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Abstract

Substantial research effort has been in-
vested in recent decades into the com-
putational study and automatic process-
ing of multi-party conversation. While
most aspects of conversational speech
have benefited from a wide availabil-
ity of analytic, computationally tractable
techniques, only qualitative assessments
are available for characterizing multi-party
turn-taking. The current paper attempts to
address this deficiency by first proposing
a framework for computing turn-taking
model perplexity, and then by evaluat-
ing several multi-participant modeling ap-
proaches. Experiments show that direct
multi-participant models do not general-
ize to held out data, and likely never will,
for practical reasons. In contrast, the
Extended-Degree-of-Overlap model rep-
resents a suitable candidate for future
work in this area, and is shown to success-
fully predict the distribution of speech in
time and across participants in previously
unseen conversations.

1 Introduction

Substantial research effort has been invested in
recent decades into the computational study and
automatic processing of multi-party conversation.
Whereas sociolinguists might argue that multi-
party settings provide for the most natural form
of conversation, and that dialogue and monologue
are merely degenerate cases (Jaffe and Feldstein,
1970), computational approaches have found it
most expedient to leverage past successes; these
often involved at most one speaker. Consequently,
even in multi-party settings, automatic systems
generally continue to treat participants indepen-
dently, fusing information across participants rel-
atively late in processing.

This state of affairs has resulted in the near-
exclusion from computational consideration and
from semantic analysis of a phenomenon which
occurs at the lowest level of speech exchange,
namely the relative timing of the deployment of
speech in arbitrary multi-party groups. This phe-
nomenon, the implicit taking of turns at talk
(Sacks et al., 1974), is important because unless
participants adhere to its general rules, a conver-
sation would simply not take place. It is there-
fore somewhat surprising that while most other
aspects of speech enjoy a large base of computa-
tional methodologies for their study, there are few
quantitative techniques for assessing the flow of
turn-taking in general multi-party conversation.

The current work attempts to address this prob-
lem by proposing a simple framework, which, at
least conceptually, borrows quite heavily from the
standard language modeling paradigm. First, it de-
fines the perplexity of a vector-valued Markov pro-
cess whose multi-participant states are a concate-
nation of the binary states of individual speakers.
Second, it presents some obvious evidence regard-
ing the unsuitability of models defined directly
over this space, under various assumptions of in-
dependence, for the inference of conversation-
independent norms of turn-taking. Finally, it
demonstrates that the extended-degree-of-overlap
model of (Laskowski and Schultz, 2007), which
models participants in an alternate space, achieves
by far the best likelihood estimates for previ-
ously unseen conversations. This appears to be
because the model can learnacross conversa-
tions, regardless of the number of their partici-
pants. Experimental results show that it yields
relative perplexity reductions of approximately
75% when compared to the ubiquitous single-
participant model which ignores interlocutors, in-
dicating that it can learn and generalize aspects of
interaction which direct multi-participant models,
and merely single-participant models, cannot.
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2 Data

Analysis and experiments are performed using the
ICSI Meeting Corpus (Janin et al., 2003; Shriberg
et al., 2004). The corpus consists of 75 meetings,
held by various research groups at ICSI, which
would have occurred even if they had not been
recorded. This is important for studying naturally
occurring interaction, since any form of interven-
tion (including occurrence staging solely for the
purpose of obtaining a record) may have an un-
known but consistent impact on the emergence of
turn-taking behaviors. Each meeting was attended
by 3 to 9 participants, providing a wide variety of
possible interaction types.

3 Conceptual Framework

3.1 Definitions

Turn-takingis a generally observed phenomenon
in conversation (Sacks et al., 1974; Goodwin,
1981; Schegloff, 2007); one party talks while the
others listen. Its description and analysis is an
important problem, treated frequently as a sub-
domain of linguistic pragmatics (Levinson, 1983).
In spite of this, linguists tend to disagree about
what precisely constitutes aturn (Sacks et al.,
1974; Edelsky, 1981; Goodwin, 1981; Traum and
Heeman, 1997), or even a turn boundary. For ex-
ample, a “yeah” produced by a listener to indicate
attentiveness, referred to as abackchannel(Yngve,
1970), is often considered to not implement a turn
(nor to delineate an ongoing turn of an interlocu-
tor), as it bears no propositional content and does
not “take the floor” from the current speaker.

To avoid being tied to any particular sociolin-
guistic theory, the current work equates “turn”
with any contiguous interval of speech uttered by
the same participant. Such intervals are commonly
referred to astalk spurts(Norwine and Murphy,
1938). Because Norwine and Murphy’s original
definition is somewhat ambiguous and non-trivial
to operationalize, this work relies on that proposed
by (Shriberg et al., 2001), in whichspurtsare “de-
fined asspeech regions uninterrupted by pauses
longer than 500 ms” (italics in the original). Here,
a threshold of 300 ms is used instead, as recently
proposed in NIST’s Rich Transcription Meeting
Recognition evaluations (NIST, 2002). The re-
sulting definition of talk spurt, it is important to
note, is in quite common use but frequently un-
der different names. An oft-cited example is the

inter-pausal unitof (Koiso et al., 1998)1, where
the threshold is 100 ms.

A consequence of this choice is that anymodel
of turn-taking behaviorinferred will effectively be
a model of the distribution of speech, in time and
across participants. If the parameters of such a
model are maximum likelihood (ML) estimates,
then that model will best account for what is most
likely, or most “normal”; it will constitute anorm.

Finally, an important aspect of this work is that
it analyzes turn-taking behavior as independent of
the words spoken (and of the ways in which those
words are spoken). As a result, strictly speaking,
what is modeled is not the distribution of speech in
time and across participants but of binaryspeech
activity in time and across participants. Despite
this seemingly dramatic simplification, it will be
seen that important aspects of turn-taking are suffi-
ciently rare to be problematic for modeling. Mod-
eling them jointly alongside lexical information,
in multi-party scenarios, is likely to remain in-
tractable for the foreseeable future.

3.2 The Vocal Interaction RecordQ

The notation used here, as in (Laskowski and
Schultz, 2007), is a trivial extension of that pro-
posed in (Rabiner, 1989) to vector-valued Markov
processes.

At any instantt, each ofK participants to a con-
versation is in a state drawn fromΨ ≡ {S0, S1} ≡
{�, �}, whereS1 ≡ � indicates speech (or, more
precisely, “intra-talk-spurt instants”) andS0 ≡
� indicates non-speech (or “inter-talk-spurt in-
stants”). Thejoint state of all participants at time
t is described using theK-length column vector

qt ∈ ΨK ≡ Ψ×Ψ× . . .×Ψ

≡
{

S0,S1, . . . ,S2K
−1

}

. (1)

An entire conversation, from the point of view of
this work, can be represented as the matrix

Q ≡ [q1,q2, . . . ,qT ] (2)

∈ ΨK×T .

Q is known as the (discrete) vocal interaction
(Dabbs and Ruback, 1987) record.T is the total
number of frames in the conversation, sampled at
Ts = 100 ms intervals. This is approximately the
duration of the shortest lexical productions in the
ICSI Meeting Corpus.

1The inter-pausal unit differs from thepause unitof
(Seligman et al., 1997) in that the latter is an intra-turn unit,
requiring prior turn segmentation
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3.3 Time-Independent First-Order Markov
Modeling of Q

Given this definition ofQ, a modelΘ is sought
to account for it. Only time-independent models,
whose parameters do not change over the course
of the conversation, are considered in this work.

For simplicity, the stateq0 = S0 =
[�, �, . . . ,�]∗, in which no participant is speak-
ing (∗ indicates matrix transpose, to avoid con-
fusion with conversation durationT ) is first
prepended toQ. P0 = P (q0 ) therefore repre-
sents the unconditional probability of all partici-
pants being silent just prior to the start of any con-
versation2. Then

P (Q ) = P0 ·
T

∏

t=1

P (qt |q0,q1, · · · ,qt−1 )

.
= P0 ·

T
∏

t=1

P (qt |qt−1,Θ ) , (3)

where in the second line the history is truncated to
yield a standard first-order Markov form.

Each of theT factors in Equation 3 is indepen-
dent of the instantt,

P (qt |qt−1,Θ )

= P (qt = Sj |qt−1 = Si,Θ ) (4)

≡ aij , (5)

as per the notation in (Rabiner, 1989). In particu-
lar, each factor is a function only of the stateSi in
which the conversation was at timet − 1 and the
stateSj in which the conversation is at timet, and
not of the instantst − 1 or t. It may be expressed
as the scalaraij which forms theith row andjth
column entry of the matrix{aij} ≡ Θ.

3.4 Perplexity

In language modeling practice, one finds the like-
lihoodP (w |Θ ), of a word sequencew of length
‖w‖ under a modelΘ, to be an inconvenient mea-
sure for comparison. Instead, thenegative log-
likelihood (NLL) andperplexity(PPL), defined as

NLL = −
1

‖w‖
loge P (w |Θ ) (6)

PPL = 10NLL , (7)

2In reality, the instantt = 0 refers to the beginning ofthe
recordingof a conversation, rather than the beginning of the
conversation itself; this detail is without consequence.

are often preferred (Jelinek, 1999). They are ubiq-
uitously used to compare the complexity of differ-
ent word sequences (or corpora)w andw′ under
the same modelΘ, or the performance on a sin-
gle word sequence (or corpus)w under competing
modelsΘ andΘ′.

Here, a similar metric is proposed, to be used
for the same purposes, for the recordQ.

NLL = −
1

KT
log2 P (Q |Θ ) (8)

PPL = 2NLL

= (P (Q |Θ ))−
1/KT (9)

are defined as measures ofturn-taking perplex-
ity. As can be seen in Equation 8, the negative
log-likelihood is normalized by the numberK of
participants and the numberT of frames inQ;
the latter renders the measure useful for making
duration-independent comparisons. The normal-
ization by K does notper sesuggest that turn-
taking in conversations with differentK is nec-
essarily similar; it merely provides similar bounds
on the magnitudes of these metrics.

4 Direct Estimation of Θ

Direct application of bigram modeling techniques,
defined over the states{S}, is treated as a baseline.

4.1 The Case ofK = 2 Participants

In contrast to multi-party conversation, dialogue
has been extensively modeled in the ways de-
scribed in this paper. Beginning with (Brady,
1969), Markov modeling techniques over the joint
speech activity of two interlocutors have been
explored by both the sociolinguist and the psy-
cholinguist community (Jaffe and Feldstein, 1970;
Dabbs and Ruback, 1987). The same models have
also appeared in dialogue systems (Raux, 2008).
Most recently, they have been augmented with du-
ration models in a study of the Switchboard corpus
(Grothendieck et al., 2009).

4.2 The Case ofK > 2 Participants

In the general case beyond dialogue, such mod-
els have found less traction. This is partly due to
the exponential growth in the number of states as
K increases, and partly due to difficulties in in-
terpretation. The only model for arbitraryK that
the author is familiar with is the GroupTalk model
(Dabbs and Ruback, 1987), which is unsuitable
for the purposes here as it does not scale (withK,
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Figure 1: Perplexity (alongy-axis) in time (along
x-axis, in minutes) for meetingBmr024 under
a conditionally dependent global oracle model,
two “matched-half” models (A+B), and two
“mismatched-half” models (B+A).

the number of participants) without losing track of
speakers when two or more participants speak si-
multaneously (known asoverlap).

4.2.1 Conditionally Dependent Participants

In a particular conversation withK participants,
the state space of an ergodic process contains
2K states, and the number of free parameters in
a modelΘ which treats participant behavior as
conditionally dependent(CD), henceforthΘCD,
scales as2K ·

(

2K − 1
)

. It should be immediately
obvious that many of the2K states are likely to not
occur within a conversation of durationT , leading
to misestimation of the desired probabilities.

To demonstrate this, three perplexity trajecto-
ries for a snippet of meetingBmr024 are shown
in Figure 1, in the interval beginning 5 minutes
into the meeting and ending 20 minutes later. (The
meeting is actually just over 50 minutes long but
only a snippet is shown to better appreciate small
time-scale variation.) The depicted perplexities
are not unweighted averages over the whole meet-
ing of durationT as in Equation 8, but over a 60-
second Hamming window centered on eacht.

The first trajectory, the dashed black line, is ob-
tained when the entire meeting is used to estimate
ΘCD, and is then scored by that same model (an
“oracle” condition). Significant perplexity varia-
tion is observed throughout the depicted snippet.

The second trajectory, the continuous black
line, is that obtained when the meeting is split into
two equal-duration halves, one consisting of all in-
stants prior to the midpoint and the other of all

instants following it. These halves are hereafter
referred to as A and B, respectively (the interval
in Figure 1 falls entirely within the A half). Two
separate modelsΘCD

A andΘCD
B are each trained

on only one of the two halves, and then applied to
those same halves. As can be seen at the scale em-
ployed, the matched A+B model, demonstrating
the effect of training data ablation, deviates from
the global oracle model only in the intervals[7, 11]
seconds and[15, 18] seconds; otherwise it appears
that more training data, from later in the conversa-
tion, does not affect model performance.

Finally, the third trajectory, the continuous gray
line, is obtained when the two halvesA and B

of the meeting are scored using the mismatched
modelsΘCD

B andΘCD
A , respectively (this condi-

tion is henceforth referred to as the B+A condi-
tion). It can be seen that even when probabilities
are estimated from the same participants, in ex-
actly the same conversation, a direct conditionally
dependent model exposed to over 25 minutes of
a conversation cannot predict the turn-taking pat-
terns observed later.

4.2.2 Conditionally Independent Participants

A potential reason for the gross misestimation of
ΘCD under mismatched conditions is the size of
the state space{S}. The number of parameters in
the model can be reduced by assuming that par-
ticipants behaveindependentlyat instantt, but are
conditioned on theirjoint behavior att − 1. The
likelihood of Q under the resultingconditionally
independent modelΘCI has the form

P (Q )

.
= P0 ·

T
∏

t=1

K
∏

k=1

P
(

qt [k] |qt−1,Θ
CI
k

)

, (10)

where each factor is time-independent,

P
(

qt [k] |qt−1,Θ
CI
k

)

= P
(

qt [k] = Sn |qt−1 = Si,Θ
CI
k

)

(11)

≡ aCI
k,in , (12)

with 0 ≤ i < 2K and 0 ≤ n < 2. The complete
model{ΘCI

k } ≡ {{aCI
k,in}} consists ofK matrices

of size 2K × 2 each. It therefore contains only
K ·2K free parameters, a significant reduction over
the conditionally dependent modelΘCD.

Panel (a) of Figure 2 shows the performance
of this model on the same conversational snippet
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as in Figure 1. The oracle, dashed black line of
the latter is reproduced as a reference. The con-
tinuous black and gray lines show the smoothed
perplexity for the matched (A+B) and the mis-
matched (B+A) conditions, respectively. In the
matched condition, the CI model reproduces the
oracle trajectory with relatively high fidelity, sug-
gesting that participants’ behavior may in fact be
assumed to be conditionally independent in the
sense discussed. Furthermore, the failures of the
CI model under mismatched conditions are less se-
vere in magnitude than those of the CD model.

Panel (b) of Figure 2 demonstrates the trivial
fact that a conditionally independent modelΘCI

any,
tying the statistics of allK participants into a sin-
gle model, is useless. This is of course because it
cannot predict the next state of a generic partici-
pant for which the indexk in qt−1 has been lost.

4.2.3 Mutually Independent Participants

A further reduction in the complexity ofΘ can be
achieved by assuming that participants aremutu-
ally independent(MI), leading to the participant-
specificΘMI

k model:

P (Q )

.
= P0 ·

T
∏

t=1

K
∏

k=1

P
(

qt [k] |qt−1 [k] ,ΘMI
k

)

. (13)

The factors are time-independent,

P
(

qt [k] |qt−1 [k] ,ΘMI
k

)

= P
(

qt [k] = Sn |qt−1 [k] = Sm,ΘMI
k

)

(14)

≡ aMI
k,mn , (15)

where 0 ≤ m < 2 and 0 ≤ n < 2. This model
{ΘMI

k } ≡ {{aMI
k,mn}} consists ofK matrices of

size2× 2 each, with onlyK · 2 free parameters.
Panel (c) of Figure 2 shows that the MI model

yields mismatched performance which is a much
better approximation to its performance under
matched conditions. However, its matched perfor-
mance is worse than that of CD and CI models.
When a single MI modelΘMI

any is trained instead
for all participants, as shown in panel (d), both of
these effects are exaggerated. In fact, the perfor-
mance ofΘMI

any in matched and mismatched con-
ditions is almost identical. The consistently higher
perplexity is obtained, as mentioned, by smooth-
ing over 60-second windows, and therefore un-
derestimates poor performance at specific instants
(which occur frequently).
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Figure 2: Perplexity (alongy-axis) in time (along
x-axis, in minutes) for meetingBmr024 under a
conditionally dependent global oracle model, and
various matched (A+B) and mismatched (B+A)
model pairs with relaxed dependence assump-
tions. Legend as in Figure 1.

5 Limitations and Desiderata

As the analyses in Section 4 reveal, direct es-
timation can be useful under oracle conditions,
namely when all of a conversation has been ob-
served and the task is to find intervals where multi-
participant behavior deviates significantly from
its conversation-specificnorm. The assumption
of conditional independence among participants
was argued to lead to negligible degradation in
the detectability of these intervals. However, the
assumption of mutual independence consistently
leads to higher surprise by the model.

5.1 Predicting the Future Within
Conversations

In the more interesting setting in which only a part
of a conversation has been seen and the task is to
limit the perplexity of what is still to come, direct
estimation exhibits relatively large failures under
both conditionally dependent and conditionally in-
dependent participant assumptions. This appears
to be due to the size of the state space, which
scales as2K with the numberK of participants.
In the case of generalK, more conversational data
may be sought, from exactly the same group of
participants, but that approach appears likely to be
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insufficient, and, for practical reasons3, impossi-
ble. One would instead like to be able to use other
conversations, also exhibiting participant interac-
tion, to limit the perplexity of speech occurrence
in the conversation under study.

Unfortunately, there are two reasons why direct
estimation cannot be tractably deployed across
conversations. The first is that the direct models
considered here, with the exception ofΘMI

any, are
K-specific. In particular, the number and the iden-
tity of conditioning states are both functions ofK,
for ΘCD and{ΘCI

k }; the models may also con-
sist of K distinct submodels, as for{ΘCI

k } and
{ΘMI

k }. No techniques for computing the turn-
taking perplexity in conversations withK partici-
pants, using models trained on conversations with
K ′ 6= K, are currently available.

The second reason is that these models, again
with the exception ofΘMI

any, are R-specific, in-
dependently ofK-specificity. By this it is meant
that the models are sensitive to participant index
permutation. Had a participant at indexk in Q

been assigned to another indexk′ 6=k, an alter-
nate representation of the conversation, namely
Q′ = Rkk′ ·Q, would have been obtained. (Here,
Rkk′ is a matrix rotation operator obtained by ex-
changing columnsk andk′ of theK ×K identity
matrix I.) Since index assignment is entirely arbi-
trary, useful direct models cannot be inferred from
other conversations, even when theirK ′ = K, un-
lessK is small. The prospect of naively permuting
every training conversation prior to parameter in-
ference has complexityK!.

5.2 Comparing Perplexity Across
Conversations

Until R-specificity is comprehensively addressed,
the only model from among those discussed so
far, which exhibits noK-dependence, isΘMI

any,
namely that which treats participants identically
and independently. This model can be used to
score the perplexity ofanyconversation, and facil-
itates the comparison of the distribution of speech
activity acrossconversations.

Unfortunately, since the model captures only
durational aspects ofone-participant speech and
non-speech intervals, it does not in any way en-
code a norm of turn-taking, an inherently interac-

3This pertains to the practicalities of re-inviting, instru-
menting, recording and transcribing the same groups of
participants, with necessarily more conversations for large
groups than for small ones.

tive and hencemulti-participant phenomenon. It
therefore cannot be said to rank conversations ac-
cording to their deviation from turn-taking norms.

5.3 Theoretical Limitations

In addition to the concerns above, a funda-
mental limitation of the analyzed direct models,
whether for conversation-specific or conversation-
independent use, is that they are theoretically cum-
bersome if not vacuous. Given a solution to the
problem ofR-specificity, the parameters{aCD

ij }
may be robustly inferred, and the models may be
applied to yield useful estimates of turn-taking
perplexity. However, they cannot be said to di-
rectly validate or dispute the vast qualitative ob-
servations of sociolinguistics, and of conversation
analysis in particular.

5.4 Prospects for Smoothing

To produce Figures 1 and 2, a small fraction of
probability mass was reserved for unseen bigram
transitions (as opposed to backing off to unigram
probabilities). Furthermore, transitions into never-
observed states were assigned uniform probabili-
ties. This policy is simplistic, and there is signifi-
cant scope for more detailed back-off and interpo-
lation. However, such techniques infer values for
under-estimated probabilities fromshorter trunca-
tions of the conditioning history. As K-specificity
and R-specificity suggest, what appears to be
needed here are back-off and interpolationacross
states. For example, in a conversation ofK = 5
participants, estimates of the likelihood of the state
qt = [�����]∗, which might have been unob-
served in any training material, can be assumed
to be related to those ofq′t = [�����]∗ and
q′′t = [�����]∗, as well as those ofRq′t and
Rq′′t , for arbitraryR.

6 The Extended-Degree-of-Overlap
Model

The limitations of direct models appear to be ad-
dressable by a form proposed by Laskowski and
Schultz in (2006) and (2007). That form, the
Extended-Degree-of-Overlap (EDO) model, was
used to provide prior probabilitiesP (Q |Θ ) of
the speech states of multiple meeting participants
simultaneously, for use in speech activity detec-
tion. The model was trained onutterances(rather
than talk spurts) from a different corpus than that
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used here, and the authors did not explore the turn-
taking perplexities of their data sets.

Several of the equations in (Laskowski and
Schultz, 2007) are reproduced here for compar-
ison. The EDO model yields time-independent
transition probabilities which assume conditional
inter-participant dependence (cf. Equation 3),

P (qt+1 = Sj |qt = Si ) = αij · (16)

P ( ‖qt+1‖ = nj , ‖qt+1 · qt‖ = oij | ‖qt‖ = ni) ,

whereni ≡ ‖Si‖ andnj ≡ ‖Sj‖, with ‖S‖ yield-
ing the number of participants in� in the multi-
participant stateS. In other words,ni andnj are
thenumbersof participants simultaneously speak-
ing in statesSi andSj , respectively. The elements
of the binary productS = S1 · S2 are given by

S [k] ≡

{

�, if S1 [k] = S2 [k] = �

�, otherwise,
(17)

and oij is therefore the number of same partici-
pants speaking inSi and Sj . The discussion of
the role ofαij in Equation 16 is deferred to the
end of this section.

The EDO model mitigatesR-specificity be-
cause it models each bigram(qt−1,qt) = (Si,Sj)
as the modified bigram(ni, [oij , nj ]), involving
three scalars each of which is asum— a com-
mutative (and therefore rotation-invariant) opera-
tion. Because it sums across only those partici-
pants which are in the� state, completely ignor-
ing their�-state interlocutors, it can also mitigate
K-specificity if one additionally redefines

ni = min ( ‖Si‖, Kmax ) (18)

nj = min ( ‖Sj‖, Kmax ) (19)

oij = min ( ‖Si · Sj‖, ni, nj) , (20)

as in (Laskowski and Schultz, 2007).Kmax

represents the maximum model-licensed degree
of overlap, or the maximum number of par-
ticipants allowed to be simultaneously speak-
ing. The EDO model therefore represents a
viable conversation-independent,K-independent,
andR-independent model of turn-taking for the
purposes in the current work4. The factorαij

4There exists some empirical evidence to suggest that
conversations ofK participants should not be used to train
models for predicting turn-taking behavior in conversations
of K

′ participants, forK′ 6= K, because turn-taking is in-
herentlyK-dependent. For example, (Fay et al., 2000) found
that qualitative differences in turn-taking patterns between

in Equation 16 provides a deterministic map-
ping from the conversation-independent space
(ni, [oij , nj ]) to the conversation-specific space
{aij}. The mapping is deterministic because the
model assumes that all participants are identical.
This places the EDO model at a disadvantage with
respect to the CD and CI models, as well as to
{ΘMI

k }, which allow each participant to be mod-
eled differently.

7 Experiments

This section describes the performance of the dis-
cussed models on the entire ICSI Meeting Corpus.

7.1 Conversation-Specific Modeling

First to be explored is the prediction of yet-
unobserved behavior in conversation-specific set-
tings. For each meeting, models are trained on
portions of that meeting only, and then used to
score other portions of the same meeting. This
is repeated over all meetings, and comprises the
mismatched condition of Section 4; for contrast,
the matched condition is also evaluated.

Each meeting is divided into two halves, in two
different ways. The first way is the A/B split of
Section 4, representing the first and second halves
of each meeting; as has been shown, turn-taking
patterns may vary substantially from A to B. The
second split (C/D) places every even-numbered
frame in one set and every odd-numbered frame
in the other. This yields a much easier setting, of
two halves which are on average maximally simi-
lar but still temporally disjoint.

The perplexities (of Equation 9) in these experi-
ments are shown in the second, fourth, sixth and
eighth columns of Table 1, under “all”. In the
matched A+B and C+D conditions, the condition-
ally dependent modelΘCD provides topline ML
performance. Perplexities decrease as model com-
plexities fall for direct models, as expected. How-
ever, in the more interesting mismatched B+A
condition, the EDO model performs the best. This
shows that its ability to generalize to unseen data
is higher than that of direct models. However, in
the easier mismatched D+C condition, it is out-
performed by the CI model due to behavior differ-
ences among participants, which the EDO model

small groups and large groups, represented in their study by
K = 5 andK = 10, and noted that there is a smooth transi-
tion between the two extremes; this provides some scope for
interpolating small- and large- group models, and the EDO
framework makes this possible.
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Hard split A/B (first/second halves) Easy split C/D (odd/even frames)

Model A+B B+A C+D D+C
“all” “sub” “all” “sub” “all” “sub” “all” “sub”

ΘCD 1.0905 1.6444 1.1225 1.8395 1.0915 1.6555 1.0991 1.7403
{ΘCI

k } 1.0915 1.6576 1.1156 1.7809 1.0925 1.6695 1.0956 1.7028
{ΘMI

k } 1.0978 1.7236 1.1086 1.7950 1.0991 1.7381 1.0992 1.7398
ΘMI 1.1046 1.8047 1.1047 1.8059 1.1046 1.8050 1.1046 1.8052
ΘEDO 1.0977 1.7257 1.0985 1.7323 1.0977 1.7268 1.0982 1.7313

Table 1: Perplexities for conversation-specific turn-taking models on the entire ICSI Meeting Corpus.
Both “all” frames and the subset (“sub”) for whichqt−1 6= qt are shown, for matched (A+B and C+D)
and mismatched (B+A and D+C) conditions on splits A/B and C/D.

does not capture.
The numbers under the “all” columns in Table 1

were computed using all of each meeting’s frames.
For contrast, in the “sub” columns, perplexities
are computed over only those frames for which
qt−1 6= qt. This is a useful subset because, for
the majority of time in conversations, one person
simply continues to talk while all others remain
silent5. Excludingqt−1 = qt bigrams (leading to
0.32M frames from 2.39M frames in “all”) offers a
glimpse of expected performance differences were
duration modeling to be included in the models.
Perplexities are much higher in these intervals, but
the same general trend as for “all” is observed.

7.2 Conversation-Independent Modeling

The training of conversation-independent models,
given a corpus ofK-heterogeneous meetings, is
achieved by iterating over all meetings and testing
each using models trained on all of the other meet-
ings. As discussed in the preceding section,ΘMI

any

is the only one among the direct models which can
be used for this purpose. It also models exclu-
sively single-participant behavior, ignoring the in-
teractive setting provided by other participants. As
shown in Table 2, when all time is scored the EDO
model withKmax = 4 is the best model (in Sec-
tion 7.1,Kmax = K since the model was trained
on the same meeting to which it was applied). Its
perplexity gap to the oracle model is only a quarter
of the gap exhibited byΘMI

any.
The relative performance of EDO models is

even better when only those instantst are consid-
ered for whichqt−1 6= qt. There, the perplex-
ity gap to the oracle model is smaller than that of

5Retaining onlyqt−1 6=qt also retains instants of transi-
tion into and out of intervals of silence.

PPL ∆PPL (%)
Model

“all” “sub” “all” “sub”

ΘCD 1.0921 1.6616 — —
ΘMI 1.1051 1.8170 14.1 23.5
ΘEDO (6) 1.0992 1.7405 7.7 11.9
ΘEDO (5) 1.0968 1.7127 5.1 7.7
ΘEDO (4) 1.0953 1.6947 3.5 5.0
ΘEDO (3) 1.1082 1.8502 17.5 28.5

Table 2: Perplexities for conversation-independent
turn-taking models on the entire ICSI Meeting
Corpus; the oracleΘCD topline is included in the
first row. Both “all” frames and the subset (“sub”)
for whichqt−1 6= qt are shown; relative increases
over the topline (less unity, representing no per-
plexity) are shown in columns 4 and 5. The value
of Kmax (cf. Equations 18, 19, and 20) is shown
in parentheses in the first column.

ΘEDO by 78%.

8 Discussion

The model perplexities as reported above may
be somewhat different if the “talk spurt” were
replaced by a more sociolinguistically motivated
definition of “turn”, but the ranking of models and
their relative performance differences are likely to
remain quite similar. On the one hand, many inter-
talk-spurt gaps might find themselves to be within-
turn, leading to more� entries in the recordQ
than observed in the current work. This would
increase the apparent frequency and duration of
intervals of overlap. On the other hand, alterna-
tive definitions of turn may exclude some speech
activity, such as that implementing backchannels.
Since backchannels are often produced in overlap
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with the foreground speaker, their removal may
eliminate some overlap fromQ. (However, as
noted in (Shriberg et al., 2001), overlap rates in
multi-party conversation remain high even after
the exclusion of backchannels.) Both inter-talk-
spurt gap inclusion and backchannel exclusion are
likely to yield systematic differences, and there-
fore to be exploitable by the investigated models
in similar ways.

The results presented may also be perturbed
by modifying the way in which a (manually
produced) talk spurt segmentation, with high-
precision boundary time-stamps, is discretized to
yield Q. Two parameters have controlled the dis-
cretization in this work: (1) the frame stepTs =
100 ms; and (2) the proportionρ of Ts for which
a participant must be speaking within a frame in
order for that frame to be considered� rather than
�. ρ = 0.5 was chosen since this posits approx-
imately as much more speech (than in the high-
precision segmentation) as it eliminates. Higher
values ofρ would lead to more�, leading to more
overlap than observed in this work. Meanwhile, at
constantρ, choosing aTs value larger than 100 ms
would occasionally miss the shortest talk spurts,
but it would allow the models, which are all 1st-
order Markovian, to learn temporally more dis-
tant dependencies. The trade-offs between these
choices are currently under investigation.

From an operational, modeling perspective, it
is important to recognize that the choices of the
definition for “turn”, and of the way in which
segmentations are discretized, are essentially ar-
bitrary. The investigated modeling alternatives,
and the EDO model in particular, require only that
the multi-participant vocal interaction recordQ
be binary-valued. This general applicability has
been demonstrated in past work, in which the EDO
model was trained onutterancesfor use in speech
activity detection (Laskowski and Schultz, 2007),
as well as in (Laskowski and Burger, 2007) where
it was trained separately on talk spurts andlaugh
bouts, in the same data, to highlight the differences
between speech and laughter deployment.

Finally, it should be remembered that the EDO
model is both time-independent and participant-
independent. This makes it suitable for compar-
ison of conversational genres, in much the same
way as are general language models of words. Ac-
cordingly, as for language models, density esti-
mation in future turn-taking models may be im-

proved by considering variability across partic-
ipants and in time. Participant dependence is
likely to be related to speakers’ social character-
istics and conversational roles, while time depen-
dence may reflect opening and closing functions,
topic boundaries, and periodic turn exchange fail-
ures. In the meantime, event types such as the lat-
ter may be detectable as EDO perplexity depar-
tures, potentially recommending the model’s use
for localizing conversational “hot spots” (Wrede
and Shriberg, 2003). The EDO model, and turn-
taking models in general, may also find use in
diagnosing turn-taking naturalness in spoken di-
alogue systems.

9 Conclusions

This paper has presented a framework for quan-
tifying the turn-taking perplexity in multi-party
conversations. To begin with, it explored the con-
sequences of modeling participants jointly by con-
catenating their binary speech/non-speech states
into a single multi-participant vector-valued state.
Analysis revealed that such models are particu-
larly poor at generalization, even to subsequent
portions of the same conversation. This is due to
the size of their state space, which is factorial in
the number of participants. Furthermore, because
such models are both specific to the number of
participants and to the order in which participant
states are concatenated together, it is generally in-
tractable to train them on material from other con-
versations. The only such model which may be
trained on other conversations is that which com-
pletely ignores interlocutor interaction.

In contrast, the Extended-Degree-of-Overlap
(EDO) construction of (Laskowski and Schultz,
2007) may be trained on other conversations, re-
gardless of their number of participants, and use-
fully applied to approximate the turn-taking per-
plexity of an oracle model. This is achieved be-
cause it models entry into and egress out of spe-
cific degrees of overlap, and completely ignores
the number of participants actually present or their
modeled arrangement. In this sense, the EDO
model can be said to implement the qualitative
findings of conversation analysis. In predicting the
distribution of speech in time and across partici-
pants, it reduces the unseen data perplexity of a
model which ignores interaction by 75% relative
to an oracle model.
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