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Abstract

The computation of selectional prefer-
ences, the admissible argument values for
a relation, is a well-known NLP task with
broad applicability. We present LDA-SP,
which utilizes LinkLDA (Erosheva et al.,
2004) to model selectional preferences.
By simultaneously inferring latent top-
ics and topic distributions over relations,
LDA-SP combines the benefits of pre-
vious approaches: like traditional class-
based approaches, it produces human-
interpretable classes describing each re-
lation’s preferences, but it is competitive
with non-class-based methods in predic-
tive power.

We compare LDA-SP to several state-of-
the-art methods achieving an 85% increase
in recall at 0.9 precision over mutual in-
formation (Erk, 2007). We also eval-
uate LDA-SP’s effectiveness at filtering
improper applications of inference rules,
where we show substantial improvement
over Pantel et al.’s system (Pantel et al.,
2007).

1 Introduction

Selectional Preferences encode the set of admissi-
ble argument values for a relation. For example,
locations are likely to appear in the second argu-
ment of the relation X is headquartered in Y and
companies or organizations in the first. A large,
high-quality database of preferences has the po-
tential to improve the performance of a wide range
of NLP tasks including semantic role labeling
(Gildea and Jurafsky, 2002), pronoun resolution
(Bergsma et al., 2008), textual inference (Pantel
et al., 2007), word-sense disambiguation (Resnik,
1997), and many more. Therefore, much atten-
tion has been focused on automatically computing

them based on a corpus of relation instances.
Resnik (1996) presented the earliest work in

this area, describing an information-theoretic ap-
proach that inferred selectional preferences based
on the WordNet hypernym hierarchy. Recent work
(Erk, 2007; Bergsma et al., 2008) has moved away
from generalization to known classes, instead
utilizing distributional similarity between nouns
to generalize beyond observed relation-argument
pairs. This avoids problems like WordNet’s poor
coverage of proper nouns and is shown to improve
performance. These methods, however, no longer
produce the generalized class for an argument.

In this paper we describe a novel approach to
computing selectional preferences by making use
of unsupervised topic models. Our approach is
able to combine benefits of both kinds of meth-
ods: it retains the generalization and human-
interpretability of class-based approaches and is
also competitive with the direct methods on pre-
dictive tasks.

Unsupervised topic models, such as latent
Dirichlet allocation (LDA) (Blei et al., 2003) and
its variants are characterized by a set of hidden
topics, which represent the underlying semantic
structure of a document collection. For our prob-
lem these topics offer an intuitive interpretation –
they represent the (latent) set of classes that store
the preferences for the different relations. Thus,
topic models are a natural fit for modeling our re-
lation data.

In particular, our system, called LDA-SP, uses
LinkLDA (Erosheva et al., 2004), an extension of
LDA that simultaneously models two sets of dis-
tributions for each topic. These two sets represent
the two arguments for the relations. Thus, LDA-SP

is able to capture information about the pairs of
topics that commonly co-occur. This information
is very helpful in guiding inference.

We run LDA-SP to compute preferences on a
massive dataset of binary relations r(a1, a2) ex-
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tracted from the Web by TEXTRUNNER (Banko
and Etzioni, 2008). Our experiments demon-
strate that LDA-SP significantly outperforms state
of the art approaches obtaining an 85% increase
in recall at precision 0.9 on the standard pseudo-
disambiguation task.

Additionally, because LDA-SP is based on a for-
mal probabilistic model, it has the advantage that
it can naturally be applied in many scenarios. For
example, we can obtain a better understanding of
similar relations (Table 1), filter out incorrect in-
ferences based on querying our model (Section
4.3), as well as produce a repository of class-based
preferences with a little manual effort as demon-
strated in Section 4.4. In all these cases we obtain
high quality results, for example, massively out-
performing Pantel et al.’s approach in the textual
inference task.1

2 Previous Work

Previous work on selectional preferences can
be broken into four categories: class-based ap-
proaches (Resnik, 1996; Li and Abe, 1998; Clark
and Weir, 2002; Pantel et al., 2007), similarity
based approaches (Dagan et al., 1999; Erk, 2007),
discriminative (Bergsma et al., 2008), and genera-
tive probabilistic models (Rooth et al., 1999).

Class-based approaches, first proposed by
Resnik (1996), are the most studied of the four.
They make use of a pre-defined set of classes, ei-
ther manually produced (e.g. WordNet), or auto-
matically generated (Pantel, 2003). For each re-
lation, some measure of the overlap between the
classes and observed arguments is used to iden-
tify those that best describe the arguments. These
techniques produce a human-interpretable output,
but often suffer in quality due to an incoherent tax-
onomy, inability to map arguments to a class (poor
lexical coverage), and word sense ambiguity.

Because of these limitations researchers have
investigated non-class based approaches, which
attempt to directly classify a given noun-phrase
as plausible/implausible for a relation. Of these,
the similarity based approaches make use of a dis-
tributional similarity measure between arguments
and evaluate a heuristic scoring function:

Srel(arg)=
∑

arg′∈Seen(rel)

sim(arg, arg′) · wtrel(arg)

1Our repository of selectional preferences is available
at http://www.cs.washington.edu/research/
ldasp.

Erk (2007) showed the advantages of this ap-
proach over Resnik’s information-theoretic class-
based method on a pseudo-disambiguation evalu-
ation. These methods obtain better lexical cover-
age, but are unable to obtain any abstract represen-
tation of selectional preferences.

Our solution fits into the general category
of generative probabilistic models, which model
each relation/argument combination as being gen-
erated by a latent class variable. These classes
are automatically learned from the data. This re-
tains the class-based flavor of the problem, with-
out the knowledge limitations of the explicit class-
based approaches. Probably the closest to our
work is a model proposed by Rooth et al. (1999),
in which each class corresponds to a multinomial
over relations and arguments and EM is used to
learn the parameters of the model. In contrast,
we use a LinkLDA framework in which each re-
lation is associated with a corresponding multi-
nomial distribution over classes, and each argu-
ment is drawn from a class-specific distribution
over words; LinkLDA captures co-occurrence of
classes in the two arguments. Additionally we
perform full Bayesian inference using collapsed
Gibbs sampling, in which parameters are inte-
grated out (Griffiths and Steyvers, 2004).

Recently, Bergsma et. al. (2008) proposed the
first discriminative approach to selectional prefer-
ences. Their insight that pseudo-negative exam-
ples could be used as training data allows the ap-
plication of an SVM classifier, which makes use of
many features in addition to the relation-argument
co-occurrence frequencies used by other meth-
ods. They automatically generated positive and
negative examples by selecting arguments having
high and low mutual information with the rela-
tion. Since it is a discriminative approach it is
amenable to feature engineering, but needs to be
retrained and tuned for each task. On the other
hand, generative models produce complete prob-
ability distributions of the data, and hence can be
integrated with other systems and tasks in a more
principled manner (see Sections 4.2.2 and 4.3.1).
Additionally, unlike LDA-SP Bergsma et al.’s sys-
tem doesn’t produce human-interpretable topics.
Finally, we note that LDA-SP and Bergsma’s sys-
tem are potentially complimentary – the output of
LDA-SP could be used to generate higher-quality
training data for Bergsma, potentially improving
their results.
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Topic models such as LDA (Blei et al., 2003)
and its variants have recently begun to see use
in many NLP applications such as summarization
(Daumé III and Marcu, 2006), document align-
ment and segmentation (Chen et al., 2009), and
inferring class-attribute hierarchies (Reisinger and
Pasca, 2009). Our particular model, LinkLDA, has
been applied to a few NLP tasks such as simul-
taneously modeling the words appearing in blog
posts and users who will likely respond to them
(Yano et al., 2009), modeling topic-aligned arti-
cles in different languages (Mimno et al., 2009),
and word sense induction (Brody and Lapata,
2009).

Finally, we highlight two systems, developed
independently of our own, which apply LDA-style
models to similar tasks. Ó Séaghdha (2010) pro-
poses a series of LDA-style models for the task
of computing selectional preferences. This work
learns selectional preferences between the fol-
lowing grammatical relations: verb-object, noun-
noun, and adjective-noun. It also focuses on
jointly modeling the generation of both predicate
and argument, and evaluation is performed on a
set of human-plausibility judgments obtaining im-
pressive results against Keller and Lapata’s (2003)
Web hit-count based system. Van Durme and
Gildea (2009) proposed applying LDA to general
knowledge templates extracted using the KNEXT

system (Schubert and Tong, 2003). In contrast,
our work uses LinkLDA and focuses on modeling
multiple arguments of a relation (e.g., the subject
and direct object of a verb).

3 Topic Models for Selectional Prefs.

We present a series of topic models for the task of
computing selectional preferences. These models
vary in the amount of independence they assume
between a1 and a2. At one extreme is Indepen-
dentLDA, a model which assumes that both a1 and
a2 are generated completely independently. On
the other hand, JointLDA, the model at the other
extreme (Figure 1) assumes both arguments of a
specific extraction are generated based on a single
hidden variable z. LinkLDA (Figure 2) lies be-
tween these two extremes, and as demonstrated in
Section 4, it is the best model for our relation data.

We are given a set R of binary relations and a
corpus D = {r(a1, a2)} of extracted instances for

these relations. 2 Our task is to compute, for each
argument ai of each relation r, a set of usual ar-
gument values (noun phrases) that it takes. For
example, for the relation is headquartered in the
first argument set will include companies like Mi-
crosoft, Intel, General Motors and second argu-
ment will favor locations like New York, Califor-
nia, Seattle.

3.1 IndependentLDA

We first describe the straightforward application
of LDA to modeling our corpus of extracted rela-
tions. In this case two separate LDA models are
used to model a1 and a2 independently.

In the generative model for our data, each rela-
tion r has a corresponding multinomial over topics
θr, drawn from a Dirichlet. For each extraction, a
hidden topic z is first picked according to θr, and
then the observed argument a is chosen according
to the multinomial βz .

Readers familiar with topic modeling terminol-
ogy can understand our approach as follows: we
treat each relation as a document whose contents
consist of a bags of words corresponding to all the
noun phrases observed as arguments of the rela-
tion in our corpus. Formally, LDA generates each
argument in the corpus of relations as follows:

for each topic t = 1 . . . T do
Generate βt according to symmetric Dirich-

let distribution Dir(η).
end for
for each relation r = 1 . . . |R| do

Generate θr according to Dirichlet distribu-
tion Dir(α).

for each tuple i = 1 . . . Nr do
Generate zr,i from Multinomial(θr).
Generate the argument ar,i from multi-

nomial βzr,i .
end for

end for
One weakness of IndependentLDA is that it

doesn’t jointly model a1 and a2 together. Clearly
this is undesirable, as information about which
topics one of the arguments favors can help inform
the topics chosen for the other. For example, class
pairs such as (team, game), (politician, political is-
sue) form much more plausible selectional prefer-
ences than, say, (team, political issue), (politician,
game).

2We focus on binary relations, though the techniques pre-
sented in the paper are easily extensible to n-ary relations.
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3.2 JointLDA

As a more tightly coupled alternative, we first
propose JointLDA, whose graphical model is de-
picted in Figure 1. The key difference in JointLDA
(versus LDA) is that instead of one, it maintains
two sets of topics (latent distributions over words)
denoted by β and γ, one for classes of each ar-
gument. A topic id k represents a pair of topics,
βk and γk, that co-occur in the arguments of ex-
tracted relations. Common examples include (Per-
son, Location), (Politician, Political issue), etc.
The hidden variable z = k indicates that the noun
phrase for the first argument was drawn from the
multinomial βk, and that the second argument was
drawn from γk. The per-relation distribution θr is
a multinomial over the topic ids and represents the
selectional preferences, both for arg1s and arg2s
of a relation r.

Although JointLDA has many desirable proper-
ties, it has some drawbacks as well. Most notably,
in JointLDA topics correspond to pairs of multi-
nomials (βk, γk); this leads to a situation in which
multiple redundant distributions are needed to rep-
resent the same underlying semantic class. For
example consider the case where we we need to
represent the following selectional preferences for
our corpus of relations: (person, location), (per-
son, organization), and (person, crime). Because
JointLDA requires a separate pair of multinomials
for each topic, it is forced to use 3 separate multi-
nomials to represent the class person, rather than
learning a single distribution representing person
and choosing 3 different topics for a2. This results
in poor generalization because the data for a single
class is divided into multiple topics.

In order to address this problem while maintain-
ing the sharing of influence between a1 and a2, we
next present LinkLDA, which represents a com-
promise between IndependentLDA and JointLDA.
LinkLDA is more flexible than JointLDA, allow-
ing different topics to be chosen for a1, and a2,
however still models the generation of topics from
the same distribution for a given relation.

3.3 LinkLDA

Figure 2 illustrates the LinkLDA model in the
plate notation, which is analogous to the model
in (Erosheva et al., 2004). In particular note that
each ai is drawn from a different hidden topic zi,
however the zi’s are drawn from the same distri-
bution θr for a given relation r. To facilitate learn-
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Figure 2: LinkLDA

ing related topic pairs between arguments we em-
ploy a sparse prior over the per-relation topic dis-
tributions. Because a few topics are likely to be
assigned most of the probability mass for a given
relation it is more likely (although not necessary)
that the same topic number k will be drawn for
both arguments.

When comparing LinkLDA with JointLDA the
better model may not seem immediately clear. On
the one hand, JointLDA jointly models the gen-
eration of both arguments in an extracted tuple.
This allows one argument to help disambiguate
the other in the case of ambiguous relation strings.
LinkLDA, however, is more flexible; rather than
requiring both arguments to be generated from one
of |Z| possible pairs of multinomials (βz, γz), Lin-
kLDA allows the arguments of a given extraction
to be generated from |Z|2 possible pairs. Thus,
instead of imposing a hard constraint that z1 =
z2 (as in JointLDA), LinkLDA simply assigns a
higher probability to states in which z1 = z2, be-
cause both hidden variables are drawn from the
same (sparse) distribution θr. LinkLDA can thus
re-use argument classes, choosing different com-
binations of topics for the arguments if it fits the
data better. In Section 4 we show experimentally
that LinkLDA outperforms JointLDA (and Inde-
pendentLDA) by wide margins. We use LDA-SP

to refer to LinkLDA in all the experiments below.

3.4 Inference
For all the models we use collapsed Gibbs sam-
pling for inference in which each of the hid-
den variables (e.g., zr,i,1 and zr,i,2 in LinkLDA)
are sampled sequentially conditioned on a full-
assignment to all others, integrating out the param-
eters (Griffiths and Steyvers, 2004). This produces
robust parameter estimates, as it allows computa-
tion of expectations over the posterior distribution
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as opposed to estimating maximum likelihood pa-
rameters. In addition, the integration allows the
use of sparse priors, which are typically more ap-
propriate for natural language data. In all exper-
iments we use hyperparameters α = η1 = η2 =
0.1. We generated initial code for our samplers us-
ing the Hierarchical Bayes Compiler (Daume III,
2007).

3.5 Advantages of Topic Models
There are several advantages to using topic mod-
els for our task. First, they naturally model the
class-based nature of selectional preferences, but
don’t take a pre-defined set of classes as input.
Instead, they compute the classes automatically.
This leads to better lexical coverage since the is-
sue of matching a new argument to a known class
is side-stepped. Second, the models naturally han-
dle ambiguous arguments, as they are able to as-
sign different topics to the same phrase in different
contexts. Inference in these models is also scalable
– linear in both the size of the corpus as well as
the number of topics. In addition, there are several
scalability enhancements such as SparseLDA (Yao
et al., 2009), and an approximation of the Gibbs
Sampling procedure can be efficiently parallelized
(Newman et al., 2009). Finally we note that, once
a topic distribution has been learned over a set of
training relations, one can efficiently apply infer-
ence to unseen relations (Yao et al., 2009).

4 Experiments

We perform three main experiments to assess the
quality of the preferences obtained using topic
models. The first is a task-independent evaluation
using a pseudo-disambiguation experiment (Sec-
tion 4.2), which is a standard way to evaluate the
quality of selectional preferences (Rooth et al.,
1999; Erk, 2007; Bergsma et al., 2008). We use
this experiment to compare the various topic mod-
els as well as the best model with the known state
of the art approaches to selectional preferences.
Secondly, we show significant improvements to
performance at an end-task of textual inference in
Section 4.3. Finally, we report on the quality of
a large database of Wordnet-based preferences ob-
tained after manually associating our topics with
Wordnet classes (Section 4.4).

4.1 Generalization Corpus
For all experiments we make use of a corpus
of r(a1, a2) tuples, which was automatically ex-

tracted by TEXTRUNNER (Banko and Etzioni,
2008) from 500 million Web pages.

To create a generalization corpus from this
large dataset. We first selected 3,000 relations
from the middle of the tail (we used the 2,000-
5,000 most frequent ones)3 and collected all in-
stances. To reduce sparsity, we discarded all tu-
ples containing an NP that occurred fewer than 50
times in the data. This resulted in a vocabulary of
about 32,000 noun phrases, and a set of about 2.4
million tuples in our generalization corpus.

We inferred topic-argument and relation-topic
multinomials (β, γ, and θ) on the generalization
corpus by taking 5 samples at a lag of 50 after
a burn in of 750 iterations. Using multiple sam-
ples introduces the risk of topic drift due to lack
of identifiability, however we found this to not be
a problem in practice. During development we
found that the topics tend to remain stable across
multiple samples after sufficient burn in, and mul-
tiple samples improved performance. Table 1 lists
sample topics and high ranked words for each (for
both arguments) as well as relations favoring those
topics.

4.2 Task Independent Evaluation

We first compare the three LDA-based approaches
to each other and two state of the art similarity
based systems (Erk, 2007) (using mutual informa-
tion and Jaccard similarity respectively). These
similarity measures were shown to outperform the
generative model of Rooth et al. (1999), as well
as class-based methods such as Resnik’s. In this
pseudo-disambiguation experiment an observed
tuple is paired with a pseudo-negative, which
has both arguments randomly generated from the
whole vocabulary (according to the corpus-wide
distribution over arguments). The task is, for each
relation-argument pair, to determine whether it is
observed, or a random distractor.

4.2.1 Test Set
For this experiment we gathered a primary corpus
by first randomly selecting 100 high-frequency re-
lations not in the generalization corpus. For each
relation we collected all tuples containing argu-
ments in the vocabulary. We held out 500 ran-
domly selected tuples as the test set. For each tu-

3Many of the most frequent relations have very weak se-
lectional preferences, and thus provide little signal for infer-
ring meaningful topics. For example, the relations has and is
can take just about any arguments.
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Topic t Arg1 Relations which assign
highest probability to t

Arg2

18 The residue - The mixture - The reaction
mixture - The solution - the mixture - the re-
action mixture - the residue - The reaction -
the solution - The filtrate - the reaction - The
product - The crude product - The pellet -
The organic layer - Thereto - This solution
- The resulting solution - Next - The organic
phase - The resulting mixture - C. )

was treated with, is
treated with, was
poured into, was
extracted with, was
purified by, was di-
luted with, was filtered
through, is disolved in,
is washed with

EtOAc - CH2Cl2 - H2O - CH.sub.2Cl.sub.2
- H.sub.2O - water - MeOH - NaHCO3 -
Et2O - NHCl - CHCl.sub.3 - NHCl - drop-
wise - CH2Cl.sub.2 - Celite - Et.sub.2O -
Cl.sub.2 - NaOH - AcOEt - CH2C12 - the
mixture - saturated NaHCO3 - SiO2 - H2O
- N hydrochloric acid - NHCl - preparative
HPLC - to0 C

151 the Court - The Court - the Supreme Court
- The Supreme Court - this Court - Court
- The US Supreme Court - the court - This
Court - the US Supreme Court - The court
- Supreme Court - Judge - the Court of Ap-
peals - A federal judge

will hear, ruled in, de-
cides, upholds, struck
down, overturned,
sided with, affirms

the case - the appeal - arguments - a case -
evidence - this case - the decision - the law
- testimony - the State - an interview - an
appeal - cases - the Court - that decision -
Congress - a decision - the complaint - oral
arguments - a law - the statute

211 President Bush - Bush - The President -
Clinton - the President - President Clinton
- President George W. Bush - Mr. Bush -
The Governor - the Governor - Romney -
McCain - The White House - President -
Schwarzenegger - Obama

hailed, vetoed, pro-
moted, will deliver,
favors, denounced,
defended

the bill - a bill - the decision - the war - the
idea - the plan - the move - the legislation -
legislation - the measure - the proposal - the
deal - this bill - a measure - the program -
the law - the resolution - efforts - the agree-
ment - gay marriage - the report - abortion

224 Google - Software - the CPU - Clicking -
Excel - the user - Firefox - System - The
CPU - Internet Explorer - the ability - Pro-
gram - users - Option - SQL Server - Code
- the OS - the BIOS

will display, to store, to
load, processes, cannot
find, invokes, to search
for, to delete

data - files - the data - the file - the URL -
information - the files - images - a URL - the
information - the IP address - the user - text
- the code - a file - the page - IP addresses -
PDF files - messages - pages - an IP address

Table 1: Example argument lists from the inferred topics. For each topic number t we list the most
probable values according to the multinomial distributions for each argument (βt and γt). The middle
column reports a few relations whose inferred topic distributions θr assign highest probability to t.

ple r(a1, a2) in the held-out set, we removed all
tuples in the training set containing either of the
rel-arg pairs, i.e., any tuple matching r(a1, ∗) or
r(∗, a2). Next we used collapsed Gibbs sampling
to infer a distribution over topics, θr, for each of
the relations in the primary corpus (based solely
on tuples in the training set) using the topics from
the generalization corpus.

For each of the 500 observed tuples in the test-
set we generated a pseudo-negative tuple by ran-
domly sampling two noun phrases from the distri-
bution of NPs in both corpora.

4.2.2 Prediction

Our prediction system needs to determine whether
a specific relation-argument pair is admissible ac-
cording to the selectional preferences or is a ran-
dom distractor (D). Following previous work, we
perform this experiment independently for the two
relation-argument pairs (r, a1) and (r, a2).

We first compute the probability of observing
a1 for first argument of relation r given that it is
not a distractor, P (a1|r,¬D), which we approx-
imate by its probability given an estimate of the
parameters inferred by our model, marginalizing
over hidden topics t. The analysis for the second

argument is similar.

P (a1|r,¬D) ≈ PLDA(a1|r) =

TX
t=0

P (a1|t)P (t|r)

=

TX
t=0

βt(a1)θr(t)

A simple application of Bayes Rule gives the
probability that a particular argument is not a
distractor. Here the distractor-related proba-
bilities are independent of r, i.e., P (D|r) =
P (D), P (a1|D, r) = P (a1|D), etc. We estimate
P (a1|D) according to their frequency in the gen-
eralization corpus.

P (¬D|r, a1) =
P (¬D|r)P (a1|r,¬D)

P (a1|r)

≈ P (¬D)PLDA(a1|r)
P (D)P (a1|D) + P (¬D)PLDA(a1|r)

4.2.3 Results
Figure 3 plots the precision-recall curve for the
pseudo-disambiguation experiment comparing the
three different topic models. LDA-SP, which uses
LinkLDA, substantially outperforms both Inde-
pendentLDA and JointLDA.

Next, in figure 4, we compare LDA-SP with
mutual information and Jaccard similarities us-
ing both the generalization and primary corpus for
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Figure 3: Comparison of LDA-based approaches
on the pseudo-disambiguation task. LDA-SP (Lin-
kLDA) substantially outperforms the other mod-
els.
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Figure 4: Comparison to similarity-based selec-
tional preference systems. LDA-SP obtains 85%
higher recall at precision 0.9.

computation of similarities. We find LDA-SP sig-
nificantly outperforms these methods. Its edge is
most noticed at high precisions; it obtains 85%
more recall at 0.9 precision compared to mutual
information. Overall LDA-SP obtains an 15% in-
crease in the area under precision-recall curve over
mutual information. All three systems’ AUCs are
shown in Table 2; LDA-SP’s improvements over
both Jaccard and mutual information are highly
significant with a significance level less than 0.01
using a paired t-test.

In addition to a superior performance in se-
lectional preference evaluation LDA-SP also pro-
duces a set of coherent topics, which can be use-
ful in their own right. For instance, one could use
them for tasks such as set-expansion (Carlson et
al., 2010) or automatic thesaurus induction (Et-

LDA-SP MI-Sim Jaccard-Sim
AUC 0.833 0.727 0.711

Table 2: Area under the precision recall curve.
LDA-SP’s AUC is significantly higher than both
similarity-based methods according to a paired t-
test with a significance level below 0.01.

zioni et al., 2005; Kozareva et al., 2008).

4.3 End Task Evaluation

We now evaluate LDA-SP’s ability to improve per-
formance at an end-task. We choose the task of
improving textual entailment by learning selec-
tional preferences for inference rules and filtering
inferences that do not respect these. This applica-
tion of selectional preferences was introduced by
Pantel et. al. (2007). For now we stick to infer-
ence rules of the form r1(a1, a2) ⇒ r2(a1, a2),
though our ideas are more generally applicable to
more complex rules. As an example, the rule (X
defeats Y) ⇒ (X plays Y) holds when X and Y
are both sports teams, however fails to produce a
reasonable inference if X and Y are Britain and
Nazi Germany respectively.

4.3.1 Filtering Inferences
In order for an inference to be plausible, both re-
lations must have similar selectional preferences,
and further, the arguments must obey the selec-
tional preferences of both the antecedent r1 and
the consequent r2.4 Pantel et al. (2007) made
use of these intuitions by producing a set of class-
based selectional preferences for each relation,
then filtering out any inferences where the argu-
ments were incompatible with the intersection of
these preferences. In contrast, we take a proba-
bilistic approach, evaluating the quality of a spe-
cific inference by measuring the probability that
the arguments in both the antecedent and the con-
sequent were drawn from the same hidden topic
in our model. Note that this probability captures
both the requirement that the antecedent and con-
sequent have similar selectional preferences, and
that the arguments from a particular instance of the
rule’s application match their overlap.

We use zri,j to denote the topic that generates
the jth argument of relation ri. The probability
that the two arguments a1, a2 were drawn from
the same hidden topic factorizes as follows due to
the conditional independences in our model:5

P (zr1,1 = zr2,1, zr1,2 = zr2,2|a1, a2) =

P (zr1,1 = zr2,1|a1)P (zr1,2 = zr2,2|a2)

4Similarity-based and discriminative methods are not ap-
plicable to this task as they offer no straightforward way
to compare the similarity between selectional preferences of
two relations.

5Note that all probabilities are conditioned on an estimate
of the parameters θ, β, γ from our model, which are omitted
for compactness.
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To compute each of these factors we simply
marginalize over the hidden topics:

P (zr1,j = zr2,j |aj) =

TX
t=1

P (zr1,j = t|aj)P (zr2,j = t|aj)

where P (z = t|a) can be computed using
Bayes rule. For example,

P (zr1,1 = t|a1) =
P (a1|zr1,1 = t)P (zr1,1 = t)

P (a1)

=
βt(a1)θr1(t)

P (a1)

4.3.2 Experimental Conditions
In order to evaluate LDA-SP’s ability to filter in-
ferences based on selectional preferences we need
a set of inference rules between the relations in
our corpus. We therefore mapped the DIRT In-
ference rules (Lin and Pantel, 2001), (which con-
sist of pairs of dependency paths) to TEXTRUN-
NER relations as follows. We first gathered all in-
stances in the generalization corpus, and for each
r(a1, a2) created a corresponding simple sentence
by concatenating the arguments with the relation
string between them. Each such simple sentence
was parsed using Minipar (Lin, 1998). From
the parses we extracted all dependency paths be-
tween nouns that contain only words present in
the TEXTRUNNER relation string. These depen-
dency paths were then matched against each pair
in the DIRT database, and all pairs of associated
relations were collected producing about 26,000
inference rules.

Following Pantel et al. (2007) we randomly
sampled 100 inference rules. We then automati-
cally filtered out any rules which contained a nega-
tion, or for which the antecedent and consequent
contained a pair of antonyms found in WordNet
(this left us with 85 rules). For each rule we col-
lected 10 random instances of the antecedent, and
generated the consequent. We randomly sampled
300 of these inferences to hand-label.

4.3.3 Results
In figure 5 we compare the precision and recall of
LDA-SP against the top two performing systems
described by Pantel et al. (ISP.IIM-∨ and ISP.JIM,
both using the CBC clusters (Pantel, 2003)). We
find that LDA-SP achieves both higher precision
and recall than ISP.IIM-∨. It is also able to achieve
the high-precision point of ISP.JIM and can trade
precision to get a much larger recall.
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Figure 5: Precision and recall on the inference fil-
tering task.

Top 10 Inference Rules Ranked by LDA-SP
antecedent consequent KL-div
will begin at will start at 0.014999
shall review shall determine 0.129434
may increase may reduce 0.214841
walk from walk to 0.219471
consume absorb 0.240730
shall keep shall maintain 0.264299
shall pay to will notify 0.290555
may apply for may obtain 0.313916
copy download 0.316502
should pay must pay 0.371544
Bottom 10 Inference Rules Ranked by LDA-SP
antecedent consequent KL-div
lose to shall take 10.011848
should play could do 10.028904
could play get in 10.048857
will start at move to 10.060994
shall keep will spend 10.105493
should play get in 10.131299
shall pay to leave for 10.131364
shall keep return to 10.149797
shall keep could do 10.178032
shall maintain have spent 10.221618

Table 3: Top 10 and Bottom 10 ranked inference
rules ranked by LDA-SPafter automatically filter-
ing out negations and antonyms (using WordNet).

In addition we demonstrate LDA-SP’s abil-
ity to rank inference rules by measuring the
Kullback Leibler Divergence6 between the topic-
distributions of the antecedent and consequent, θr1

and θr2 respectively. Table 3 shows the top 10 and
bottom 10 rules out of the 26,000 ranked by KL
Divergence after automatically filtering antonyms
(using WordNet) and negations. For slight varia-
tions in rules (e.g., symmetric pairs) we mention
only one example to show more variety.

6KL-Divergence is an information-theoretic measure of
the similarity between two probability distributions, and de-
fined as follows: KL(P ||Q) =

P
x P (x) log P (x)

Q(x)
.
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4.4 A Repository of Class-Based Preferences

Finally we explore LDA-SP’s ability to produce a
repository of human interpretable class-based se-
lectional preferences. As an example, for the re-
lation was born in, we would like to infer that
the plausible arguments include (person, location)
and (person, date).

Since we already have a set of topics, our
task reduces to mapping the inferred topics to an
equivalent class in a taxonomy (e.g., WordNet).
We experimented with automatic methods such
as Resnik’s, but found them to have all the same
problems as directly applying these approaches to
the SP task.7 Guided by the fact that we have a
relatively small number of topics (600 total, 300
for each argument) we simply chose to label them
manually. By labeling this small number of topics
we can infer class-based preferences for an arbi-
trary number of relations.

In particular, we applied a semi-automatic
scheme to map topics to WordNet. We first applied
Resnik’s approach to automatically shortlist a few
candidate WordNet classes for each topic. We then
manually picked the best class from the shortlist
that best represented the 20 top arguments for a
topic (similar to Table 1). We marked all incoher-
ent topics with a special symbol ∅. This process
took one of the authors about 4 hours to complete.

To evaluate how well our topic-class associa-
tions carry over to unseen relations we used the
same random sample of 100 relations from the
pseudo-disambiguation experiment.8 For each ar-
gument of each relation we picked the top two top-
ics according to frequency in the 5 Gibbs samples.
We then discarded any topics which were labeled
with ∅; this resulted in a set of 236 predictions. A
few examples are displayed in table 4.

We evaluated these classes and found the accu-
racy to be around 0.88. We contrast this with Pan-
tel’s repository,9 the only other released database
of selectional preferences to our knowledge. We
evaluated the same 100 relations from his website
and tagged the top 2 classes for each argument and
evaluated the accuracy to be roughly 0.55.

7Perhaps recent work on automatic coherence ranking
(Newman et al., 2010) and labeling (Mei et al., 2007) could
produce better results.

8Recall that these 100 were not part of the original 3,000
in the generalization corpus, and are, therefore, representative
of new “unseen” relations.

9http://demo.patrickpantel.com/
Content/LexSem/paraphrase.htm

arg1 class relation arg2 class
politician#1 was running for leader#1

people#1 will love show#3
organization#1 has responded to accusation#2

administrative unit#1 has appointed administrator#3

Table 4: Class-based Selectional Preferences.

We emphasize that tagging a pair of class-based
preferences is a highly subjective task, so these re-
sults should be treated as preliminary. Still, these
early results are promising. We wish to undertake
a larger scale study soon.

5 Conclusions and Future Work

We have presented an application of topic mod-
eling to the problem of automatically computing
selectional preferences. Our method, LDA-SP,
learns a distribution over topics for each rela-
tion while simultaneously grouping related words
into these topics. This approach is capable of
producing human interpretable classes, however,
avoids the drawbacks of traditional class-based ap-
proaches (poor lexical coverage and ambiguity).
LDA-SP achieves state-of-the-art performance on
predictive tasks such as pseudo-disambiguation,
and filtering incorrect inferences.

Because LDA-SP generates a complete proba-
bilistic model for our relation data, its results are
easily applicable to many other tasks such as iden-
tifying similar relations, ranking inference rules,
etc. In the future, we wish to apply our model
to automatically discover new inference rules and
paraphrases.

Finally, our repository of selectional pref-
erences for 10,000 relations is available at
http://www.cs.washington.edu/
research/ldasp.
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