoting spe-
cific part-whole relations. An evaluation of the
patterns and tuples extracted indicated consider-
able precision drop between successive iterations
of our algorithm. This appears to be due to se-
mantic drift (McIntosh and Curran, 2009), where
highly-ambiguous patterns promote incorrect tu-
ples , which in turn, compound the precision loss.

4.2 Types of Extracted Relations
Initializing our algorithm with seeds of a particular
type always led to the discovery of tuples charac-
terizing other types of part-whole relations in the
English corpus. This can be explained by proto-
typical patterns, e.g. “include”, generated regard-
less of the seeds’ types, and which are highy cor-
related with, and hence, trigger tuples denoting
other part-whole relation types. An almost sim-
ilar observation was made for the Dutch corpus,
except that tuples instantiating the member-of re-
lation could only be learnt using initial seeds of
that particular type (i.e. member-of). Upon in-
specting our results, it was found that this phe-
nomenon was due to the distinct and specific pat-
terns, such as “treedt toe tot” (“become member
of”), which linguistically realize the member-of re-
lations in the Dutch corpus. Thus, initializing our
IE algorithm with seeds that instantiate relations
other than member-of fails to detect these unique
patterns, and fails to subsequently discover part-
whole tuples describing the member-of relations.
Our findings are illustrated in Table 4, where each
cell lists a tuple of a particular type (column),
which was harvested from seeds of a given type
(row). These results answer our second question.

4.3 Distinct Patterns and Tuples
We address our third question by comparing the
output of our algorithm to determine whether the
results obtained by initializing with the individual
specialized seeds were (dis)similar and/or distinct.
Each result set consisted of maximally 520 tuples
(including 20 initializing seeds) and 15 lexico-
syntactic patterns, obtained after five iterations.

Tuples extracted from the English corpus using
the member-of and contained-in seed-sets exhib-
ited a high degree of similarity, with 465 com-
mon tuples discovered by both sets. These iden-
tical tuples were also assigned the same ranks (re-
liability) in the results generated by the member-

of and contained-in seeds, with a Spearman rank
correlation of 0.82 between their respective out-
puts. This convergence was also reflected in
the fact that the member-of and contained-in
seeds generated around 80% of common pat-
terns. These patterns were mostly prototypi-
cal ones indicative of part-whole relations, such
as WHOLE+nsubj← include→ dobj+PART (“in-
clude”) and their cognates involving passive forms
and relative clauses. However, the specialized
seeds also generated distinct patterns, like “joined
as” and “released with” for the member-of and
contained-in seeds respectively.

The most distinct tuples and patterns were har-
vested with the sub-quantity-of, structural part-of,
and located-in seeds. Negative Spearman corre-
lation scores were obtained when comparing the
results of these three sets among themselves, and
with the results of the member-of and contained-
in seeds, indicating insignificant similarity and
overlap. Examining the patterns harvested by the
sub-quantity-of, structural part-of, and located-in
seeds revealed a high prominence of specialized
and unique patterns, which specifically character-
ize these relations. Examples of such patterns in-
clude “made with”, “released with” and “found
in”, which lexically realize the sub-quantity-of,
structural part-of, and located-in relations respec-
tively.

For the Dutch corpus, the seeds that generated
the most similar tuples were those correspond-
ing to the sub-quantity-of, contained-in, and struc-
tural part-of relations, with 490 common tuples
discovered, and a Spearman rank correlation in the
range of 0.89-0.93 between their respective out-
puts. As expected, these seeds also led to the dis-
covery of a substantial number of common and
prototypical part-whole patterns. Examples in-
clude “bevat” (“contain”), “omvat” (“comprise”),
and their variants. The most distinct results were
harvested by the located-in and member-of seeds,
with negative Spearman correlation scores be-
tween the output tuples indicating hardly any over-
lap. We also found out that the patterns harvested
by the located-in and member-of seeds character-
istically pertained to these relations. Example of
such patterns include “ligt in” (“lie in”), “is gele-
gen in” (“is located in”), and “treedt toe tot” (“be-
come member of”), respectively describing the
located-in and member-of relations.

Thus, we observed that 1) tuples harvested from
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meronomic mereological
Tuples→ member subquant contained struct located

Seeds↓

EN member ship-convoy alcohol-wine card-deck proton-nucleus lake-park
subquant aircraft-fleet moisture-soil building-complex engine-car commune-canton
contained aircraft-fleet alcohol-wine relic-church base-spacecraft campus-city
structural brother-family mineral-bone library-building inlay-fingerboard hamlet-town
located performer-cast alcohol-blood artifact-museum chassis-car city-shore

NL member sporter-ploeg helium-atmosfeer stalagmieten-grot shirt-tenue boerderij-dorp
(athlete-team) (helium-atmosphere) (stalagnites-cave) (shirt-outfit) (farm-village)

subquant — vet-kaas pijp orgel-kerk kam-gitaar paleis-stad
(fat-cheese) (pipe-organ-church) (bridge-guitar) (palace-city)

contained — tannine-wijn kamer-toren atoom-molecule paleis-stad
(tannine-wine) (room-tower) (atom-molecule) (palace-city)

structural — kinine-tonic beeld-kerk wervel-ruggengraat paleis-stad
(quinine-tonic) statue-church) (vertebra-backbone) (palace-city)

located — — kunst werk-kathedraal poort-muur metro station-wijk
(work of art-cathedral) (gate-wall) (metro station-quarter)

Table 4: Sample tuples found per relation type.

both the English and Dutch corpora by seeds in-
stantiating a single particular type of part-whole
relation highly correlated with tuples discovered
by at least one other type of seeds (member-of
and contained-in for English, and sub-quantity-
of, contained-in and structural part-of for Dutch);
2) some part-whole relations are manifested by a
wide variety of specialized patterns (sub-quantity-
of, structural part-of, and located-in for English,
and located-in and member-of for Dutch).

Finally, instead of a single set that mixes seeds
of different types, we created five such general
sets by picking four different seeds from each of
the specialized sets, and used them to initialize our
algorithm. When examining the results of each of
the five general sets, we found out that they were
unstable, and always correlated with the output of
a different specialized set.

Based on these findings, we believe that the tra-
ditional practice of initializing IE algorithms with
general sets that mix seeds denoting different part-
whole relation types leads to inherently unstable
results. As we have shown, the relations extracted
by combining seeds of heterogeneous types almost
always converge to one specific part-whole rela-
tion type, which cannot be conclusively predicted.
Furthermore, general seeds are unable to capture
the specific and distinct patterns that lexically re-
alize the individual types of part-whole relations.

5 Conclusions

In this paper, we have investigated the effect of
ontologically-motivated distinctions in part-whole
relations on IE systems that learn instances of

these relations from text.
We have shown that learning from specialized

seeds-sets, denoting specific types of the part-
whole relations, results in precision that is as high
as or higher than the precision achieved with a
general set that mixes seeds of different types.
By comparing the outputs generated by different
seed-sets, we observed that the tuples learnt with
seeds denoting a specific part-whole relation type
are not confined to that particular type. In most
case, we are still able to discover tuples across
all the different types of part-whole relations, re-
gardless of the type instantiated by the initializing
seeds. Most importantly, we demonstrated that IE

algorithms initialized with general sets of mixed
seeds harvest results that tend to converge towards
a specific type of part-whole relation. Conversely,
when starting with seeds representing a specific
type, it is likely to discover tuples and patterns
that are completely distinct from those found by
a mixed seed-set.

Our results also illustrate that the outputs of IE

algorithms are heavily influenced by the initializ-
ing seeds, concurring with the findings of McIn-
tosh and Curran (2009). We believe that our re-
sults show a drastic form of this phenomenon:
given a set of mixed seeds, denoting heteroge-
neous relations, the harvested tuples may converge
towards any of the relations instantiated by the
seeds. Predicting the convergent relation is in
usual cases impossible, and may depend on factors
pertaining to corpus characteristics. This instabil-
ity strongly suggests that seeds instantiating differ-
ent types of relations should not be mixed, partic-
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ularly when learning part-whole relations, which
are characterized by many subtypes. Seeds should
be defined such that they represent an ontologi-
cally well-defined class, for which one may hope
to find a coherent set of extraction patterns.
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