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Abstract

Finding allowable places in words to insert
hyphens is an important practical prob-
lem. The algorithm that is used most of-
ten nowadays has remained essentially un-
changed for 25 years. This method is the
TEX hyphenation algorithm of Knuth and
Liang. We present here a hyphenation
method that is clearly more accurate. The
new method is an application of condi-
tional random fields. We create new train-
ing sets for English and Dutch from the
CELEX European lexical resource, and
achieve error rates for English of less than
0.1% for correctly allowed hyphens, and
less than 0.01% for Dutch. Experiments
show that both the Knuth/Liang method
and a leading current commercial alterna-
tive have error rates several times higher
for both languages.

1 Introduction

The task that we investigate is learning to split
words into parts that are conventionally agreed to
be individual written units. In many languages, it
is acceptable to separate these units with hyphens,
but it is not acceptable to split words arbitrarily.
Another way of stating the task is that we want to
learn to predict for each letter in a word whether or
not it is permissible for the letter to be followed by
a hyphen. This means that we tag each letter with
either 1, for hyphen allowed following this letter,
or 0, for hyphen not allowed after this letter.

The hyphenation task is also called ortho-
graphic syllabification (Bartlett et al., 2008). It is
an important issue in real-world text processing,
as described further in Section 2 below. It is also
useful as a preprocessing step to improve letter-to-
phoneme conversion, and more generally for text-
to-speech conversion. In the well-known NETtalk

system, for example, syllable boundaries are an
input to the neural network in addition to letter
identities (Sejnowski and Rosenberg, 1988). Of
course, orthographic syllabification is not a fun-
damental scientific problem in linguistics. Nev-
ertheless, it is a difficult engineering task that is
worth studying for both practical and intellectual
reasons.

The goal in performing hyphenation is to pre-
dict a sequence of 0/1 values as a function of a se-
quence of input characters. This sequential predic-
tion task is significantly different from a standard
(non-sequential) supervised learning task. There
are at least three important differences that make
sequence prediction difficult. First, the set of all
possible sequences of labels is an exponentially
large set of possible outputs. Second, different in-
puts have different lengths, so it is not obvious
how to represent every input by a vector of the
same fixed length, as is almost universal in su-
pervised learning. Third and most important, too
much information is lost if we learn a traditional
classifier that makes a prediction for each letter
separately. Even if the traditional classifier is a
function of the whole input sequence, this remains
true. In order to achieve high accuracy, correla-
tions between neighboring predicted labels must
be taken into account.

Learning to predict a sequence of output labels,
given a sequence of input data items, is an instance
of a structured learning problem. In general, struc-
tured learning means learning to predict outputs
that have internal structure. This structure can
be modeled; to achieve high predictive accuracy,
when there are dependencies between parts of an
output, it must be modeled. Research on struc-
tured learning has been highly successful, with
sequence classification as its most important and
successful subfield, and with conditional random
fields (CRFs) as the most influential approach to
learning sequence classifiers. In the present paper,

366



we show that CRFs can achieve extremely good
performance on the hyphenation task.

2 History of automated hyphenation

The earliest software for automatic hyphenation
was implemented for RCA 301 computers, and
used by the Palm Beach Post-Tribune and Los An-
geles Times newspapers in 1962. These were two
different systems. The Florida system had a dic-
tionary of 30,000 words; words not in the dictio-
nary were hyphenated after the third, fifth, or sev-
enth letter, because the authors observed that this
was correct for many words. The California sys-
tem (Friedlander, 1968) used a collection of rules
based on the rules stated in a version of Webster’s
dictionary. The earliest hyphenation software for
a language other than English may have been a
rule-based program for Finnish first used in 1964
(Jarvi, 2009).

The first formal description of an algorithm for
hyphenation was in a patent application submit-
ted in 1964 (Damerau, 1964). Other early pub-
lications include (Ocker, 1971; Huyser, 1976).
The hyphenation algorithm that is by far the most
widely used now is due to Liang (Liang, 1983).
Although this method is well-known now as the
one used in TEX and its derivatives, the first ver-
sion of TEX used a different, simpler method.
Liang’s method was used also in troff and
groff, which were the main original competitors
of TEX, and is part of many contemporary software
products, supposedly including Microsoft Word.
Any major improvement over Liang’s method is
therefore of considerable practical and commer-
cial importance.

Over the years, various machine learning meth-
ods have been applied to the hyphenation task.
However, none have achieved high accuracy. One
paper that presents three different learning meth-
ods is (van den Bosch et al., 1995). The lowest
per-letter test error rate reported is about 2%. Neu-
ral networks have been used, but also without great
success. For example, the authors of (Kristensen
and Langmyhr, 2001) found that the TEX method
is a better choice for hyphenating Norwegian.

The highest accuracy achieved until now for the
hyphenation task is by (Bartlett et al., 2008), who
use a large-margin structured learning approach.
Our work is similar, but was done fully indepen-
dently. The accuracy we achieve is slightly higher:
word-level accuracy of 96.33% compared to their

95.65% for English. Moreover, (Bartlett et al.,
2008) do not address the issue that false positive
hyphens are worse mistakes than false negative hy-
phens, which we address below. Also, they report
that training on 14,000 examples requires about an
hour, compared to 6.2 minutes for our method on
65,828 words. Perhaps more important for large-
scale publishing applications, our system is about
six times faster at syllabifying new text. The speed
comparison is fair because the computer we use is
slightly slower than the one they used.

Methods inspired by nonstatistical natural lan-
guage processing research have also been pro-
posed for the hyphenation task, in particular
(Bouma, 2003; Tsalidis et al., 2004; Woestenburg,
2006; Haralambous, 2006). However, the methods
for Dutch presented in (Bouma, 2003) were found
to have worse performance than TEX. Moreover,
our experimental results below show that the com-
mercial software of (Woestenburg, 2006) allows
hyphens incorrectly almost three times more often
than TEX.

In general, a dictionary based approach has zero
errors for words in the dictionary, but fails to work
for words not included in it. A rule-based ap-
proach requires an expert to define manually the
rules and exceptions for each language, which is
laborious work. Furthermore, for languages such
as English where hyphenation does not system-
atically follow general rules, such an approach
does not have good results. A pattern-learning ap-
proach, like that of TEX, infers patterns from a
training list of hyphenated words, and then uses
these patterns to hyphenate text. Although useful
patterns are learned automatically, both the TEX
learning algorithm and the learned patterns must
be hand-tuned to perform well (Liang, 1983).

Liang’s method is implemented in a program
named PATGEN, which takes as input a training
set of hyphenated words, and outputs a collection
of interacting hyphenation patterns. The standard
pattern collections are named hyphen.tex for
American English, ukhyphen.tex for British
English, and nehyph96.tex for Dutch. The
precise details of how different versions of TEX
and LATEX use these pattern collections to do hy-
phenation in practice are unclear. At a minimum,
current variants of TEX improve hyphenation ac-
curacy by disallowing hyphens in the first and last
two or three letters of every word, regardless of
what the PATGEN patterns recommend.
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Despite the success of Liang’s method, incor-
rect hyphenations remain an issue with TEX and
its current variants and competitors. For instance,
incorrect hyphenations are common in the Wall
Street Journal, which has the highest circulation
of any newspaper in the U.S. An example is the
hyphenation of the word “sudden” in this extract:

It is the case that most hyphenation mistakes in the
Wall Street Journal and other media are for proper
nouns such as “Netflix” that do not appear in stan-
dard dictionaries, or in compound words such as
“sudden-acceleration” above.

3 Conditional random fields

A linear-chain conditional random field (Lafferty
et al., 2001) is a way to use a log-linear model
for the sequence prediction task. We use the bar
notation for sequences, so x̄ means a sequence of
variable length. Specifically, let x̄ be a sequence
of n letters and let ȳ be a corresponding sequence
of n tags. Define the log-linear model

p(ȳ|x̄; w) =
1

Z(x̄, w)
exp

∑
j

wjFj(x̄, ȳ).

The index j ranges over a large set of feature-
functions. Each such function Fj is a sum along
the output sequence for i = 1 to i = n:

Fj(x̄, ȳ) =
n∑

i=1

fj(yi−1, yi, x̄, i)

where each function fj is a 0/1 indicator function
that picks out specific values for neighboring tags
yi−1 and yi and a particular substring of x̄. The
denominator Z(x̄, w) is a normalizing constant:

Z(x̄, w) =
∑
ȳ

exp
∑
j

wjFj(x̄, ȳ)

where the outer sum is over all possible labelings
ȳ of the input sequence x̄. Training a CRF means
finding a weight vector w that gives the best pos-
sible predictions

ȳ∗ = arg max
ȳ

p(ȳ|x̄; w)

for each training example x̄.

The software we use as an implementation of
conditional random fields is named CRF++ (Kudo,
2007). This implementation offers fast training
since it uses L-BFGS (Nocedal and Wright, 1999),
a state-of-the-art quasi-Newton method for large
optimization problems. We adopt the default pa-
rameter settings of CRF++, so no development set
or tuning set is needed in our work.

We define indicator functions fj that depend on
substrings of the input word, and on whether or
not a hyphen is legal after the current and/or the
previous letter. The substrings are of length 2 to
5, covering up to 4 letters to the left and right of
the current letter. From all possible indicator func-
tions we use only those that involve a substring
that occurs at least once in the training data.

As an example, consider the word
hy-phen-ate. For this word x̄ = hyphenate
and ȳ = 010001000. Suppose i = 3 so p is the
current letter. Then exactly two functions fj that
depend on substrings of length 2 have value 1:

I(yi−1 = 1 and yi = 0 and x2x3 = yp) = 1,

I(yi−1 = 1 and yi = 0 and x3x4 = ph) = 1.

All other similar functions have value 0:

I(yi−1 = 1 and yi = 1 and x2x3 = yp) = 0,

I(yi−1 = 1 and yi = 0 and x2x3 = yq) = 0,

and so on. There are similar indicator functions for
substrings up to length 5. In total, 2,916,942 dif-
ferent indicator functions involve a substring that
appears at least once in the English dataset.

One finding of our work is that it is prefer-
able to use a large number of low-level features,
that is patterns of specific letters, rather than a
smaller number of higher-level features such as
consonant-vowel patterns. This finding is consis-
tent with an emerging general lesson about many
natural language processing tasks: the best perfor-
mance is achieved with models that are discrimi-
native, that are trained on as large a dataset as pos-
sible, and that have a very large number of param-
eters but are regularized (Halevy et al., 2009).

When evaluating the performance of a hyphen-
ation algorithm, one should not just count how
many words are hyphenated in exactly the same
way as in a reference dictionary. One should also
measure separately how many legal hyphens are
actually predicted, versus how many predicted hy-
phens are in fact not legal. Errors of the sec-
ond type are false positives. For any hyphenation
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method, a false positive hyphen is a more serious
mistake than a false negative hyphen, i.e. a hyphen
allowed by the lexicon that the method fails to
identify. The standard Viterbi algorithm for mak-
ing predictions from a trained CRF is not tuned to
minimize false positives. To address this difficulty,
we use the forward-backward algorithm (Sha and
Pereira, 2003; Culotta and McCallum, 2004) to es-
timate separately for each position the probability
of a hyphen at that position. Then, we only allow a
hyphen if this probability is over a high threshold
such as 0.9.

Each hyphenation corresponds to one path
through a graph that defines all 2k−1 hyphenations
that are possible for a word of length k. The over-
all probability of a hyphen at any given location
is the sum of the weights of all paths that do have
a hyphen at this position, divided by the sum of
the weights of all paths. The forward-backward
algorithm uses the sum operator to compute the
weight of a set of paths, instead of the max op-
erator to compute the weight of a single highest-
weight path. In order to compute the weight of all
paths that contain a hyphen at a specific location,
weight 0 is assigned to all paths that do not have a
hyphen at this location.

4 Dataset creation

We start with the lexicon for English published
by the Dutch Centre for Lexical Information at
http://www.mpi.nl/world/celex. We
download all English word forms with legal hy-
phenation points indicated by hyphens. These
include plurals of nouns, conjugated forms of
verbs, and compound words such as “off-line”.
We separate the components of compound words
and phrases, leading to 204,466 words, of which
68,744 are unique. In order to eliminate abbrevia-
tions and proper names which may not be English,
we remove all words that are not fully lower-case.
In particular, we exclude words that contain capi-
tal letters, apostrophes, and/or periods. This leaves
66,001 words.

Among these words, 86 have two different hy-
phenations, and one has three hyphenations. For
most of the 86 words with alternative hyphen-
ations, these alternatives exist because different
meanings of the words have different pronuncia-
tions, and the different pronunciations have differ-
ent boundaries between syllables. This fact im-
plies that no algorithm that operates on words in

isolation can be a complete solution for the hy-
phenation task.1

We exclude the few words that have two or more
different hyphenations from the dataset. Finally,
we obtain 65,828 spellings. These have 550,290
letters and 111,228 hyphens, so the average is 8.36
letters and 1.69 hyphens per word. Informal in-
spection suggests that the 65,828 spellings contain
no mistakes. However, about 1000 words follow
British as opposed to American spelling.

The Dutch dataset of 293,681 words is created
following the same procedure as for the English
dataset, except that all entries from CELEX that
are compound words containing dashes are dis-
carded instead of being split into parts, since many
of these are not in fact Dutch words.2

5 Experimental design

We use ten-fold cross validation for the experi-
ments. In order to measure accuracy, we com-
pute the confusion matrix for each method, and
from this we compute error rates. We report both
word-level and letter-level error rates. The word-
level error rate is the fraction of words on which
a method makes at least one mistake. The letter-
level error rate is the fraction of letters for which
the method predicts incorrectly whether or not a
hyphen is legal after this letter. Table 1 explains
the terminology that we use in presenting our re-
sults. Precision, recall, and F1 can be computed
easily from the reported confusion matrices.

As an implementation of Liang’s method we
use TEX Hyphenator in Java software available
at http://texhyphj.sourceforge.net.
We evaluate this algorithm on our entire English
and Dutch datasets using the appropriate language
pattern files, and not allowing a hyphen to be
placed between the first lefthyphenmin and
last righthyphenmin letters of each word. For

1The single word with more than two alternative
hyphenations is “invalid” whose three hyphenations are
in-va-lid in-val-id and in-valid. Interest-
ingly, the Merriam–Webster online dictionary also gives
three hyphenations for this word, but not the same ones:
in-va-lid in-val-id invalid. The American
Heritage dictionary agrees with Merriam-Webster. The dis-
agreement illustrates that there is a certain irreducible ambi-
guity or subjectivity concerning the correctness of hyphen-
ations.

2Our English and Dutch datasets are available for other
researchers and practitioners to use at http://www.cs.
ucsd.edu/users/elkan/hyphenation. Previously
a similar but smaller CELEX-based English dataset was cre-
ated by (van den Bosch et al., 1995), but that dataset is not
available online currently.
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Abbr Name Description
TP true positives #hyphens predicted correctly
FP false positives #hyphens predicted incorrectly
TN true negatives #hyphens correctly not predicted
FN false negatives #hyphens failed to be predicted
owe overall word-level errors #words with at least one FP or FN
swe serious word-level errors #words with at least one FP
ower overall word-level error rate owe / (total #words)
swer serious word-level error rate swe / (total #words)
oler overall letter-level error rate (FP+FN) / (TP+TN+FP+FN)
sler serious letter-level error rate FP / (TP+TN+FP+FN)

Table 1: Alternative measures of accuracy. TP, TN, FP, and FN are computed by summing over the test
sets of each fold of cross-validation.

English the default values are 2 and 3 respectively.
For Dutch the default values are both 2.

The hyphenation patterns used by TeXHyphen-
ator, which are those currently used by essentially
all variants of TEX, may not be optimal for our
new English and Dutch datasets. Therefore, we
also do experiments with the PATGEN tool (Liang
and Breitenlohner, 2008). These are learning ex-
periments so we also use ten-fold cross validation
in the same way as with CRF++. Specifically, we
create a pattern file from 90% of the dataset us-
ing PATGEN, and then hyphenate the remaining
10% of the dataset using Liang’s algorithm and the
learned pattern file.

The PATGEN tool has many user-settable pa-
rameters. As is the case with many machine learn-
ing methods, no strong guidance is available for
choosing values for these parameters. For En-
glish we use the parameters reported in (Liang,
1983). For Dutch we use the parameters reported
in (Tutelaers, 1999). Preliminary informal exper-
iments found that these parameters work better
than alternatives. We also disallow hyphens in the
first two letters of every word, and the last three
letters for English, or last two for Dutch.

We also evaluate the TALO commercial soft-
ware (Woestenburg, 2006). We know of one
other commercial hyphenation application, which
is named Dashes.3 Unfortunately we do not have
access to it for evaluation. We also cannot do a
precise comparison with the method of (Bartlett et
al., 2008). We do know that their training set was
also derived from CELEX, and their maximum
reported accuracy is slightly lower. Specifically,
for English our word-level accuracy (“ower”) is
96.33% while their best (“WA”) is 95.65%.

3http://www.circlenoetics.com/dashes.
aspx

6 Experimental results

In Table 2 and Table 3 we report the performance
of the different methods on the English and Dutch
datasets respectively. Figure 1 shows how the er-
ror rate is affected by increasing the CRF proba-
bility threshold for each language.

Figure 1 shows confidence intervals for the er-
ror rates. These are computed as follows. For a
single Bernoulli trial the mean is p and the vari-
ance is p(1 − p). If N such trials are taken, then
the observed success rate f = S/N is a random
variable with mean p and variance p(1 − p)/N .
For large N , the distribution of the random vari-
able f approaches the normal distribution. Hence
we can derive a confidence interval for p using the
formula

Pr[−z ≤ f − p√
p(1− p)/N

≤ z] = c

where for a 95% confidence interval, i.e. for c =
0.95, we set z = 1.96. All differences between
rows in Table 2 are significant, with one exception:
the serious error rates for PATGEN and TALO are
not statistically significantly different. A similar
conclusion applies to Table 3.

For the English language, the CRF using the
Viterbi path has overall error rate of 0.84%, com-
pared to 6.81% for the TEX algorithm using Amer-
ican English patterns, which is eight times worse.
However, the serious error rate for the CRF is less
good: 0.41% compared to 0.24%. This weak-
ness is remedied by predicting that a hyphen is al-
lowable only if it has high probability. Figure 1
shows that the CRF can use a probability thresh-
old up to 0.99, and still have lower overall error
rate than the TEX algorithm. Fixing the probabil-
ity threshold at 0.99, the CRF serious error rate
is 0.04% (224 false positives) compared to 0.24%
(1343 false positives) for the TEX algorithm.
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Figure 1: Total letter-level error rate and serious letter-level error rate for different values of threshold for
the CRF. The left subfigures are for the English dataset, while the right ones are for the Dutch dataset.
The TALO and PATGEN lines are almost identical in the bottom left subfigure.

Method TP FP TN FN owe swe % ower % swer % oler % sler
Place no hyphen 0 0 439062 111228 57541 0 87.41 0.00 20.21 0.00
TEX (hyphen.tex) 75093 1343 437719 36135 30337 1311 46.09 1.99 6.81 0.24
TEX (ukhyphen.tex) 70307 13872 425190 40921 31337 11794 47.60 17.92 9.96 2.52
TALO 104266 3970 435092 6962 7213 3766 10.96 5.72 1.99 0.72
PATGEN 74397 3934 435128 36831 32348 3803 49.14 5.78 7.41 0.71
CRF 108859 2253 436809 2369 2413 2080 3.67 3.16 0.84 0.41
CRF (threshold = 0.99) 83021 224 438838 28207 22992 221 34.93 0.34 5.17 0.04

Table 2: Performance on the English dataset.

Method TP FP TN FN owe swe % ower % swer % oler % sler
Place no hyphen 0 0 2438913 742965 287484 0 97.89 0.00 23.35 0.00
TEX (nehyph96.tex) 722789 5580 2433333 20176 20730 5476 7.06 1.86 0.81 0.18
TALO 727145 3638 2435275 15820 16346 3596 5.57 1.22 0.61 0.11
PATGEN 730720 9660 2429253 12245 20318 9609 6.92 3.27 0.69 0.30
CRF 741796 1230 2437683 1169 1443 1207 0.49 0.41 0.08 0.04
CRF (threshold = 0.99) 719710 149 2438764 23255 22067 146 7.51 0.05 0.74 0.00

Table 3: Performance on the Dutch dataset.
Method TP FP TN FN owe swe % ower % swer % oler % sler
PATGEN 70357 6763 432299 40871 35013 6389 53.19 9.71 8.66 1.23
CRF 104487 6518 432544 6741 6527 5842 9.92 8.87 2.41 1.18
CRF (threshold = 0.99) 75651 654 438408 35577 27620 625 41.96 0.95 6.58 0.12

Table 4: Performance on the English dataset (10-fold cross validation dividing by stem).

Method TP FP TN FN owe swe % ower % swer % oler % sler
PATGEN 727306 13204 2425709 15659 25363 13030 8.64 4.44 0.91 0.41
CRF 740331 2670 2436243 2634 3066 2630 1.04 0.90 0.17 0.08
CRF (threshold = 0.99) 716596 383 2438530 26369 24934 373 8.49 0.13 0.84 0.01

Table 5: Performance on the Dutch dataset (10-fold cross validation dividing by stem).

Method TP FP TN FN owe swe % ower % swer % oler % sler
TEX 2711 43 21433 1420 1325 43 33.13 1.08 5.71 0.17
PATGEN 2590 113 21363 1541 1466 113 36.65 2.83 6.46 0.44
CRF 4129 2 21474 2 2 2 0.05 0.05 0.02 0.01
CRF (threshold = 0.9) 4065 0 21476 66 63 0 1.58 0.00 0.26 0.00

Table 6: Performance on the 4000 most frequent English words.
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For the English language, TALO yields overall
error rate 1.99% with serious error rate 0.72%, so
the standard CRF using the Viterbi path is better
on both measures. The dominance of the CRF
method can be increased further by using a prob-
ability threshold. Figure 1 shows that the CRF
can use a probability threshold up to 0.94, and
still have lower overall error rate than TALO. Us-
ing this threshold, the CRF serious error rate is
0.12% (657 false positives) compared to 0.72%
(3970 false positives) for TALO.

For the Dutch language, the standard CRF us-
ing the Viterbi path has overall error rate 0.08%,
compared to 0.81% for the TEX algorithm. The
serious error rate for the CRF is 0.04% while for
TEX it is 0.18%. Figure 1 shows that any probabil-
ity threshold for the CRF of 0.99 or below yields
lower error rates than the TEX algorithm. Using
the threshold 0.99, the CRF has serious error rate
only 0.005%.

For the Dutch language, the TALO method has
overall error rate 0.61%. The serious error rate
for TALO is 0.11%. The CRF dominance can
again be increased via a high probability thresh-
old. Figure 1 shows that this threshold can range
up to 0.98, and still give lower overall error rate
than TALO. Using the 0.98 threshold, the CRF
has serious error rate 0.006% (206 false positives);
in comparison the serious error rate of TALO is
0.11% (3638 false positives).

For both languages, PATGEN has higher serious
letter-level and word-level error rates than TEX us-
ing the existing pattern files. This is expected since
the pattern collections included in TEX distribu-
tions have been tuned over the years to minimize
objectionable errors. The difference is especially
pronounced for American English, for which the
standard pattern collection has been manually im-
proved over more than two decades by many peo-
ple (Beeton, 2002). Initially, Liang optimized this
pattern collection extensively by upweighting the
most common words and by iteratively adding
exception words found by testing the algorithm
against a large dictionary from an unknown pub-
lisher (Liang, 1983).

One can tune PATGEN to yield either better
overall error rate, or better serious error rate, but
not both simultaneously, compared to the TEX al-
gorithm using the existing pattern files for both
languages. For the English dataset, if we use
Liang’s parameters for PATGEN as reported in

(Sojka and Sevecek, 1995), we obtain overall er-
ror rate of 6.05% and serious error rate of 0.85%.
It is possible that the specific patterns used in TEX
implementations today have been tuned by hand
to be better than anything the PATGEN software is
capable of.

7 Additional experiments

This section presents empirical results following
two experimental designs that are less standard,
but that may be more appropriate for the hyphen-
ation task.

First, the experimental design used above has
an issue shared by many CELEX-based tagging
or transduction evaluations: words are randomly
divided into training and test sets without be-
ing grouped by stem. This means that a method
can get credit for hyphenating “accents” correctly,
when “accent” appears in the training data. There-
fore, we do further experiments where the folds
for evaluation are divided by stem, and not by
word; that is, all versions of a base form of a
word appear in the same fold. Stemming uses
the English and Dutch versions of the Porter stem-
mer (Porter, 1980).4 The 65,828 English words in
our dictionary produce 27,100 unique stems, while
the 293,681 Dutch words produce 169,693 unique
stems. The results of these experiments are shown
in Tables 4 and 5.

The main evaluation in the previous section is
based on a list of unique words, which means that
in the results each word is equally weighted. Be-
cause cross validation is applied, errors are always
measured on testing subsets that are disjoint from
the corresponding training subsets. Hence, the
accuracy achieved can be interpreted as the per-
formance expected when hyphenating unknown
words, i.e. rare future words.

However, in real documents common words
appear repeatedly. Therefore, the second less-
standard experimental design for which we report
results restricts attention to the most common En-
glish words. Specifically, we consider the top
4000 words that make up about three quarters of
all word appearances in the American National
Corpus, which consists of 18,300,430 words from
written texts of all genres.5 From the 4,471 most

4Available at http://snowball.tartarus.org/.
A preferable alternative might be to use the information about
the lemmas of words available directly in CELEX.

5Available at americannationalcorpus.org/
SecondRelease/data/ANC-written-count.txt
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frequent words in this list, if we omit the words
not in our dataset of 89,019 hyphenated English
words from CELEX, we get 4,000 words. The
words that are omitted are proper names, contrac-
tions, incomplete words containing apostrophes,
and abbreviations such as DNA. These 4,000 most
frequent words make up 74.93% of the whole cor-
pus.

We evaluate the following methods on the 4000
words: Liang’s method using the American pat-
terns file hyphen.tex, Liang’s method using
the patterns derived from PATGEN when trained
on the whole English dataset, our CRF trained on
the whole English dataset, and the same CRF with
a probability threshold of 0.9. Results are shown
in Table 6. In summary, TEX and PATGEN make
serious errors on 43 and 113 of the 4000 words,
respectively. With a threshold of 0.9, the CRF ap-
proach makes zero serious errors on these words.

8 Timings

Table 7 shows the speed of the alternative meth-
ods for the English dataset. The column “Fea-
tures/Patterns” in the table reports the number of
feature-functions used for the CRF, or the number
of patterns used for the TEX algorithm. Overall,
the CRF approach is about ten times slower than
the TEX algorithm, but its performance is still ac-
ceptable on a standard personal computer. All ex-
periments use a machine having a Pentium 4 CPU
at 3.20GHz and 2GB memory. Moreover, infor-
mal experiments show that CRF training would be
about eight times faster if we used CRFSGD rather
than CRF++ (Bottou, 2008).

From a theoretical perspective, both methods
have almost-constant time complexity per word if
they are implemented using appropriate data struc-
tures. In TEX, hyphenation patterns are stored in
a data structure that is a variant of a trie. The
CRF software uses other data structures and op-
timizations that allow a word to be hyphenated in
time that is almost independent of the number of
feature-functions used.

9 Conclusions

Finding allowable places in words to insert hy-
phens is a real-world problem that is still not
fully solved in practice. The main contribu-
tion of this paper is a hyphenation method that
is clearly more accurate than the currently used
Knuth/Liang method. The new method is an ap-

Features/ Training Testing Speed
Method Patterns time (s) time (s) (ms/word)
CRF 2916942 372.67 25.386 0.386
TEX (us) 4447 - 2.749 0.042
PATGEN 4488 33.402 2.889 0.044
TALO - - 8.400 0.128

Table 7: Timings for the English dataset (training
and testing on the whole dataset that consists of
65,828 words).

plication of CRFs, which are a major advance of
recent years in machine learning. We hope that
the method proposed here is adopted in practice,
since the number of serious errors that it makes
is about a sixfold improvement over what is cur-
rently in use. A second contribution of this pa-
per is to provide training sets for hyphenation in
English and Dutch, so other researchers can, we
hope, soon invent even more accurate methods. A
third contribution of our work is a demonstration
that current CRF methods can be used straightfor-
wardly for an important application and outper-
form state-of-the-art commercial and open-source
software; we hope that this demonstration acceler-
ates the widespread use of CRFs.
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