
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 897–906,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

String Extension Learning

Jeffrey Heinz
University of Delaware

Newark, Delaware, USA
heinz@udel.edu

Abstract

This paper provides a unified, learning-
theoretic analysis of several learnable
classes of languages discussed previously
in the literature. The analysis shows that
for these classes an incremental, globally
consistent, locally conservative, set-driven
learner always exists. Additionally, the
analysis provides a recipe for constructing
new learnable classes. Potential applica-
tions include learnable models for aspects
of natural language and cognition.

1 Introduction

The problem of generalizing from examples to
patterns is an important one in linguistics and
computer science. This paper shows that many
disparate language classes, many previously dis-
cussed in the literature, have a simple, natural
and interesting (because non-enumerative) learner
which exactly identifies the class in the limit from
distribution-free, positive evidence in the sense of
Gold (Gold, 1967).1 These learners are called
String Extension Learners because each string in
the language can be mapped (extended) to an ele-
ment of the grammar, which in every case, is con-
ceived as a finite set of elements. These learners
have desirable properties: they are incremental,
globally consistent, and locally conservative.

Classes previously discussed in the litera-
ture which are string extension learnable in-
clude the Locally Testable (LT) languages, the
Locally Testable Languages in the Strict Sense

1The allowance of negative evidence (Gold, 1967) or re-
stricting the kinds of texts the learner is required to succeed
on (i.e. non-distribution-free evidence) (Gold, 1967; Horn-
ing, 1969; Angluin, 1988) admits the learnability of the class
of recursively enumerable languages. Classes of languages
learnable in the harder, distribution-free, positive-evidence-
only settings are due to structural properties of the language
classes that permit generalization (Angluin, 1980b; Blumer
et al., 1989). That is the central interest here.

(Strictly Local, SL) (McNaughton and Papert,
1971; Rogers and Pullum, to appear), the Piece-
wise Testable (PT) languages (Simon, 1975), the
Piecewise Testable languages in the Strict Sense
(Strictly Piecewise, SP) (Rogers et al., 2009), the
Strongly Testable languages (Beauquier and Pin,
1991), the Definite languages (Brzozowski, 1962),
and the Finite languages, among others. To our
knowledge, this is the first analysis which identi-
fies the common structural elements of these lan-
guage classes which allows them to be identifiable
in the limit from positive data: each language class
induces a natural partition over all logically possi-
ble strings and each language in the class is the
union of finitely many blocks of this partition.

One consequence of this analysis is a recipe
for constructing new learnable classes. One no-
table case is the Strictly Piecewise (SP) languages,
which was originally motivated for two reasons:
the learnability properties discussed here and its
ability to describe long-distance dependencies in
natural language phonology (Heinz, 2007; Heinz,
to appear). Later this class was discovered to have
several independent characterizations and form
the basis of another subregular hierarchy (Rogers
et al., 2009).

It is expected string extension learning will have
applications in linguistic and cognitive models. As
mentioned, the SP languages already provide a
novel hypothesis of how long-distance dependen-
cies in sound patterns are learned. Another exam-
ple is the Strictly Local (SL) languages which are
the categorical, symbolic version of n-gram mod-
els, which are widely used in natural language pro-
cessing (Jurafsky and Martin, 2008). Since the SP
languages also admit a probabilistic variant which
describe an efficiently estimable class of distribu-
tions (Heinz and Rogers, 2010), it is plausible to
expect the other classes will as well, though this is
left for future research.

String extension learners are also simple, mak-

897

ing them accessible to linguists without a rigorous
mathematical background.

This paper is organized as follow.§2 goes
over basic notation and definitions.§3 defines
string extension grammars, languages, and lan-
guage classes and proves some of their fundamen-
tal properties. §4 defines string extension learn-
ers and proves their behavior.§5 shows how im-
portant subregular classes are string extension lan-
guage classes.§6 gives examples of nonregular
and infinite language classes which are string ex-
tension learnable.§7 summarizes the results, and
discusses lines of inquiry for future research.

2 Preliminaries

This section establishes notation and recalls basic
definitions for formal languages, the paradigm of
identification in the limit from positive data (Gold,
1967). Familiarity with the basic concepts of sets,
functions, and sequences is assumed.

For some setA, P(A) denotes the set of all
subsets ofA andPfin(A) denotes the set of all
finite subsets ofA. If f is a function such that
f : A → B then letf⋄(a) = {f(a)}. Thus,
f⋄ : A → P(B) (notef⋄ is not surjective). A
setπ of nonempty subsets ofS is apartition of S

iff the elements ofπ (calledblocks) are pairwise
disjoint and their union equalsS.

Σ denotes a fixed finite set of symbols, theal-
phabet. Let Σn, Σ≤n, Σ∗, Σ+ denote all strings
formed over this alphabet of lengthn, of length
less than or equal ton, of any finite length, and
of any finite length strictly greater than zero, re-
spectively. The termword is used interchangeably
with string. The range of a string w is the set
of symbols which are inw. The empty string is
the unique string of length zero denotedλ. Thus
range(λ) = ∅. The length of a stringu is de-
noted by |u|, e.g. |λ| = 0. A languageL is
some subset ofΣ∗. The reverse of a language
Lr = {wr : w ∈ L}.

Gold (1967) establishes a learning paradigm
known as identification in the limit from positive
data. A text is an infinite sequence whose ele-
ments are drawn fromΣ∗ ∪ {#} where# rep-
resents a non-expression. Theith element oft is
denotedt(i), andt[i] denotes the finite sequence
t(0), t(1), . . . t(i). Following Jain et al. (1999),
let SEQ denote the set of all possible finite se-
quences:

SEQ = {t[i] : t is a text andi ∈ N}

Thecontentof a text is defined below.

content(t) =

{w ∈ Σ∗ : ∃n ∈ N such thatt(n) = w}

A text t is a positive text for a languageL iff
content(t) = L. Thus there is only one textt for
the empty language: for alli, t(i) = #.

A learner is a function φ which maps ini-
tial finite sequences of texts to grammars,
i.e. φ : SEQ → G. The elements ofG (the gram-
mars) generate languages in some well-defined
way. A learnerconverges on a textt iff there exists
i ∈ N and a grammarG such that for allj > i,
φ(t[j]) = G.

For any grammarG, the language it generates is
denotedL(G). A learnerφ identifies a language
L in the limit iff for any positive textt for L, φ

converges ont to grammarG andL(G) = L. Fi-
nally, a learnerφ identifies a class of languagesL
in the limit iff for any L ∈ L, φ identifiesL in
the limit. Angluin (1980b) provides necessary and
sufficient properties of language classes which are
identifiable in the limit from positive data.

A learnerφ of language classL is globally con-
sistent iff for each i and for all textst for some
L ∈ L, content(t[i]) ⊆ L(φ(t[i])). A learnerφ is
locally conservativeiff for each i and for all texts
t for someL ∈ L, wheneverφ(t[i]) 6= φ(t[i− 1]),
it is the case thatt(i) 6∈ L(φ([i−1])). These terms
are from Jain et al. (2007). Also, learners which
do not depend on the order of the text are called
set-driven(Jain et al., 1999, p. 99).

3 Grammars and Languages

Consider some setA. A string extension function
is a total functionf : Σ∗ → Pfin(A). It is not
required thatf be onto. Denote the class of func-
tions which have this general formSEF .

Each string extension function is naturally as-
sociated with some formal class of grammars and
languages. These functions, grammars, and lan-
guages are calledstring extension functions, gram-
mars, andlanguages, respectively.

Definition 1 Let f ∈ SEF .

1. A grammaris a finite subset ofA.

2. Thelanguage of grammarG is

Lf (G) = {w ∈ Σ∗ : f(w) ⊆ G}

898

3. Theclass of languagesobtained by all possi-
ble grammars is

Lf = {Lf (G) : G ∈ Pfin(A)}

The subscriptf is omitted when it is understood
from context.

A function f ∈ SEF naturally induces a par-
tition πf overΣ∗. Stringsu andv are equivalent
(u ∼f v) iff f(u) = f(v).

Theorem 1 Every languageL ∈ Lf is a finite
union of blocks ofπf .

Proof: Follows directly from the definition of∼f

and the finiteness of string extension grammars.2

We return to this result in§6.

Theorem 2 Lf is closed under intersection.

Proof: We showL1∩L2 = L(G1∩G2). Consider
any wordw belonging toL1 andL2. Thenf(w)
is a subset ofG1 and ofG2. Thusf(w) ⊆ G1 ∩
G2, and thereforew ∈ L(G1 ∩ G2). The other
inclusion follows similarly. 2

String extension language classes are not in gen-
eral closed under union or reversal (counterexam-
ples to union closure are given in§5.1 and to re-
versal closure in§6.)

It is useful to extend the domain of the function
f from strings to languages.

f(L) =
⋃

w∈L

f(w) (1)

An elementg of grammarG for languageL =
Lf (G) is usefuliff g ∈ f(L). An element isuse-
lessif it is not useful. A grammar with no useless
elements is calledcanonical.

Remark 1 Fix a functionf ∈ SEF . For every
L ∈ Lf , there is a canonical grammar, namely
f(L). In other words,L = L(f(L)).

Lemma 1 Let L,L′ ∈ Lf . L ⊆ L′ iff f(L) ⊆
f(L′)

Proof: (⇒) SupposeL ⊆ L′ and consider any
g ∈ f(L). Sinceg is useful, there is aw ∈ L such
thatg ∈ f(w). But f(w) ⊆ f(L′) sincew ∈ L′.

(⇐) Supposef(L) ⊆ f(L′) and consider any
w ∈ L. Thenf(w) ⊆ f(L) so by transitivity,
f(w) ⊆ f(L′). Thereforew ∈ L′. 2

The significance of this result is that as the gram-
mar G monotonically increases, the language
L(G) monotonically increases too. The following

result can now be proved, used in the next section
on learning.2

Theorem 3 For any finite L0 ⊆ Σ∗, L =
L(f(L0)) is the smallest language inLf contain-
ing L0.

Proof: Clearly L0 ⊆ L. SupposeL′ ∈ Lf and
L0 ⊆ L′. It follows directly from Lemma 1 that
L ⊆ L′ (sincef(L) = f(L0) ⊆ f(L′)). 2

4 String Extension Learning

Learning string extension classes is simple. The
initial hypothesis of the learner is the empty gram-
mar. The learner’s next hypothesis is obtained by
applying functionf to the current observation and
taking the union of that set with the previous one.

Definition 2 For all f ∈ SEF and for all t ∈
SEQ, defineφf as follows:

φf (t[i]) =

∅ if i = −1
φf (t[i− 1]) if t(i) = #
φf (t[i− 1]) ∪ f(t(i)) otherwise

By convention, the initial state of the grammar
is given byφ(t[−1]) = ∅. The learnerφf exem-
plifies string extension learning. Each individual
string in the text reveals, by extension withf , as-
pects of the canonical grammar forL ∈ Lf .

Theorem 4 φf is globally consistent, locally con-
servative, and set-driven.

Proof: Global consistness and local conservative-
ness follow immediately from Definition 2. For
set-drivenness, witness (by Definition 2) it is the
case that for any textt and anyi ∈ N, φ(t[i]) =
f(content(t[i])). 2

The key to the proof thatφf identifiesLf in the
limit from positive data is the finiteness ofG for
all L(G) ∈ L. The idea is that there is a point
in the text in which every element of the grammar
has been seen because (1) there are only finitely
many useful elements ofG, and (2) the learner is
guaranteed to see a word inL which yields (viaf)
each element ofG at some point (since the learner
receives a positive text forL). Thus at this point

2The requirement in Theorem 3 thatL0 be finite can be
dropped if the qualifier “inLf ” be dropped as well. This
can be seen when one considers the identity function and the
class of finite languages. (The identity function is a string
extension function, see§6.) In this case,id(Σ∗) = Σ∗, but
Σ∗ is not a member ofLfin. However since the interest here
is learners which generalize on the basis of finite experience,
Theorem 3 is sufficient as is.

899

the learnerφ is guaranteed to have converged to
the targetG as no additional words will add any
more elements to the learner’s grammar.

Lemma 2 For allL ∈ Lf , there is a finite sample
S such thatL is the smallest language inLf con-
tainingS. S is called acharacteristic sampleof L

in Lf (S is also called atell-tale).

Proof: For L ∈ Lf , construct the sampleS as
follows. For eachg ∈ f(L), choose some word
w ∈ L such thatg ∈ f(w). Sincef(L) is finite
(Remark 1),S is finite. Clearlyf(S) = f(L) and
thusL = L(f(S)). Therefore, by Theorem 3,L is
the smallest language inLf containingS. 2

Theorem 5 Fix f ∈ SEF . Thenφf identifiesLf

in the limit.

Proof: For anyL ∈ Lf , there is a characteristic fi-
nite sampleS for L (Lemma 2). Thus for any textt
for L, there isi such thatS ⊆ content(t[i]). Thus
for any j > i, φ(t(j)) is the smallest language
in Lf containingS by Theorem 3 and Lemma 2.
Thus,φ(t(j)) = f(S) = f(L). 2

An immediate corollary is the efficiency ofφf

in the length of the sample, providedf is efficient
in the length of the string (de la Higuera, 1997).

Corollary 1 φf is efficient in the length of the
sample ifff is efficiently computable in the length
of a string.

To summarize: string extension grammars are
finite subsets of some setA. The class of lan-
guages they generate are determined by a func-
tion f which maps strings to finite subsets ofA

(chunks of grammars). Since the size of the canon-
ical grammars is finite, a learner which develops a
grammar on the basis of the observed words and
the functionf identifies this class exactly in the
limit from positive data. It also follows that iff
is efficient in the length of the string thenφf is ef-
ficient in the length of the sample and thatφf is
globally consistent, locally conservative, and set-
driven. It is striking that such a natural and gen-
eral framework for generalization exists and that,
as will be shown, a variety of language classes can
be expressed given the choice off .

5 Subregular examples

This section shows how classes which make up
the subregular hierarchies (McNaughton and Pa-
pert, 1971) are string extension language classes.
Readers are referred to Rogers and Pullum (2007)

and Rogers et al. (2009) for an introduction to the
subregular hierarchies, as well as their relevance
to linguistics and cognition.

5.1 K-factor languages

Thek-factors of a word are the contiguous subse-
quences of lengthk in w. Consider the following
string extension function.

Definition 3 For somek ∈ N, let

fack(w) =

{x ∈ Σk : ∃u, v ∈ Σ∗

such thatw = uxv} whenk ≤ |w| and

{w} otherwise

Following the earlier definitions, for somek, a
grammarG is a subset ofΣ≤k and a wordw be-
longs to the language ofG iff fack(w) ⊆ G.

Example 1 Let Σ = {a, b} and consider gram-
mars G = {λ, a, aa, ab, ba}. Then L(G) =
{λ, a} ∪ {w : |w| ≥ 2 andw 6∈ Σ∗bbΣ∗}. The 2-
factorbb is aprohibited2-factor forL(G). Clearly,
L(G) ∈ Lfac2 .

Languages inLfack
make distinctions based on

whichk-factors are permitted or prohibited. Since
fack ∈ SEF , it follows immediately from the
results in §§3-4 that thek-factor languages are
closed under intersection, and each has a char-
acteristic sample. For example, a characteristic
sample for the 2-factor language in Example 1 is
{λ, a, ab, ba, aa}; i.e. the canonical grammar it-
self. It follows from Theorem 5 that the class of
k-factor languages is identifiable in the limit by
φfack

. The learnerφfac2 with a text from the lan-
guage in Example 1 is illustrated in Table 1.

The class Lfack
is not closed under

union. For example fork = 2, con-
sider L1 = L({λ, a, b, aa, bb, ba}) and
L2 = L({λ, a, b, aa, ab, bb}). Then L1 ∪ L2

excludes stringaba, but includesab andba, which
is not possible for anyL ∈ Lfack

.
K-factors are used to define other language

classes, such as the Strictly Local and Lo-
cally Testable languages (McNaughton and Pa-
pert, 1971), discussed in§5.4 and§5.5.

5.2 Strictly k-Piecewise languages

The Strictlyk-Piecewise (SPk) languages (Rogers
et al., 2009) can be defined with a function whose
co-domain isP(Σ≤k). However unlike the func-
tion fack, the functionSPk, does not require that
thek-length subsequences be contiguous.

900

i t(i) fac2(t(i)) GrammarG L(G)

-1 ∅ ∅
0 aaaa {aa} {aa} aaa∗

1 aab {aa, ab} {aa, ab} aaa∗ ∪ aaa∗b

2 a {a} {a, aa, ab} aa∗ ∪ aa∗b

. . .

Table 1: The learnerφfac2 with a text from the language in Example 1. Boldtype indicates newly added
elements to the grammar.

A string u = a1 . . . ak is a subsequenceof
string w iff ∃ v0, v1, . . . vk ∈ Σ∗ such thatw =
v0a1v1 . . . akvk. The empty stringλ is a subse-
quence of every string. Whenu is a subsequence
of w we writeu ⊑ w.

Definition 4 For somek ∈ N,

SPk(w) = {u ∈ Σ≤k : u ⊑ w}

In other words, SPk(w) returns all subse-
quences, contiguous or not, inw up to lengthk.
Thus, for somek, a grammarG is a subset ofΣ≤k.
Following Definition 1, a wordw belongs to the
language ofG only if SP2(w) ⊆ G.3

Example 2 Let Σ = {a, b} and consider the
grammarG = {λ, a, b, aa, ab, ba}. ThenL(G) =
Σ∗\(Σ∗bΣ∗bΣ∗).

As seen from Example 2, SP languages encode
long-distance dependencies. In Example 2,L pro-
hibits ab from following anotherb in a word, no
matter how distant. Table 2 illustratesφSP2

learn-
ing the language in Example 2.

Heinz (2007,2009a) shows that consonantal
harmony patterns in natural language are describ-
able by suchSP2 languages and hypothesizes
that humans learn them in the way suggested by
φSP2

. Strictly 2-Piecewise languages have also
been used in models of reading comprehension
(Whitney, 2001; Grainger and Whitney, 2004;
Whitney and Cornelissen, 2008) as well as text
classification(Lodhi et al., 2002; Cancedda et al.,
2003) (see also (Shawe-Taylor and Christianini,
2005, chap. 11)).

5.3 K-Piecewise Testable languages

A languageL is k-Piecewise Testable iff when-
ever stringsu andv have the same subsequences

3In earlier work, the functionSP2 has been described
as returning the set of precedence relations inw, and the
language classLSP2

was called the precedence languages
(Heinz, 2007; Heinz, to appear).

of length at mostk andu is in L, thenv is in L as
well (Simon, 1975; Simon, 1993; Lothaire, 2005).

A languageL is said to be Piecewise-Testable
(PT) if it is k-Piecewise Testable for somek ∈ N.
If k is fixed, thek-Piecewise Testable languages
are identifiable in the limit from positive data
(Garcı́a and Ruiz, 1996; Garcı́a and Ruiz, 2004).
More recently, the Piecewise Testable languages
has been shown to be linearly separable with a
subsequence kernel (Kontorovich et al., 2008).

The k-Piecewise Testable languages can also
be described with the functionSP ⋄

k . Recall that
f⋄(a) = {f(a)}. Thus functionsSP ⋄

k define
grammars as a finite list ofsets of subsequences
up to lengthk that may occur in words in the lan-
guage. This reflects the fact that thek-Piecewise
Testable languages are the boolean closure of the
Strictly k-Piecewise languages.4

5.4 Strictly k-Local languages

To define the Strictlyk-Local languages, it is nec-
essary to make a pointwise extension to the defini-
tions in§3.

Definition 5 For setsA1, . . . , An, suppose for
each i, fi : Σ∗ → Pfin(Ai), and let f =
(f1, . . . , fn).

1. A grammarG is a tuple(G1, . . . , Gn) where
G1 ∈ Pfin(A1), . . . ,Gn ∈ Pfin(An).

2. If for any w ∈ Σ∗, eachfi(w) ⊆ Gi for all
1 ≤ i ≤ n, thenf(w) is a pointwise subset
of G, writtenf(w) ⊆· G.

3. Thelanguage of grammarG is

Lf (G) = {w : f(w) ⊆· G}

4. Theclass of languagesobtained by all such
possible grammarsG isLf .

4More generally, it is not hard to show thatLf⋄ is the
boolean closure ofLf .

901

i t(i) SP2(t(i)) GrammarG Language ofG

-1 ∅ ∅
0 aaaa {λ, a, aa} {λ, a, aa} a∗

1 aab {λ, a, b, aa, ab} {λ, a, aa,b, ab} a∗ ∪ a∗b

2 baa {λ, a, b, aa, ba} {λ, a, b, aa, ab,ba} Σ∗\(Σ∗bΣ∗bΣ∗)
3 aba {λ, a, b, ab, ba} {λ, a, b, aa, ab, ba} Σ∗\(Σ∗bΣ∗bΣ∗)

. . .

Table 2: The learnerφSP2
with a text from the language in Example 2. Boldtype indicates newly added

elements to the grammar.

These definitions preserve the learning results
of §4. Note that the characteristic sample ofL ∈
Lf will be the union of the characteristic samples
of eachfi and the languageLf (G) is the intersec-
tion of Lfi

(Gi).
Locally k-Testable Languages in the Strict

Sense (Strictly k-Local) have been studied by sev-
eral researchers (McNaughton and Papert, 1971;
Garcia et al., 1990; Caron, 2000; Rogers and Pul-
lum, to appear), among others. We follow the
definitions from (McNaughton and Papert, 1971,
p. 14), effectively encoded in the following func-
tions.

Definition 6 Fix k ∈ N. Then the (left-edge) pre-
fix of lengthk, the (right-edge) suffix of lengthk,
and the interiork-factors of a wordw are

Lk(w) = {u ∈ Σk : ∃v ∈ Σ∗ such thatw = uv}

Rk(w) = {u ∈ Σk : ∃v ∈ Σ∗ such thatw = vu}

Ik(w) = fack(w)\(Lk(w) ∪Rk(w))

Example 3 Supposew = abcba. ThenL2(w) =
{ab}, R2(w) = {ba} andI2(w) = {bc, cb}.

Example 4 Suppose|w| = k. ThenLk(w) =
Rk(w) = {w} andIk(w) = ∅.

Example 5 Suppose|w| is less thank. Then
Lk(w) = Rk(w) = ∅ andIk(w) = {w}.

A languageL is k-Strictly Local(k-SL) iff for
all w ∈ L, there exist setsL,R, and I such
that w ∈ L iff Lk(w) ⊆ L, Rk(w) ⊆ R, and
Ik(w) ⊆ I. McNaughton and Papert note that if
w is of length less thank thanL may be perfectly
arbitrary aboutw.

This can now be expressed as the string exten-
sion function:

LRIk(w) = (Lk(w), Rk(w), Ik(w))

Thus for somek, a grammarG is triple formed
by taking subsets ofΣk, Σk, and Σ≤k, respec-
tively. A word w belongs to the language ofG

only if LRIk(w) ⊆· G. Clearly, LLRIk
= k-

SL, and henceforth we refer to this class ask-SL.
Since, for fixedk, LRIk ∈ SEF , all of the learn-
ing results in§4 apply.

5.5 Locally k-Testable languages

The Locallyk-testable languages (k-LT) are orig-
inally defined in McNaughton and Papert (1971)
and are the subject of several studies (Brzozowski
and Simon, 1973; McNaughton, 1974; Kim et
al., 1991; Caron, 2000; Garcı́a and Ruiz, 2004;
Rogers and Pullum, to appear).

A languageL is k-testable iff for allw1, w2 ∈
Σ∗ such that |w1| ≥ k and |w2| ≥ k, and
LRIk(w1) = LRIk(w2) then either bothw1, w2

belong toL or neither do. Clearly, every language
in k-SL belongs tok-LT. However k-LT prop-
erly include k-SL because ak-testable language
only distinguishes words wheneverLRIk(w1) 6=
LRIk(w2). It is known that thek-LT languages
are the boolean closure of thek-SL (McNaughton
and Papert, 1971).

The functionLRI⋄k exactly expressesk-testable
languages. Informally, each wordw is mapped
to a set containing a single element, this element
is the tripleLRIk(w). Thus a grammarG is a
subset of the triples used to definek-SL. Clearly,
LLRI⋄

k
= k-LT since it is the boolean closure of

LLRIk
. Henceforth we refer toLLRI⋄

k
as thek-

Locally Testable (k-LT) languages.

5.6 Generalized subsequence languages

Here we introduce generalized subsequence func-
tions, a general class of functions to which the
SPk and fack functions belong. Like those
functions, generalized subsequence functions map
words to a set of subsequences found within the
words. These functions are instantiated by a vec-
tor whose number of coordinates determine how
many times a subsequence may be discontiguous

902

and whose coordinate values determine the length
of each contiguous part of the subsequence.

Definition 7 For some n ∈ N, let ~v =
〈v0, v1, . . . , vn〉, where eachvi ∈ N. Let k be
the length of the subsequences; i.e.k =

∑n
0

vi.

f~v(w) =

{u ∈ Σk : ∃x0, . . . , xn, u0, . . . , un+1 ∈ Σ∗

such thatw = u0x0u1x1, . . . , unxnun+1

and|xi| = vi for all 0 ≤ i ≤ n}

whenk ≤ |w|, and{w} otherwise

The following examples help make the general-
ized subsequence functions clear.

Example 6 Let ~v = 〈2〉. Thenf〈2〉 = fac2. Gen-
erally,f〈k〉 = fack.

Example 7 Let ~v = 〈1, 1〉. Thenf〈1,1〉 = SP2.
Generally, if~v = 〈1, . . . 1〉 with |~v| = k. Then
f~v = SPk.

Example 8 Let ~v = 〈3, 2, 1〉 anda, b, c, d, e, f∈
Σ. Then Lf〈3,2,1〉

includes languages which
prohibit strings w which contain subsequences
abcdef whereabc andde must be contiguous in
w andabcdef is a subsequence ofw.

Generalized subsequence languages make dif-
ferent kinds of distinctions to be made than PT and
LT languages. For example, the language in Ex-
ample 8 is neitherk-LT nor k′-PT for any values
k, k′. Generalized subsequence languages prop-
erly include thek-SP andk-SL classes (Exam-
ples 6 and 7), and the boolean closure of the sub-
sequence languages (f⋄

~v) properly includes the LT
and PT classes.

Since for any~v, f~v andf⋄
~v are string extension

functions the learning results in§4 apply. Note
thatf~v(w) is computable in timeO(|w|k) wherek

is the length of the maximal subsequences deter-
mined by~v.

6 Other examples

This section provides examples of infinite and
nonregular language classes that are string exten-
sion learnable. Recall from Theorem 1 that string
extension languages are finite unions of blocks of
the partition ofΣ∗ induced byf . Assuming the
blocks of this partition can be enumerated, the
range off can be construed asPfin(N).

grammarG Language ofG
∅ ∅
{0} anbn

{1} Σ∗\anbn

{0, 1} Σ∗

Table 3: The language classLf from Example 9

In the examples considered so far, the enumera-
tion of the blocks is essentially encoded in partic-
ular substrings (or tuples of substrings). However,
much less clever enumerations are available.

Example 9 Let A = {0,1} and consider the fol-
lowing function:

f(w) =

{

0 iff w ∈ anbn

1 otherwise

The functionf belongs toSEF because it is maps
strings to a finite co-domain.Lf has four lan-
guages shown in Table 3.

The language class in Example 9 is not regular be-
cause it includes the well-known context-free lan-
guageanbn. This collection of languages is also
not closed under reversal.

There are also infinite language classes that are
string extension language classes. Arguably the
simplest example is the class of finite languages,
denotedLfin.

Example 10 Consider the functionid which
maps words inΣ∗ to their singleton sets, i.e.
id(w) = {w}.5 A grammarG is then a finite
subset ofΣ∗, and soL(G) is just a finite set of
words inΣ∗; in fact, L(G) = G. It follows that
Lid = Lfin.

It can be easily seen that the functionid induces
the trivial partition overΣ∗, and languages are
just finite unions of these blocks. The learnerφid

makes no generalizations at all, and only remem-
bers what it has observed.

There are other more interesting infinite string
extension classes. Here is one relating to the
Parikh map (Parikh, 1966). For alla ∈ Σ, let
fa(w) be the set containingn wheren is the num-
ber of times the lettera occurs in the stringw. For

5Strictly speaking, this is not the identity function per
se, but it is as close to the identity function as one can get
since string extension functions are defined as mappings from
strings to sets. However, once the domain of the function is
extended (Equation 1), then it follows thatid is the identity
function when its argument is a set of strings.

903

examplefa(babab) = {2}. Thusfa is a total func-
tion mapping strings to singleton sets of natural
numbers, so it is a string extension function. This
function induces an infinite partition ofΣ∗, where
the words in any particular block have the same
number of lettersa. It is convenient to enumerate
the blocks according to how many occurrences of
the lettera may occur in words within the block.
Hence,B0 is the block whose words have no oc-
currences ofa, B1 is the block whose words have
one occurrence ofa, and so on.

In this case, a grammarG is a finite subset ofN,
e.g. {2, 3, 4}. L(G) is simply those words which
have either 2, 3, or 4, occurrences of the lettera.
ThusLfa

is an infinite class, which contains lan-
guages of infinite size, which is easily identified in
the limit from positive data byφfa

.
This section gave examples of nonregular and

nonfinite string extension classes by pursuing the
implications of Theorem 1, which established that
f ∈ SEF partition Σ∗ into blocks of which lan-
guages are finite unions thereof. The string exten-
sion functionf provides an effective way of en-
coding all languagesL in Lf becausef(L) en-
codes a finite set, the grammar.

7 Conclusion and open questions

One contribution of this paper is a unified way of
thinking about many formal language classes, all
of which have been shown to be identifiable in
the limit from positive data by a string extension
learner. Another contribution is a recipe for defin-
ing classes of languages identifiable in the limit
from positive data by this kind of learner.

As shown, these learners have many desirable
properties. In particular, they are globally consis-
tent, locally conservative, and set-driven. Addi-
tionally, the learner is guaranteed to be efficient
in the size of the sample, provided the functionf

itself is efficient in the length of the string.
Several additional questions of interest remain

open for theoretical linguistics, theoretical com-
puter science, and computational linguistics.

For theoretical linguistics, it appears that the
string extension functionf = (LRI3, P2), which
defines a class of languages which obey restric-
tions on both contiguous subsequences of length
3 and on discontiguous subsequences of length2,
provides a good first approximation to the seg-
mental phonotactic patterns in natural languages
(Heinz, 2007). The string extension learner for

this class is essentially two learners:φLRI3 and
φP2

, operating simultaneously.6 The learners
make predictions about generalizations, which can
be tested in artificial language learning experi-
ments on adults and infants (Rogers and Pullum, to
appear; Chambers et al., 2002; Onishi et al., 2003;
Cristiá and Seidl, 2008).7

For theoretical computer science, it remains an
open question what property holds of functions
f in SEF to ensure thatLf is regular, context-
free, or context-sensitive. For known subregular
classes, there are constructions that provide deter-
ministic automata that suggest the relevant prop-
erties. (See, for example, Garcia et al. (1990) and
Garica and Ruiz (1996).)

Also, Timo Kötzing and Samuel Moelius (p.c.)
suggest that the results here may be generalized
along the following lines. Instead of defining the
functionf as a map from strings to finite subsets,
let f be a function from strings to elements of a
lattice. A grammarG is an element of the lattice
and the language of theG are all stringsw such
thatf mapsw to a grammar less thanG. Learners
φf are defined as the least upper bound of its cur-
rent hypothesis and the grammar to whichf maps
the current word.8 Kasprzik and Kötzing (2010)
develop this idea and demonstrate additional prop-
erties of string extension classes and learning, and
show that the pattern languages (Angluin, 1980a)
form a string extension class.9

Also, hyperplane learning (Clark et al., 2006a;
Clark et al., 2006b) and function-distinguishable
learning (Fernau, 2003) similarly associate lan-
guage classes with functions. How those analyses
relate to the current one remains open.

Finally, since the stochastic counterpart ofk-
SL class is then-gram model, it is plausible that
probabilistic string extension language classes can
form the basis of new natural language process-
ing techniques. (Heinz and Rogers, 2010) show

6This learner resembles what learning theorists callpar-
allel learning (Case and Moelius, 2007) and what cognitive
scientists callmodular learning(Gallistel and King, 2009).

7I conjecture that morphological and syntactic patterns
are generally not amenable to a string extension learning
analysis because these patterns appear to require a paradigm,
i.e. a set of data points, before any conclusion can be confi-
dently drawn about the generating grammar. Stress patterns
also do not appear to be amenable to a string extension learn-
ing (Heinz, 2007; Edlefsen et al., 2008; Heinz, 2009).

8See also Lange et al. (2008, Theorem 15) and Case et al.
(1999, pp.101-103).

9The basic idea is to consider the latticeL = 〈Lfin,⊇〉.
Each element ofL is a finite set of strings representing the
intersection of all pattern languages consistent with thisset.

904

how to efficiently estimatek-SP distributions, and
it is conjectured that the other string extension lan-
guage classes can be recast as classes of distri-
butions, which can also be successfully estimated
from positive evidence.

Acknowledgments

This work was supported by a University of
Delaware Research Fund grant during the 2008-
2009 academic year. I would like to thank John
Case, Alexander Clark, Timo Kötzing, Samuel
Moelius, James Rogers, and Edward Stabler for
valuable discussion. I would also like to thank
Timo Kötzing for careful reading of an earlier
draft and for catching some errors. Remaining er-
rors are my responsibility.

References
Dana Angluin. 1980a. Finding patterns common to

a set of strings.Journal of Computer and System
Sciences, 21:46–62.

Dana Angluin. 1980b. Inductive inference of formal
languages from positive data.Information Control,
45:117–135.

Dana Angluin. 1988. Identifying languages from
stochastic examples. Technical Report 614, Yale
University, New Haven, CT.

D. Beauquier and J.E. Pin. 1991. Languages and scan-
ners.Theoretical Computer Science, 84:3–21.

Anselm Blumer, Andrzej Ehrenfeucht, David Haus-
sler, and Manfred K. Warmuth. 1989. Learnability
and the Vapnik-Chervonenkis dimension.J. ACM,
36(4):929–965.

J.A. Brzozowski and I. Simon. 1973. Characterization
of locally testable events.Discrete Math, 4:243–
271.

J.A. Brzozowski. 1962. Canonical regular expres-
sions and minimal state graphs for definite events. In
Mathematical Theory of Automata, pages 529–561.
New York.

Nicola Cancedda, Eric Gaussier, Cyril Goutte, and
Jean-Michel Renders. 2003. Word-sequence ker-
nels. Journal of Machine Learning Research,
3:1059–1082.

Pascal Caron. 2000. Families of locally testable lan-
guages. Theoretical Computer Science, 242:361–
376.

John Case and Sam Moelius. 2007. Parallelism
increases iterative learning power. In18th An-
nual Conference on Algorithmic Learning Theory
(ALT07), volume 4754 ofLecture Notes in Artificial
Intelligence, pages 49–63. Springer-Verlag, Berlin.

John Case, Sanjay Jain, Steffen Lange, and Thomas
Zeugmann. 1999. Incremental concept learning for
bounded data mining.Information and Computa-
tion, 152:74–110.

Kyle E. Chambers, Kristine H. Onishi, and Cynthia
Fisher. 2002. Learning phonotactic constraints from
brief auditory experience.Cognition, 83:B13–B23.

Alexander Clark, Christophe Costa Florêncio, and
Chris Watkins. 2006a. Languages as hyperplanes:
grammatical inference with string kernels. InPro-
ceedings of the European Conference on Machine
Learning (ECML), pages 90–101.

Alexander Clark, Christophe Costa Florêncio, Chris
Watkins, and Mariette Serayet. 2006b. Planar
languages and learnability. InProceedings of the
8th International Colloquium on Grammatical Infer-
ence (ICGI), pages 148–160.

Alejandrina Cristiá and Amanda Seidl. 2008. Phono-
logical features in infants phonotactic learning: Ev-
idence from artificial grammar learning.Language,
Learning, and Development, 4(3):203–227.

Colin de la Higuera. 1997. Characteristic sets for poly-
nomial grammatical inference.Machine Learning,
27:125–138.

Matt Edlefsen, Dylan Leeman, Nathan Myers,
Nathaniel Smith, Molly Visscher, and David Well-
come. 2008. Deciding strictly local (SL) lan-
guages. In Jon Breitenbucher, editor,Proceedings
of the Midstates Conference for Undergraduate Re-
search in Computer Science and Mathematics, pages
66–73.

Henning Fernau. 2003. Identification of function dis-
tinguishable languages.Theoretical Computer Sci-
ence, 290:1679–1711.

C.R. Gallistel and Adam Philip King. 2009.Memory
and the Computational Brain. Wiley-Blackwell.

Pedro Garcı́a and José Ruiz. 1996. Learning k-
piecewise testable languages from positive data. In
Laurent Miclet and Colin de la Higuera, editors,
Grammatical Interference: Learning Syntax from
Sentences, volume 1147 ofLecture Notes in Com-
puter Science, pages 203–210. Springer.

Pedro Garcı́a and José Ruiz. 2004. Learning k-testable
and k-piecewise testable languages from positive
data.Grammars, 7:125–140.

Pedro Garcia, Enrique Vidal, and José Oncina. 1990.
Learning locally testable languages in the strict
sense. InProceedings of the Workshop on Algorith-
mic Learning Theory, pages 325–338.

E.M. Gold. 1967. Language identification in the limit.
Information and Control, 10:447–474.

J. Grainger and C. Whitney. 2004. Does the huamn
mnid raed wrods as a wlohe?Trends in Cognitive
Science, 8:58–59.

905

Jeffrey Heinz and James Rogers. 2010. Estimating
strictly piecewise distributions. InProceedings of
the ACL.

Jeffrey Heinz. 2007. The Inductive Learning of
Phonotactic Patterns. Ph.D. thesis, University of
California, Los Angeles.

Jeffrey Heinz. 2009. On the role of locality in learning
stress patterns.Phonology, 26(2):303–351.

Jeffrey Heinz. to appear. Learning long distance
phonotactics.Linguistic Inquiry.

J. J. Horning. 1969.A Study of Grammatical Infer-
ence. Ph.D. thesis, Stanford University.

Sanjay Jain, Daniel Osherson, James S. Royer, and
Arun Sharma. 1999.Systems That Learn: An In-
troduction to Learning Theory (Learning, Develop-
ment and Conceptual Change). The MIT Press, 2nd
edition.

Sanjay Jain, Steffen Lange, and Sandra Zilles. 2007.
Some natural conditions on incremental learning.
Information and Computation, 205(11):1671–1684.

Daniel Jurafsky and James Martin. 2008.Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Speech Recognition, and
Computational Linguistics. Prentice-Hall, Upper
Saddle River, NJ, 2nd edition.

Anna Kasprzik and Timo Kötzing. to appear. String
extension learning using lattices. InProceedings of
the 4th International Conference on Language and
Automata Theory and Applications (LATA 2010),
Trier, Germany.

S.M. Kim, R. McNaughton, and R. McCloskey. 1991.
A polynomial time algorithm for the local testabil-
ity problem of deterministic finite automata.IEEE
Trans. Comput., 40(10):1087–1093.

Leonid (Aryeh) Kontorovich, Corinna Cortes, and
Mehryar Mohri. 2008. Kernel methods for learn-
ing languages. Theoretical Computer Science,
405(3):223 – 236. Algorithmic Learning Theory.

Steffen Lange, Thomas Zeugmann, and Sandra Zilles.
2008. Learning indexed families of recursive lan-
guages from positive data: A survey.Theoretical
Computer Science, 397:194–232.

H. Lodhi, N. Cristianini, J. Shawe-Taylor, and
C. Watkins. 2002. Text classification using string
kernels. Journal of Machine Language Research,
2:419–444.

M. Lothaire, editor. 2005.Applied Combinatorics on
Words. Cmbridge University Press, 2nd edition.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press.

R. McNaughton. 1974. Algebraic decision procedures
for local testability.Math. Systems Theory, 8:60–76.

Kristine H. Onishi, Kyle E. Chambers, and Cynthia
Fisher. 2003. Infants learn phonotactic regularities
from brief auditory experience.Cognition, 87:B69–
B77.

R. J. Parikh. 1966. On context-free languages.Journal
of the ACM, 13, 570581., 13:570–581.

James Rogers and Geoffrey Pullum. to appear. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Infor-
mation.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel. 2009. On languages piecewise testable in
the strict sense. InProceedings of the 11th Meeting
of the Assocation for Mathematics of Language.

John Shawe-Taylor and Nello Christianini. 2005.Ker-
nel Methods for Pattern Analysis. Cambridge Uni-
versity Press.

Imre Simon. 1975. Piecewise testable events. InAu-
tomata Theory and Formal Languages, pages 214–
222.

Imre Simon. 1993. The product of rational lan-
guages. InICALP ’93: Proceedings of the 20th
International Colloquium on Automata, Languages
and Programming, pages 430–444, London, UK.
Springer-Verlag.

Carol Whitney and Piers Cornelissen. 2008. SE-
RIOL reading.Language and Cognitive Processes,
23:143–164.

Carol Whitney. 2001. How the brain encodes the or-
der of letters in a printed word: the SERIOL model
and selective literature review.Psychonomic Bul-
letin Review, 8:221–243.

906

