
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1308–1317,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Extraction and Approximation of Numerical Attributes from the Web

Dmitry Davidov
ICNC

The Hebrew University
Jerusalem, Israel

dmitry@alice.nc.huji.ac.il

Ari Rappoport
Institute of Computer Science

The Hebrew University
Jerusalem, Israel

arir@cs.huji.ac.il

Abstract

We present a novel framework for auto-
mated extraction and approximation of nu-
merical object attributes such as height
and weight from the Web. Given an
object-attribute pair, we discover and ana-
lyze attribute information for a set of com-
parable objects in order to infer the desired
value. This allows us to approximate the
desired numerical values even when no ex-
act values can be found in the text.

Our framework makes use of relation
defining patterns and WordNet similarity
information. First, we obtain from the
Web and WordNet a list of terms similar to
the given object. Then we retrieve attribute
values for each term in this list, and infor-
mation that allows us to compare different
objects in the list and to infer the attribute
value range. Finally, we combine the re-
trieved data for all terms from the list to
select or approximate the requested value.

We evaluate our method using automated
question answering, WordNet enrichment,
and comparison with answers given in
Wikipedia and by leading search engines.
In all of these, our framework provides a
significant improvement.

1 Introduction

Information on various numerical properties of
physical objects, such as length, width and weight
is fundamental in question answering frameworks
and for answering search engine queries. While
in some cases manual annotation of objects with
numerical properties is possible, it is a hard and
labor intensive task, and is impractical for dealing
with the vast amount of objects of interest. Hence,
there is a need for automated semantic acquisition
algorithms targeting such properties.

In addition to answering direct questions, the
ability to make a crude comparison or estimation
of object attributes is important as well. For ex-
ample, it allows to disambiguate relationships be-
tween objects such as X part-of Y or X inside Y.
Thus, a coarse approximation of the height of a
house and a window is sufficient to decide that
in the ‘house window’ nominal compound, ‘win-
dow’ is very likely to be a part of house and not
vice versa. Such relationship information can, in
turn, help summarization, machine translation or
textual entailment tasks.

Due to the importance of relationship and at-
tribute acquisition in NLP, numerous methods
were proposed for extraction of various lexical re-
lationships and attributes from text. Some of these
methods can be successfully used for extracting
numerical attributes. However, numerical attribute
extraction is substantially different in two aspects,
verification and approximation.

First, unlike most general lexical attributes, nu-
merical attribute values are comparable. It usually
makes no sense to compare the names of two ac-
tors, but it is meaningful to compare their ages.
The ability to compare values of different objects
allows to improve attribute extraction precision by
verifying consistency with attributes of other sim-
ilar objects. For example, suppose that for Toy-
ota Corolla width we found two different values,
1.695m and 27cm. The second value can be either
an extraction error or a length of a toy car. Ex-
tracting and looking at width values for different
car brands and for ‘cars’ in general we find:

• Boundaries: Maximal car width is 2.195m,
minimal is 88cm.

• Average: Estimated avg. car width is 1.7m.

• Direct/indirect comparisons: Toyota Corolla
is wider than Toyota Corona.

• Distribution: Car width is distributed nor-
mally around the average.

1308

Usage of all this knowledge allows us to select the
correct value of 1.695m and reject other values.
Thus we can increase the precision of value ex-
traction by finding and analyzing an entire group
of comparable objects.

Second, while it is usually meaningless and im-
possible to approximate general lexical attribute
values like an actor’s name, numerical attributes
can be estimated even if they are not explicitly
mentioned in the text.

In general, attribute extraction frameworks usu-
ally attempt to discover a single correct value (e.g.,
capital city of a country) or a set of distinct correct
values (e.g., actors of a movie). So there is es-
sentially nothing to do when there is no explicit
information present in the text for a given object
and an attribute. In contrast, in numerical attribute
extraction it is possible to provide an approxima-
tion even when no explicit information is present
in the text, by using values of comparable objects
for which information is provided.

In this paper we present a pattern-based frame-
work that takes advantage of the properties of sim-
ilar objects to improve extraction precision and
allow approximation of requested numerical ob-
ject properties. Our framework comprises three
main stages. First, given an object name we uti-
lize WordNet and pattern-based extraction to find
a list of similar objects and their category labels.
Second, we utilize a predefined set of lexical pat-
terns in order to extract attribute values of these
objects and available comparison/boundary infor-
mation. Finally, we analyze the obtained informa-
tion and select or approximate the attribute value
for the given (object, attribute) pair.

We performed a thorough evaluation using three
different applications: Question Answering (QA),
WordNet (WN) enrichment, and comparison with
Wikipedia and answers provided by leading search
engines. QA evaluation was based on a designed
dataset of 1250 questions on size, height, width,
weight, and depth, for which we created a gold
standard and compared against it automatically1.

For WN enrichment evaluation, our framework
discovered size and weight values for 300 WN
physical objects, and the quality of results was
evaluated by human judges. For interactive search,
we compared our results to information obtained
through Wikipedia, Google and Wolfram Alpha.

1This dataset is available in the authors’ websites for the
research community.

Utilization of information about comparable ob-
jects provided a significant boost to numerical at-
tribute extraction quality, and allowed a meaning-
ful approximation of missing attribute values.

Section 2 discusses related work, Section 3 de-
tails the algorithmic framework, Section 4 de-
scribes the experimental setup, and Section 5
presents our results.

2 Related work

Numerous methods have been developed for ex-
traction of diverse semantic relationships from
text. While several studies propose relationship
identification methods using distributional analy-
sis of feature vectors (Turney, 2005), the major-
ity of the proposed open-domain relations extrac-
tion frameworks utilize lexical patterns connect-
ing a pair of related terms. (Hearst, 1992) man-
ually designed lexico-syntactic patterns for ex-
tracting hypernymy relations. (Berland and Char-
niak, 1999; Girju et al, 2006) proposed a set of
patterns for meronymy relations. Davidov and
Rappoport (2008a) used pattern clusters to disam-
biguate nominal compound relations. Extensive
frameworks were proposed for iterative discov-
ery of any pre-specified (e.g., (Riloff and Jones,
1999; Chklovski and Pantel, 2004)) and unspec-
ified (e.g., (Banko et al., 2007; Rosenfeld and
Feldman, 2007; Davidov and Rappoport, 2008b))
relation types.

The majority of the above methods utilize the
following basic strategy. Given (or discovering
automatically) a set of patterns or relationship-
representing term pairs, these methods mine the
web for these patterns and pairs, iteratively obtain-
ing more instances. The proposed strategies gen-
erally include some weighting/frequency/context-
based algorithms (e.g. (Pantel and Pennacchiotti,
2006)) to reduce noise. Some of the methods are
suitable for retrieval of numerical attributes. How-
ever, most of them do not exploit the numerical
nature of the attribute data.

Our research is related to a sub-domain of ques-
tion answering (Prager, 2006), since one of the
applications of our framework is answering ques-
tions on numerical values. The majority of the
proposed QA frameworks rely on pattern-based
relationship acquisition (Ravichandran and Hovy,
2009). However, most QA studies focus on dif-
ferent types of problems than our paper, including
question classification, paraphrasing, etc.

1309

Several recent studies directly target the acqui-
sition of numerical attributes from the Web and
attempt to deal with ambiguity and noise of the
retrieved attribute values. (Aramaki et al., 2007)
utilize a small set of patterns to extract physical
object sizes and use the averages of the obtained
values for a noun compound classification task.
(Banerjee et al, 2009) developed a method for
dealing with quantity consensus queries (QCQs)
where there is uncertainty about the answer quan-
tity (e.g. “driving time from Paris to Nice”). They
utilize a textual snippet feature and snippet quan-
tity in order to select and rank intervals of the
requested values. This approach is particularly
useful when it is possible to obtain a substantial
amount of a desired attribute values for the re-
quested query. (Moriceau, 2006) proposed a rule-
based system which analyzes the variation of the
extracted numerical attribute values using infor-
mation in the textual context of these values.

A significant body of recent research deals with
extraction of various data from web tables and
lists (e.g., (Cafarella et al., 2008; Crestan and
Pantel, 2010)). While in the current research we
do not utilize this type of information, incorpo-
ration of the numerical data extracted from semi-
structured web pages can be extremely beneficial
for our framework.

All of the above numerical attribute extraction
systems utilize only direct information available
in the discovered object-attribute co-occurrences
and their contexts. However, as we show, indirect
information available for comparable objects can
contribute significantly to the selection of the ob-
tained values. Using such indirect information is
particularly important when only a modest amount
of values can be obtained for the desired object.
Also, since the above studies utilize only explic-
itly available information they were unable to ap-
proximate object values in cases where no explicit
information was found.

3 The Attribute Mining Framework

Our algorithm is given an object and an attribute.
In the WN enrichment scenario, it is also given
the object’s synset. The algorithm comprises three
main stages: (1) mining for similar objects and
determination of a class label; (2) mining for at-
tribute values and comparison statements; (3) pro-
cessing the results.

3.1 Similar objects and class label

To verify and estimate attribute values for the
given object we utilize similar objects (co-
hyponyms) and the object’s class label (hyper-
nym). In the WN enrichment scenario we can eas-
ily obtain these, since we get the object’s synset as
input. However, in Question Answering (QA) sce-
narios we do not have such information. To obtain
it we employ a strategy which uses WordNet along
with pattern-based web mining.

Our web mining part follows common pattern-
based retrieval practice (Davidov et al., 2007). We
utilize Yahoo! Boss API to perform search engine
queries. For an object name Obj we query the
Web using a small set of pre-defined co-hyponymy
patterns like “as * and/or [Obj]”2. In the WN en-
richment scenario, we can add the WN class la-
bel to each query in order to restrict results to the
desired word sense. In the QA scenario, if we
are given the full question and not just the (ob-
ject, attribute) pair we can add terms appearing in
the question and having a strong PMI with the ob-
ject (this can be estimated using any fixed corpus).
However, this is not essential.

We then extract new terms from the retrieved
web snippets and use these terms iteratively to re-
trieve more terms from the Web. For example,
when searching for an object ‘Toyota’, we execute
a search engine query [“as * and Toyota”] and
we might retrieve a text snippet containing “. . . as
Honda and Toyota . . . ”. We then extract from this
snippet the additional word ‘Honda’ and use it for
iterative retrieval of additional similar terms. We
attempt to avoid runaway feedback loop by requir-
ing each newly detected term to co-appear with the
original term in at least a single co-hyponymy pat-
tern.

WN class labels are used later for the retrieval
of boundary values, and here for expansion of the
similar object set. In the WN enrichment scenario,
we already have the class label of the object. In the
QA scenario, we automatically find class labels as
follows. We compute for each WN subtree a cov-
erage value, the number of retrieved terms found
in the subtree divided by the number of subtree
terms, and select the subtree having the highest
coverage. In all scenarios, we add all terms found
in this subtree to the retrieved term list. If no WN
subtree with significant (> 0.1) coverage is found,

2“*” means a search engine wildcard. Square brackets
indicate filled slots and are not part of the query.

1310

we retrieve a set of category labels from the Web
using hypernymy detection patterns like “* such
as [Obj]” (Hearst, 1992). If several label candi-
dates were found, we select the most frequent.

Note that we perform this stage only once for
each object and do not need to repeat it for differ-
ent attribute types.

3.2 Querying for values, bounds and
comparison data

Now we would like to extract the attribute values
for the given object and its similar objects. We
will also extract bounds and comparison informa-
tion in order to verify the extracted values and to
approximate the missing ones.

To allow us to extract attribute-specific informa-
tion, we provided the system with a seed set of ex-
traction patterns for each attribute type. There are
three kinds of patterns: value extraction, bounds
and comparison patterns. We used up to 10 pat-
terns of each kind. These patterns are the only
attribute-specific resource in our framework.

Value extraction. The first pattern group,
Pvalues, allows extraction of the attribute values
from the Web. All seed patterns of this group
contain a measurement unit name, attribute name,
and some additional anchoring words, e.g., ‘Obj
is * [height unit] tall’ or ‘Obj width is * [width
unit]’. As in Section 3.1, we execute search en-
gine queries and collect a set of numerical val-
ues for each pattern. We extend this group it-
eratively from the given seed as commonly done
in pattern-based acquisition methods. To do this
we re-query the Web with the obtained (object, at-
tribute value, attribute name) triplets (e.g., ‘[Toy-
ota width 1.695m]’). We then extract new pat-
terns from the retrieved search engine snippets and
re-query the Web with the new patterns to obtain
more attribute values.

We provided the framework with unit names
and with an appropriate conversion table which
allows to convert between different measurement
systems and scales. The provided names include
common abbreviations like cm/centimeter. All
value acquisition patterns include unit names, so
we know the units of each extracted value. At the
end of the value extraction stage, we convert all
values to a single unit format for comparison.

Boundary extraction. The second group,
Pboundary, consists of boundary-detection patterns

like ‘the widest [label] is * [width unit]’. These
patterns incorporate the class labels discovered in
the previous stage. They allow us to find maximal
and minimal values for the object category defined
by labels. If we get several lower bounds and
several upper bounds, we select the highest upper
bound and the lowest lower bound.

Extraction of comparison information. The
third group, Pcompare, consists of comparison pat-
terns. They allow to compare objects directly
even when no attribute values are mentioned. This
group includes attribute equality patterns such as
‘[Object1] has the same width as [Object2]’, and
attribute inequality ones such as ‘[Object1] is
wider than [Object2]’. We execute search queries
for each of these patterns, and extract a set of or-
dered term pairs, keeping track of the relationships
encoded by the pairs.

We use these pairs to build a directed graph
(Widdows and Dorow, 2002; Davidov and Rap-
poport, 2006) in which nodes are objects (not nec-
essarily with assigned values) and edges corre-
spond to extracted co-appearances of objects in-
side the comparison patterns. The directions of
edges are determined by the comparison sign. If
two objects co-appear inside an equality pattern
we put a bidirectional edge between them.

3.3 Processing the collected data

As a result of the information collection stage, for
each object and attribute type we get:
• A set of attribute values for the requested ob-

ject.
• A set of objects similar or comparable to

the requested object, some of them annotated
with one or many attribute values.

• Upper and lowed bounds on attribute values
for the given object category.

• A comparison graph connecting some of the
retrieved objects by comparison edges.

Obviously, some of these components may be
missing or noisy. Now we combine these informa-
tion sources to select a single attribute value for
the requested object or to approximate this value.
First we apply bounds, removing out-of-range val-
ues, then we use comparisons to remove inconsis-
tent comparisons. Finally we examine the remain-
ing values and the comparison graph.

Processing bounds. First we verify that indeed
most (≥ 50%) of the retrieved values fit the re-
trieved bounds. If the lower and/or upper bound

1311

contradicts more than half of the data, we reject
the bound. Otherwise we remove all values which
do not satisfy one or both of the accepted bounds.
If no bounds are found or if we disable the bound
retrieval (see Section 4.1), we assign the maximal
and minimal observed values as bounds.

Since our goal is to obtain a value for the single
requested object, if at the end of this stage we re-
main with a single value, no further processing is
needed. However, if we obtain a set of values or
no values at all, we have to utilize comparison data
to select one of the retrieved values or to approx-
imate the value in case we do not have an exact
answer.

Processing comparisons. First we simplify the
comparison graph. We drop all graph components
that are not connected (when viewing the graph as
undirected) to the desired object.

Now we refine the graph. Note that each graph
node may have a single value, many assigned val-
ues, or no assigned values. We define assigned
nodes as nodes that have at least one value. For
each directed edge E(A → B), if both A and
B are assigned nodes, we check if Avg(A) ≤

Avg(B)3. If the average values violate the equa-
tion, we gradually remove up to half of the highest
values for A and up to half of the lowest values
for B till the equation is satisfied. If this cannot
be done, we drop the edge. We repeat this process
until every edge that connects two assigned nodes
satisfies the inequality.

Selecting an exact attribute value. The goal
now is to select an attribute value for the given
object. During the first stage it is possible that
we directly extract from the text a set of values
for the requested object. The bounds processing
step rejects some of these values, and the com-
parisons step may reject some more. If we still
have several values remaining, we choose the most
frequent value based on the number of web snip-
pets retrieved during the value acquisition stage.
If there are several values with the same frequency
we select the median of these values.

Approximating the attribute value. In the case
when we do not have any values remaining after
the bounds processing step, the object node will
remain unassigned after construction of the com-
parison graph, and we would like to estimate its
value. Here we present an algorithm which allows

3Avg. is of values of an object, without similar objects.

us to set the values of all unassigned nodes, includ-
ing the node of the requested object.

In the algorithm below we treat all node groups
connected by bidirectional (equality) edges as a
same-value group, i.e., if a value is assigned to one
node in the group, the same value is immediately
assigned to the rest of the nodes in the same group.

We start with some preprocessing. We create
dummy lower and upper bound nodes L and U

with corresponding upper/lower bound values ob-
tained during the previous stage. These dummy
nodes will be used when we encounter a graph
which ends with one or more nodes with no avail-
able numerical information. We then connect
them to the graph as follows: (1) if A has no in-
coming edges, we add an edge L → A; (2) if A

has no outgoing edges, we add an edge A → U .
We define a legal unassigned path as a di-

rected path A0 → A1 → . . . → An → An+1

where A0 and An+1 are assigned satisfying
Avg(A0) ≤ Avg(An+1) and A1 . . . An are
unassigned. We would like to use dummy bound
nodes only in cases when no other information is
available. Hence we consider paths L → . . . → U

connecting both bounds are illegal. First we
assign values for all unassigned nodes that belong
to a single legal unassigned path, using a simple
linear combination:
V al(Ai)i∈(1...n) =

n + 1− i

n + 1
Avg(A0) +

i

n + 1
Avg(An+1)

Then, for all unassigned nodes that belong to
multiple legal unassigned paths, we compute node
value as above for each path separately and assign
to the node the average of the computed values.

Finally we assign the average of all extracted
values within bounds to all the remaining unas-
signed nodes. Note that if we have no compari-
son information and no value information for the
requested object, the requested object will receive
the average of the extracted values of the whole set
of the retrieved comparable objects and the com-
parison step will be essentially empty.

4 Experimental Setup

We performed automated question answering
(QA) evaluation, human-based WN enrichment
evaluation, and human-based comparison of our
results to data available through Wikipedia and to
the top results of leading search engines.

1312

4.1 Experimental conditions

In order to test the main system components, we
ran our framework under five different conditions:

• FULL: All system components were used.

• DIRECT: Only direct pattern-based acqui-
sition of attribute values (Section 3.2, value
extraction) for the given object was used, as
done in most general-purpose attribute acqui-
sition systems. If several values were ex-
tracted, the most common value was used as
an answer.

• NOCB: No boundary and no comparison
data were collected and processed (Pcompare

and Pbounds were empty). We only collected
and processed a set of values for the similar
objects.

• NOB: As in FULL but no boundary data was
collected and processed (Pbounds was empty).

• NOC: As in FULL but no comparison data
was collected and processed (Pcompare was
empty).

4.2 Automated QA Evaluation

We created two QA datasets, Web and TREC
based.

Web-based QA dataset. We created QA
datasets for size, height, width, weight, and depth
attributes. For each attribute we extracted from
the Web 250 questions in the following way.
First, we collected several thousand questions,
querying for the following patterns: “How
long/tall/wide/heavy/deep/high is”,“What is the
size/width/height/depth/weight of”. Then we
manually filtered out non-questions and heavily
context-specific questions, e.g., “what is the width
of the triangle”. Next, we retained only a single
question for each entity by removing duplicates.

For each of the extracted questions we manu-
ally assigned a gold standard answer using trusted
resources including books and reliable Web data.
For some questions, the exact answer is the only
possible one (e.g., the height of a person), while
for others it is only the center of a distribution
(e.g., the weight of a coffee cup). Questions
with no trusted and exact answers were eliminated.
From the remaining questions we randomly se-
lected 250 questions for each attribute.

TREC-based QA dataset. As a small comple-
mentary dataset we used relevant questions from
the TREC Question Answering Track 1999-2007.
From 4355 questions found in this set we collected
55 (17 size, 2 weight, 3 width, 3 depth and 30
height) questions.

Examples. Some example questions from our
datasets are (correct answers are in parentheses):
How tall is Michelle Obama? (180cm); How tall
is the tallest penguin? (122cm); What is the height
of a tennis net? (92cm); What is the depth of the
Nile river? (1000cm = 10 meters); How heavy
is a cup of coffee? (360gr); How heavy is a gi-
raffe? (1360000gr = 1360kg); What is the width
of a DNA molecule? (2e-7cm); What is the width
of a cow? (65cm).

Evaluation protocol. Evaluation against the
datasets was done automatically. For each ques-
tion and each condition our framework returned
a numerical value marked as either an exact an-
swer or as an approximation. In cases where no
data was found for an approximation (no similar
objects with values were found), our framework
returned no answer.

We computed precision4, comparing results to
the gold standard. Approximate answers are con-
sidered to be correct if the approximation is within
10% of the gold standard value. While a choice of
10% may be too strict for some applications and
too generous for others, it still allows to estimate
the quality of our framework.

4.3 WN enrichment evaluation

We manually selected 300 WN entities from about
1000 randomly selected objects below the object
tree in WN, by filtering out entities that clearly
do not possess any of the addressed numerical at-
tributes.

Evaluation was done using human subjects. It
is difficult to do an automated evaluation, since
the nature of the data is different from that of the
QA dataset. Most of the questions asked over the
Web target named entities like specific car brands,
places and actors. There is usually little or no vari-
ability in attribute values of such objects, and the
major source of extraction errors is name ambigu-
ity of the requested objects.

WordNet physical objects, in contrast, are much
less specific and their attributes such as size and

4Due to the nature of the task recall/f-score measures are
redundant here

1313

weight rarely have a single correct value, but usu-
ally possess an acceptable numerical range. For
example, the majority of the selected objects like
‘apple’ are too general to assign an exact size.
Also, it is unclear how to define acceptable val-
ues and an approximation range. Crudeness of
desired approximation depends both on potential
applications and on object type. Some objects
show much greater variability in size (and hence a
greater range of acceptable approximations) than
others. This property of the dataset makes it diffi-
cult to provide a meaningful gold standard for the
evaluation. Hence in order to estimate the quality
of our results we turn to an evaluation based on
human judges.

In this evaluation we use only approximate re-
trieved values, keeping out the small amount of
returned exact values5.

We have mixed (Object, Attribute name, At-
tribute value) triplets obtained through each of the
conditions, and asked human subjects to assign
these to one of the following categories:

• The attribute value is reasonable for the given
object.

• The value is a very crude approximation of
the given object attribute.

• The value is incorrect or clearly misleading.

• The object is not familiar enough to me so I
cannot answer the question.

Each evaluator was provided with a random sam-
ple of 40 triplets. In addition we mixed in 5 manu-
ally created clearly correct triplets and 5 clearly in-
correct ones. We used five subjects, and the agree-
ment (inter-annotator Kappa) on shared evaluated
triplets was 0.72.

4.4 Comparisons to search engine output

Recently there has been a significant improvement
both in the quality of search engine results and in
the creation of manual well-organized and anno-
tated databases such as Wikipedia.

Google and Yahoo! queries frequently provide
attribute values in the top snippets or in search
result web pages. Many Wikipedia articles in-
clude infoboxes with well-organized attribute val-
ues. Recently, the Wolfram Alpha computational
knowledge engine presented the computation of
attribute values from a given query text.

5So our results are in fact higher than shown.

Hence it is important to test how well our frame-
work can complement the manual extraction of at-
tributes from resources such as Wikipedia and top
Google snippets. In order to test this, we randomly
selected 100 object-attribute pairs from our Web
QA and WordNet datasets and used human sub-
jects to test the following:

1. Go1: Querying Google for [object-name
attribute-name] gives in some of the first
three snippets a correct value or a good ap-
proximation value6 for this pair.

2. Go2: Querying Google for [object-name
attribute-name] and following the first three
links gives a correct value or a good approxi-
mation value.

3. Wi: There is a Wikipedia page for the given
object and it contains an appropriate attribute
value or an approximation in an infobox.

4. Wf: A Wolfram Alpha query for [object-
name attribute-name] retrieves a correct
value or a good approximation value

5 Results

5.1 QA results

We applied our framework to the above QA
datasets. Table 1 shows the precision and the per-
centage of approximations and exact answers.

Looking at %Exact+%Approx, we can see that
for all datasets only 1-9% of the questions re-
main unanswered, while correct exact answers
are found for 65%/87% of the questions for
Web/TREC (% Exact and Prec(Exact) in the ta-
ble). Thus approximation allows us to answer 13-
24% of the requested values which are either sim-
ply missing from the retrieved text or cannot be de-
tected using the current pattern-based framework.
Comparing performance of FULL to DIRECT, we
see that our framework not only allows an approx-
imation when no exact answer can be found, but
also significantly increases the precision of exact
answers using the comparison and the boundary
information. It is also apparent that both bound-
ary and comparison features are needed to achieve
good performance and that using both of them
achieves substantially better results than each of
them separately.

6As defined in the human subject questionnaire.

1314

FULL DIRECT NOCB NOB NOC

Web QA
Size

%Exact 80 82 82 82 80
Prec(Exact) 76 40 40 54 65
%Approx 16 - 14 14 16
Prec(Appr) 64 - 34 53 46

Height
%Exact 79 84 84 84 79
Prec(Exact) 86 56 56 69 70
%Approx 16 - 11 11 16
Prec(Appr) 72 - 25 65 53

Width
%Exact 74 76 76 76 74
Prec(Exact) 86 45 45 60 72
%Approx 17 - 15 15 17
Prec(Appr) 75 - 26 63 55

Weight
%Exact 71 73 73 73 71
Prec(Exact) 82 57 57 64 70
Prec(Appr) 24 - 22 22 24
%Approx 61 - 39 51 46

Depth
%Exact 82 82 82 82 82
Prec(Exact) 89 60 60 71 78
%Approx 19 - 19 19 19
Prec(Appr) 92 - 58 76 63

Total average
%Exact 77 79 79 79 77
Prec(Exact) 84 52 52 64 71
%Approx 18 - 16 16 19
Prec(Appr) 72 - 36 62 53

TREC QA
%Exact 87 90 90 90 87
Prec(Exact) 100 62 62 84 76
%Approx 13 - 9 9 13
Prec(Appr) 57 - 20 40 57

Table 1: Precision and amount of exact and approximate
answers for QA datasets.

Comparing results for different question types
we can see substantial performance differences be-
tween the attribute types. Thus depth shows much
better overall results than width. This is likely due
to a lesser difficulty of depth questions or to a more
exact nature of available depth information com-
pared to width or size.

5.2 WN enrichment

As shown in Table 2, for the majority of examined
WN objects, the algorithm returned an approxi-
mate value, and only for 13-15% of the objects (vs.
70-80% in QA data) the algorithm could retrieve
exact answers.

Note that the common pattern-based acquisition
framework, presented as the DIRECT condition,
could only extract attribute values for 15% of the
objects since it does not allow approximations and

FULL DIRECT NOCB NOB NOC

Size
%Exact 15.3 18.0 18.0 18.0 15.3
%Approx 80.3 - 38.2 20.0 23.6

Weight
%Exact 11.8 12.5 12.5 12.5 11.8
%Approx 71.7 - 38.2 20.0 23.6

Table 2: Percentage of exact and approximate values for the
WordNet enrichment dataset.

FULL NOCB NOB NOC

Size
%Correct 73 21 49 28
%Crude 15 54 31 49
%Incorrect 8 21 16 19

Weight
%Correct 64 24 46 38
%Crude 24 45 30 41
%Incorrect 6 25 18 15

Table 3: Human evaluation of approximations for the WN
enrichment dataset (the percentages are averaged over the hu-
man subjects).

may only extract values from the text where they
explicitly appear.

Table 3 shows human evaluation results. We
see that the majority of approximate values were
clearly accepted by human subjects, and only 6-
8% were found to be incorrect. We also observe
that both boundary and comparison data signifi-
cantly improve the approximation results. Note
that DIRECT is missing from this table since no
approximations are possible in this condition.

Some examples for WN objects and approx-
imate values discovered by the algorithm are:
Sandfish, 15gr; skull, 1100gr; pilot, 80.25kg. The
latter value is amusing due to the high variabil-
ity of the value. However, even this value is valu-
able, as a sanity check measure for automated in-
ference systems and for various NLP tasks (e.g.,
‘pilot jacket’ likely refers to a jacket used by pi-
lots and not vice versa).

5.3 Comparison with search engines and
Wikipedia

Table 4 shows results for the above datasets in
comparison to the proportion of correct results and
the approximations returned by our framework un-
der the FULL condition (correct exact values and
approximations are taken together).

We can see that our framework, due to its ap-
proximation capability, currently shows signifi-
cantly greater coverage than manual extraction of
data from Wikipedia infoboxes or from the first

1315

FULL Go1 Go2 Wi Wf

Web QA 83 32 40 15 21
WordNet 87 24 27 18 5

Table 4: Comparison of our attribute extraction framework
to manual extraction using Wikipedia and search engines.

search engine results.

6 Conclusion

We presented a novel framework which allows
an automated extraction and approximation of nu-
merical attributes from the Web, even when no ex-
plicit attribute values can be found in the text for
the given object. Our framework retrieves simi-
larity, boundary and comparison information for
objects similar to the desired object, and com-
bines this information to approximate the desired
attribute.

While in this study we explored only several
specific numerical attributes like size and weight,
our framework can be easily augmented to work
with any other consistent and comparable attribute
type. The only change required for incorpora-
tion of a new attribute type is the development of
attribute-specific Pboundary , Pvalues, and Pcompare

pattern groups; the rest of the system remains un-
changed.

In our evaluation we showed that our frame-
work achieves good results and significantly out-
performs the baseline commonly used for general
lexical attribute retrieval7.

While there is a growing justification to rely
on extensive manually created resources such as
Wikipedia, we have shown that in our case auto-
mated numerical attribute acquisition could be a
preferable option and provides excellent coverage
in comparison to handcrafted resources or man-
ual examination of the leading search engine re-
sults. Hence a promising direction would be to
use our approach in combination with Wikipedia
data and with additional manually created attribute
rich sources such as Web tables, to achieve the best
possible performance and coverage.

We would also like to explore the incorpora-
tion of approximate discovered numerical attribute
data into existing NLP tasks such as noun com-
pound classification and textual entailment.

7It should be noted, however, that in our DIRECT base-
line we used a basic pattern-based retrieval strategy; more
sophisticated strategies for value selection might bring better
results.

References

Eiji Aramaki, Takeshi Imai, Kengo Miyo and Kazuhiko
Ohe. 2007 UTH: SVM-based Semantic Relation
Classification using Physical Sizes. Proceedings
of the Fourth International Workshop on Semantic
Evaluations (SemEval-2007).

Somnath Banerjee, Soumen Chakrabarti and Ganesh
Ramakrishnan. 2009. Learning to Rank for Quan-
tity Consensus Queries. SIGIR ’09.

Michele Banko, Michael J Cafarella , Stephen Soder-
land, Matt Broadhead and Oren Etzioni. 2007.
Open information extraction from the Web. IJCAI
’07.

Matthew Berland, Eugene Charniak, 1999. Finding
parts in very large corpora. ACL ’99.

Michael Cafarella, Alon Halevy, Yang Zhang, Daisy
Zhe Wang and Eugene Wu. 2008. WebTables: Ex-
ploring the Power of Tables on the Web. VLDB ’08.

Timothy Chklovski and Patrick Pantel. 2004. VerbO-
cean: mining the Web for fine-grained semantic verb
relations. EMNLP ’04.

Eric Crestan and Patrick Pantel. 2010. Web-Scale
Knowledge Extraction from Semi-Structured Ta-
bles. WWW ’10.

Dmitry Davidov and Ari Rappoport. 2006. Efficient
Unsupervised Discovery of Word Categories Us-
ing Symmetric Patterns and High Frequency Words.
ACL-Coling ’06.

Dmitry Davidov, Ari Rappoport and Moshe Koppel.
2007. Fully unsupervised discovery of concept-
specific relationships by web mining. ACL ’07.

Dmitry Davidov and Ari Rappoport. 2008a. Classifi-
cation of Semantic Relationships between Nominals
Using Pattern Clusters. ACL ’08.

Dmitry Davidov and Ari Rappoport. 2008b. Unsu-
pervised Discovery of Generic Relationships Using
Pattern Clusters and its Evaluation by Automatically
Generated SAT Analogy Questions. ACL ’08.

Roxana Girju, Adriana Badulescu, and Dan Moldovan.
2006. Automatic discovery of part-whole relations.
Computational Linguistics, 32(1).

Marty Hearst, 1992. Automatic acquisition of hy-
ponyms from large text corpora. COLING ’92.

Veronique Moriceau, 2006. Numerical Data Integra-
tion for Cooperative Question-Answering. EACL -
KRAQ06 ’06.

John Prager, 2006. Open-domain question-answering.
In Foundations and Trends in Information Re-
trieval,vol. 1, pp 91-231.

1316

Patrick Pantel and Marco Pennacchiotti. 2006.
Espresso: leveraging generic patterns for automat-
ically harvesting semantic relations. COLING-ACL
’06.

Deepak Ravichandran and Eduard Hovy. 2002 Learn-
ing Surface Text Patterns for a Question Answering
System. ACL ’02.

Ellen Riloff and Rosie Jones. 1999. Learning Dic-
tionaries for Information Extraction by Multi-Level
Bootstrapping. AAAI ’99.

Benjamin Rosenfeld and Ronen Feldman. 2007.
Clustering for unsupervised relation identification.
CIKM ’07.

Peter Turney, 2005. Measuring semantic similarity by
latent relational analysis, IJCAI ’05.

Dominic Widdows and Beate Dorow. 2002. A graph
model for unsupervised Lexical acquisition. COL-
ING ’02.

1317

