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Abstract

Current Semantic Role Labeling technolo-
gies are based on inductive algorithms
trained over large scale repositories of
annotated examples. Frame-based sys-
tems currently make use of the FrameNet
database but fail to show suitable general-
ization capabilities in out-of-domain sce-
narios. In this paper, a state-of-art system
for frame-based SRL is extended through
the encapsulation of a distributional model
of semantic similarity. The resulting argu-
ment classification model promotes a sim-
pler feature space that limits the potential
overfitting effects. The large scale em-
pirical study here discussed confirms that
state-of-art accuracy can be obtained for
out-of-domain evaluations.

1 Introduction

The availability of large scale semantic lexicons,
such as FrameNet (Baker et al., 1998), allowed the
adoption of a wide family of learning paradigms
in the automation of semantic parsing. Building
upon the so called frame semantic model (Fill-
more, 1985), the Berkeley FrameNet project has
developed a semantic lexicon for the core vocab-
ulary of English, since 1997. A frame is evoked
in texts through the occurrence of its lexical units
(LU ), i.e. predicate words such verbs, nouns, or
adjectives, and specifies the participants and prop-
erties of the situation it describes, the so called
frame elements (FEs).

Semantic Role Labeling (SRL) is the task of
automatic recognition of individual predicates to-
gether with their major roles (e.g. frame ele-
ments) as they are grammatically realized in in-
put sentences. It has been a popular task since
the availability of the PropBank and FrameNet an-
notated corpora (Palmer et al., 2005), the seminal

work of (Gildea and Jurafsky, 2002) and the suc-
cessful CoNLL evaluation campaigns (Carreras
and Màrquez, 2005). Statistical machine learning
methods, ranging from joint probabilistic models
to support vector machines, have been success-
fully adopted to provide very accurate semantic
labeling, e.g. (Carreras and Màrquez, 2005).

SRL based on FrameNet is thus not a novel task,
although very few systems are known capable of
completing a general frame-based annotation pro-
cess over raw texts, noticeable exceptions being
discussed for example in (Erk and Pado, 2006),
(Johansson and Nugues, 2008b) and (Coppola et
al., 2009). Some critical limitations have been out-
lined in literature, some of them independent from
the underlying semantic paradigm.

Parsing Accuracy. Most of the employed
learning algorithms are based on complex sets of
syntagmatic features, as deeply investigated in (Jo-
hansson and Nugues, 2008b). The resulting recog-
nition is thus highly dependent on the accuracy of
the underlying parser, whereas wrong structures
returned by the parser usually imply large misclas-
sification errors.

Annotation costs. Statistical learning ap-
proaches applied to SRL are very demanding with
respect to the amount and quality of the train-
ing material. The complex SRL architectures
proposed (usually combining local and global,
i.e. joint, models of argument classification, e.g.
(Toutanova et al., 2008)) require a large number
of annotated examples. The amount and quality of
the training data required to reach a significant ac-
curacy is a serious limitation to the exploitation of
SRL in many NLP applications.

Limited Linguistic Generalization. Several
studies showed that even when large training
sets exist the corresponding learning exhibits
poor generalization power. Most of the CoNLL
2005 systems show a significant performance drop
when the tested corpus, i.e. Brown, differs from
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the training one (i.e. Wall Street Journal), e.g.
(Toutanova et al., 2008). More recently, the state-
of-art frame-based semantic role labeling system
discussed in (Johansson and Nugues, 2008b) re-
ports a 19% drop in accuracy for the argument
classification task when a different test domain is
targeted (i.e. NTI corpus). Out-of-domain tests
seem to suggest the models trained on BNC do not
generalize well to novel grammatical and lexical
phenomena. As also suggested in (Pradhan et al.,
2008), the major drawback is the poor generaliza-
tion power affecting lexical features. Notice how
this is also a general problem of statistical learning
processes, as large fine grain feature sets are more
exposed to the risks of overfitting.

The above problems are particularly critical
for frame-based shallow semantic parsing where,
as opposed to more syntactic-oriented semantic
labeling schemes (as Propbank (Palmer et al.,
2005)), a significant mismatch exists between the
semantic descriptors and the underlying syntac-
tic annotation level. In (Johansson and Nugues,
2008b) an upper bound of about 83.9% for the ac-
curacy of the argument identification task is re-
ported, it is due to the complexity in projecting
frame element boundaries out from the depen-
dency graph: more than 16% of the roles in the
annotated material lack of a clear grammatical sta-
tus.

The limited level of linguistic generalization
outlined above is still an open research problem.
Existing solutions have been proposed in litera-
ture along different lines. Learning from richer
linguistic descriptions of more complex structures
is proposed in (Toutanova et al., 2008). Limit-
ing the cost required for developing large domain-
specific training data sets has been also studied,
e.g., (Fürstenau and Lapata, 2009). Finally, the ap-
plication of semi-supervised learning is attempted
to increase the lexical expressiveness of the model,
e.g. (Goldberg and Elhadad, 2009).

In this paper, this last direction is pursued. A
semi-supervised statistical model exploiting use-
ful lexical information from unlabeled corpora is
proposed. The model adopts a simple feature
space by relying on a limited set of grammati-
cal properties, thus reducing its learning capac-
ity. Moreover, it generalizes lexical information
about the annotated examples by applying a ge-
ometrical model, in a Latent Semantic Analysis
style, inspired by a distributional paradigm (Pado

and Lapata, 2007). As we will see, the accu-
racy reachable through a restricted feature space is
still quite close to the state-of-art, but interestingly
the performance drops in out-of-domain tests are
avoided.

In the following, after discussing existing ap-
proaches to SRL (Section 2), a distributional ap-
proach is defined in Section 3. Section 3.2 dis-
cusses the proposed HMM-based treatment of
joint inferences in argument classification. The
large scale experiments described in Section 4 will
allow to draw the conclusions of Section 5.

2 Related Work

State-of-art approaches to frame-based SRL are
based on Support Vector Machines, trained over
linear models of syntactic features, e.g. (Jo-
hansson and Nugues, 2008b), or tree-kernels, e.g.
(Coppola et al., 2009). SRL proceeds through two
main steps: the localization of arguments in a sen-
tence, called boundary detection (BD), and the as-
signment of the proper role to the detected con-
stituents, that is the argument classification, (AC)
step. In (Toutanova et al., 2008) a SRL model
over Propbank that effectively exploits the seman-
tic argument frame as a joint structure, is pre-
sented. It incorporates strong dependencies within
a comprehensive statistical joint model with a rich
set of features over multiple argument phrases.
This approach effectively introduces a new step
in SRL, also called Joint Re-ranking, (RR), e.g.
(Toutanova et al., 2008) or (Moschitti et al., 2008).
First local models are applied to produce role
labels over individual arguments, then the joint
model is used to decide the entire argument se-
quence among the set of the n-best competing
solutions. While these approaches increase the
expressive power of the models to capture more
general linguistic properties, they rely on com-
plex feature sets, are more demanding about the
amount of training information and increase the
overall exposure to overfitting effects.

In (Johansson and Nugues, 2008b) the impact of
different grammatical representations on the task
of frame-based shallow semantic parsing is stud-
ied and the poor lexical generalization problem
is outlined. An argument classification accuracy
of 89.9% over the FrameNet (i.e. BNC) dataset
is shown to decrease to 71.1% when a different
test domain is evaluated (i.e. the Nuclear Threat
Initiative corpus). The argument classification
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component is thus shown to be heavily domain-
dependent whereas the inclusion of grammatical
function features is just able to mitigate this sen-
sitivity. In line with (Pradhan et al., 2008), it is
suggested that lexical features are domain specific
and their suitable generalization is not achieved.

The lack of suitable lexical information is also
discussed in (Fürstenau and Lapata, 2009) through
an approach aiming to support the creation of
novel annotated resources. Accordingly a semi-
supervised approach for reducing the costs of the
manual annotation effort is proposed. Through a
graph alignment algorithm triggered by annotated
resources, the method acquires training instances
from an unlabeled corpus also for verbs not listed
as existing FrameNet predicates.

2.1 The role of Lexical Semantic Information

It is widely accepted that lexical information (as
features directly derived from word forms) is cru-
cial for training accurate systems in a number of
NLP tasks. Indeed, all the best systems in the
CoNLL shared task competitions (e.g. Chunk-
ing (Tjong Kim Sang and Buchholz, 2000)) make
extensive use of lexical information. Also lexi-
cal features are beneficial in SRL usually either
for systems on Propbank as well as for FrameNet-
based annotation.

In (Goldberg and Elhadad, 2009), a different
strategy to incorporate lexical features into clas-
sification models is proposed. A more expres-
sive training algorithm (i.e. anchored SVM) cou-
pled with an aggressive feature pruning strategy
is shown to achieve high accuracy over a chunk-
ing and named entity recognition task. The sug-
gested perspective here is that effective semantic
knowledge can be collected from sources exter-
nal to the annotated corpora (very large unanno-
tated corpora or on manually constructed lexical
resources) rather than learned from the raw lexi-
cal counts of the annotated corpus. Notice how
this is also the strategy pursued in recent work on
deep learning approaches to NLP tasks. In (Col-
lobert and Weston, 2008) a unified architecture
for Natural Language Processing that learns fea-
tures relevant to the tasks at hand given very lim-
ited prior knowledge is presented. It embodies the
idea that a multitask learning architecture coupled
with semi-supervised learning can be effectively
applied even to complex linguistic tasks such as
SRL. In particular, (Collobert and Weston, 2008)

proposes an embedding of lexical information us-
ing Wikipedia as source, and exploiting the result-
ing language model within the multitask learning
process. The idea of (Collobert and Weston, 2008)
to obtain an embedding of lexical information by
acquiring a language model from unlabeled data is
an interesting approach to the problem of perfor-
mance degradation in out-of-domain tests, as al-
ready pursued by (Deschacht and Moens, 2009).
The extensive use of unlabeled texts allows to
achieve a significant level of lexical generalization
that seems better capitalize the smaller annotated
data sets.

3 A Distributional Model for Argument
Classification

High quality lexical information is crucial for ro-
bust open-domain SRL, as semantic generaliza-
tion highly depends on lexical information. For
example, the following two sentences evoke the
STATEMENT frame, through the LUs say and
state, where the FEs, SPEAKER and MEDIUM, are
shown.

[President Kennedy] SPEAKER said to an astronaut, ”Man
is still the most extraordinary computer of all.” (1)

[The report] MEDIUM stated, that some problems needed
to be solved. (2)

In sentence (1), for example, President Kennedy
is the grammatical subject of the verb say and
this justifies its role of SPEAKER. However, syn-
tax does not entirely characterize argument seman-
tics. In (1) and (2), the same syntactic relation is
observed. It is the semantics of the grammatical
heads, i.e. report and Kennedy, the main respon-
sible for the difference between the two resulting
proto-agentive roles, SPEAKER and MEDIUM.

In this work we explore two different aspects.
First, we propose a model that does not depend
on complex syntactic information in order to min-
imize the risk of overfitting. Second, we improve
the lexical semantic information available to the
learning algorithm. The proposed ”minimalistic”
approach will consider only two independent fea-
tures:

• the semantic head (h) of a role, as it can
be observed in the grammatical structure. In
sentence (2), for example, the MEDIUM FE is
realized as the logical subject, whose head is
report.
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• the dependency relation (r) connecting the
semantic head to the predicate words. In (2),
the semantic head report is connected to the
LU stated through the subject (SBJ) relation.

In the rest of the section the distributional model
for the argument classification step is presented.
A lexicalized model for individual semantic roles
is first defined in order to achieve robust seman-
tic classification local to each argument. Then a
Hidden Markov Model is introduced in order to
exploit the local probability estimators, sensitive
to lexical similarity, as well as the global informa-
tion on the entire argument sequence.

3.1 Distributional Local Models
As the classification of semantic roles is strictly
related to the lexical meaning of argument heads,
we adopt a distributional perspective, where the
meaning is described by the set of textual con-
texts in which words appear. In distributional
models, words are thus represented through vec-
tors built over these observable contexts: similar
vectors suggest semantic relatedness as a func-
tion of the distance between two words, capturing
paradigmatic (e.g. synonymy) or syntagmatic re-
lations (Pado, 2007). Vectors

−→
h are described by

an adjacency matrix M , whose rows describe tar-
get words (h) and whose columns describe their
corpus contexts. Latent Semantic Analysis (LSA)
(Landauer and Dumais, 1997), is then applied to
M to acquire meaningful representations

−→
h . LSA

exploits the linear transformation called Singular
Value Decomposition (SVD) and produces an ap-
proximation of the original matrix M , capturing
(semantic) dependencies between context vectors.
M is replaced by a lower dimensional matrix Ml,
capturing the same statistical information in a new
l-dimensional space, where each dimension is a
linear combination of some of the original fea-
tures (i.e. contexts). These derived features may
be thought as artificial concepts, each one repre-
senting an emerging meaning component, as the
linear combination of many different words.

In the argument classification task, the similar-
ity between two argument heads h1 and h2 ob-
served in FrameNet can be computed over

−→
h1 and−→

h2. The model for a given frame element FEk

is built around the semantic heads h observed in
the role FEk: they form a set denoted by HFEk

.
These LSA vectors

−→
h express the individual an-

notated examples as they are immerse in the LSA

Role, FEk Clusters of semantic heads

MEDIUM
c1: {article, report, statement}
c2: {constitution, decree, rule}

SPEAKER

c3: {brother, father, mother, sister }
c4: {biographer, philosopher, ....}
c5: {he, she, we, you}
c6: {friend}

TOPIC
c7: {privilege, unresponsiveness}
c8: {pattern}

Table 1: Clusters of semantic heads in the Subj
position for the frame STATEMENT with σ = 0.5

space acquired from the unlabeled texts. More-
over, given FEk, a model for each individual syn-
tactic relation r (i.e. that links h labeled as FEk

to their corresponding predicates) is a partition of
the set HFEk

called HFEk

r , i.e. the subset of
HFEk

produced by examples of the relation r (e.g.
Subj). Given the annotated sentence (2), we have
that report ∈ HMEDIUM

SBJ .

As the LSA vectors
−→
h are available for the se-

mantic heads h, a vector representation
−−→
FEk for

the role FEk can be obtained from the annotated
data. However, one single vector is a too simplis-
tic representation given the rich nature of seman-
tic roles FEk. In order to better represent FEk,
multiple regions in the semantic space are used.
They are obtained by a clustering process applied
to the set HFEk

r according to the Quality Thresh-
old (QT) algorithm (Heyer et al., 1999). QT is a
generalization of k-mean where a variable number
of clusters can be obtained. This number depends
on the minimal value of intra-cluster similarity ac-
cepted by the algorithm and controlled by a pa-
rameter, σ: lower values of σ correspond to more
heterogeneous (i.e. larger grain) clusters, while
values close to 1 characterize stricter policies and
more fine-grained results. Given a syntactic rela-
tion r, CFE

k

r denotes the clusters derived by QT
clustering over HFEk

r . Each cluster c ∈ CFE
k

r

is represented by a vector −→c , computed as the
geometric centroid of its semantic heads h ∈ c.
For a frame F , clusters define a geometric model
of every frame elements FEk: it consists of cen-
troids −→c with c ⊆ HFEk

r . Each c represents FEk

through a set of similar heads, as role fillers ob-
served in FrameNet. Table 1 represents clusters
for the heads HFEk

Subj of the STATEMENT frame.
In argument classification we assume that the

evoking predicate word for the frame F in an
input sentence s is known. A sentence s can
be seen as a sequence of role-relation pairs:
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s = {(r1, h1), ..., (rn, hn)} where the heads hi
are in the syntactic relation ri with the underlying
lexical unit of F .

For every head h in s, the vector
−→
h can be then

used to estimate its similarity with the different
candidate roles FEk. Given the syntactic relation
r, the clusters c ∈ CFEk

r whose centroid vector ~c
is closer to ~h are selected. Dr,h is the set of the
representations semantically related to h:

Dr,h =
⋃
k

{ckj ∈ CFE
k

r |sim(h, ckj) ≥ τ} (3)

where the similarity between the j-th cluster for
the FEk, i.e. ckj ∈ CFE

k

r , and h is the usual

cosine similarity: simcos(h, ckj) =
−→
h ·−→c kj

‖
−→
h ‖ ‖−→c kj‖

Then, through a k-nearest neighbours (k-NN)
strategy withinDr,h, them clusters ckj most simi-
lar to h are retained in the set D(m)

r,h . A probabilis-
tic preference for the role FEk is estimated for h
through a cluster-based voting scheme,

prob(FEk|r, h) =
|CFEk

r ∩D(m)
r,h |

|D(m)
r,h |

(4)

or, alternatively, an instance-based one overD(m)
r,h :

prob(FEk|r, h) =

∑
c∈CFEk

r ∩D(m)
r,h

|c|∑
c∈D(m)

r,h

|c|
(5)

In Fig. 1 the preference estimation for the
incoming head h = professor connected to
a LU by the Subj relation is shown. Clus-
ters for the heads in Table 1 are also reported.
First, in the set of clusters whose similarity
with professor is higher than a threshold τ the
m = 5 most similar clusters are selected. Ac-
cordingly, the preferences given by Eq. 4 are
prob(SPEAKER|SBJ, h) = 3/5, prob(MEDIUM|SBJ, h) =

2/5 and prob(TOPIC|SBJ, h) = 0. The strategy mod-
eled by Eq. 5 amplifies the role of larger
clusters, e.g. prob(SPEAKER|SBJ, h) = 9/14 and
prob(MEDIUM|SBJ, h) = 5/14. We call Distribu-
tional, the model that applies Eq. 5 to the source
(r, h) arguments, by rejecting cases only when no
information about the head h is available from the
unlabeled corpus or no example of relation r for
the role FEk is available from the annotated cor-
pus. Eq. 4 and 5 in fact do not cover all possible
cases. Often the incoming head h or the relation r
may be unavailable:

1. If the head h has never been met in the un-
labeled corpus or the high grammatical am-
biguity of the sentence does not allow to
locate it reliably, Eq. 4 (or 5) should be
backed off to a purely syntactic model, that
is prob(FEk|r)

2. If the relation r can not be properly located
in s, h is also unknown: the prior probability
of individual arguments, i.e. prob(FEk), is
here employed.

Both prob(FEk|r) and prob(FEk) can be esti-
mated from the training set and smoothing can be
also applied1. A more robust argument preference
function for all arguments (ri, hi) ∈ s of the frame
F is thus given by:

prob(FEk|ri, hi) = λ1prob(FE
k|ri, hi) +

λ2prob(FE
k|ri) + λ3prob(FE

k) (6)

where weights λ1, λ2, λ3 can be heuristically as-
signed or estimated from the training set2. The
resulting model is hereafter called Backoff model:
although simply based on a single feature (i.e. the
syntactic relation r), it accounts for information at
different reliability degrees.

3.2 A Joint Model for Argument
Classification

Eq. 6 defines roles preferences local to individual
arguments (ri, hi). However, an argument frame
is a joint structure, with strong dependencies be-
tween arguments. We thus propose to model the
reranking phase (RR) as a HMM sequence label-
ing task. It defines a stochastic inference over
multiple (locally justified) alternative sequences
through a Hidden Markov Model (HMM). It in-
fers the best sequence FE(k1,...,kn) over all the
possible hidden state sequences (i.e. made by the
target FEki) given the observable emissions, i.e.
the arguments (ri, hi). Viterbi inference is applied
to build the best (role) interpretation for the input
sentence.

Once Eq. 6 is available, the best frame element
sequence FE(θ(1),...,θ(n)) for the entire sentence s
can be selected by defining the function θ(·) that
maps arguments (ri, hi) ∈ s to frame elements
FEk:

θ(i) = k s.t. FEk ∈ F (7)
1Lindstone smoothing was applied with δ = 1.
2In each test discussed hereafter, λ1, λ2, λ3 were assigned

to .9,.09 and .01, in order to impose a strict priority to the
model contributions.

241



report

statement

article

survey

review

constitution

decree rule

translator

archaeologist

philosopher

biographer

friend

pattern

president

king

sister

mother

brother

father
we

she

he

you

MEDIUM

SPEAKER

TOPIC

target head

professor

manifesto

privilege

unresponsiveness

Figure 1: A k-NN approach to the role classification for hi = professor

Notice that different transfer functions θ(·)
are usually possible. By computing their prob-
ability we can solve the SRL task by select-
ing the most likely interpretation, θ̂(·), via
argmaxθ P

(
θ(·) | s

)
, as follows:

θ̂(·) = argmax
θ

P
(
s|θ(·)

)
P
(
θ(·)
)

(8)

In Eq. 8, the emission probability P
(
s|θ(·)

)
and

the transition probability P
(
θ(·)
)

are explicit. No-
tice that the emission probability corresponds to
an argument interpretation (e.g. Eq. 5) and it is
assigned independently from the rest of the sen-
tence. On the other hand, transition probabilities
model role sequences and support the expectations
about argument frames of a sentence.

The emission probability is approximated as:

P
(
s | θ(1) . . . θ(n)

)
≈

n∏
i=1

P (ri, hi | FEθ(i))

(9)
as it is made independent from previous states in
a Viterbi path. Again the emission probability can
be rewritten as:

P (ri, hi|FEθ(i)) =
P (FEθ(i)|ri, hi) P (ri, hi)

P (FEθ(i))
(10)

Since P (ri, hi) does not depend on the role la-
beling, maximizing Eq. 10 corresponds to maxi-
mize:

P (FEθ(i)|ri, hi)
P (FEθ(i))

(11)

whereas P (FEθ(i)|ri, hi) is thus estimated
through Eq. 6.

The transition probability, estimated through

P
(
θ(1) . . . θ(n)

)
≈

n∏
i=1

P
(
FEθ(i)|FEθ(i−1), FEθ(i−2)

)
(12)

accounts FEs sequence via a 3-gram model3 .

4 Empirical Analysis

The aim of the evaluation is to measure the reach-
able accuracy of the simple model proposed and
to compare its impact over in-domain and out-of-
domain semantic role labeling tasks. In particular,
we will evaluate the argument classification (AC)
task in Section 4.2.

Experimental Set-Up. The in-domain test has
been run over the FrameNet annotated corpus, de-
rived from the British National Corpus (BNC).
The splitting between train and test set is 90%-
10% according to the same data set of (Johans-
son and Nugues, 2008b). In all experiments,
the FrameNet 1.3 version and the dependency-
based system using the LTH parser (Johansson
and Nugues, 2008a) have been employed. Out-
of-domain tests are run over the two training cor-
pora as made available by the Semeval 2007 Task
194 (Baker et al., 2007): the Nuclear Threat Ini-
tiative (NTI) and the American National Corpus

3Two empty states are added at the beginning of any se-
quence. Moreover, Laplace smoothing was also applied to
each estimator.

4The NTI and ANC annotated collections are download-
able at:
nlp.cs.swarthmore.edu/semeval/tasks/task19/data/train.tar.gz
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Corpus Predicates Arguments
training FN-BNC 134,697 271,560

test
in-domain FN-BNC 14,952 30,173

out-of-domain NTI 8,208 14,422
ANC 760 1,389

Table 2: Training and Testing data sets

(ANC)5. Table 2 shows the predicates and argu-
ments in each data set. All null-instantiated ar-
guments were removed from the training and test
sets.

Vectors ~h representing semantic heads have
been computed according to the ”dependency-
based” vector space discussed in (Pado and La-
pata, 2007). The entire BNC corpus has been
parsed and the dependency graphs derived from
individual sentences provided the basic observ-
able contexts: every co-occurrence is thus syntac-
tically justified by a dependency arc. The most
frequent 30,000 basic features, i.e. (syntactic re-
lation,lemma) pairs, have been used to build the
matrix M , vector components corresponding to
point-wise mutual information scores. Finally, the
final space is obtained by applying the SVD reduc-
tion overM , with a dimensionality cut of l = 250.

In the evaluation of the AC task, accuracy is
computed over the nodes of the dependency graph,
in line with (Johansson and Nugues, 2008b) or
(Coppola et al., 2009). Accordingly, also recall,
precision and F-measure are reported on a per
node basis, against the binary BD task or for the
full BD +AC chain.

4.1 The Role of Lexical Clustering
The first study aims at detecting the impact of dif-
ferent clustering policies on the resulting AC ac-
curacy. Clustering, as discussed in Section 3.1,
allows to generalize lexical information: similar
heads within the latent semantic space are built
from the annotated examples and they allow to
predict the behavior of new unseen words as found
in the test sentences. The system performances
have been here measured under different cluster-
ing conditions, i.e. grains at which the clustering
of annotated examples is applied. This grain is de-
termined by the parameter σ of the applied Quality
Threshold algorithm (Heyer et al., 1999). Notice
that small values of σ imply large clusters, while if

5Sentences whose arguments were not represented in the
FrameNet training material were removed from all tests.

Frames with a number of annotated examples
Eq. - σ >0 >100 >500 >1K >3K >5K
(5) - .85 86.3 86.5 87.2 88.3 85.9 82.0
(4) - .5 85.1 85.5 85.8 87.2 83.5 79.4
(4) - .1 84.5 84.8 85.1 86.5 83.0 78.7

Table 3: Accuracy on Arg classification tasks wrt
different clustering policies

σ ≈ 1 then many singleton clusters are promoted
(i.e. one cluster for each example). By varying the
threshold σ we thus account for prototype-based
as well exemplar-based strategies, as discussed in
(Erk, 2009).

We measured the performance on the argument
classification tasks of different models obtained by
combing different choices of σ with Eq. (4) or (5).
Results are reported in Table 3. The leftmost col-
umn reports the different clustering settings, while
in the remaining columns we see performances
over test sentences related to different frames: we
selected frames for which an increasing number of
annotated examples are available: from all frames
(for more than 0 examples) to the only frame (i.e.
SELF MOTION) that has more than 5,000 exam-
ples in our training data set.

The reported accuracies suggest that Eq. (5),
promoting an example driven strategy, better cap-
tures the role preference, as it always outperforms
alternative settings (i.e. more prototype oriented
methods). It limits overgeneralization and pro-
motes fine grained clusters. An interesting result is
that a per-node accuracy of 86.3 (i.e. only 3 points
under the state of-the art on the same data set,
(Johansson and Nugues, 2008b)) is achieved. All
the remaining tests have been run with the clus-
tering configuration characterized by Eq. (5) and
σ = 0.85.

4.2 Argument Classification Accuracy

In these experiments we evaluate the quality of
the argument classification step against the lexi-
cal knowledge acquired from unlabeled texts and
the reranking step. The accuracy reachable on the
gold standard argument boundaries has been com-
pared across several experimental settings. Two
baseline systems have been obtained. The Local
Prior model outputs the sequence that maximizes
the prior probability locally to individual argu-
ments. The Global Prior model is obtained by ap-
plying re-ranking (Section 3.2) to the best n = 10
candidates provided by the Local Prior model. Fi-
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Model FN-BNC NTI ANC
Local Prior 43.9 50.9 50.4
Global Prior 67.7 (+54.2%) 75.9 (+49.0%) 68.8 (+36.4%)
Distributional 81.1 (+19.8%) 82.3 (+8.4%) 69.7 (+1.3%)
Backoff 84.6 (+4.3%) 87.2 (+6.0%) 76.2 (+9.3%)
Backoff+HMMRR 86.3 (+2.0%) 90.5 (+3.8%) 79.9 (+5.0%)
(Johansson&Nugues, 2008) 89.9 71.1 -

Table 4: Accuracy of the Argument Classification task over the different corpora. In parenthesis the
relative increment with respect to the immediately simpler model, previous row

nally, the application of the backoff strategies (as
in Eq. 6) and the HMM-based reranking character-
ize the final two configurations. Table 4 reports the
accuracy results obtained over the three corpora
(defined as in Table 2): the accuracy scores are av-
eraged over different values ofm in Eq. 5, ranging
from 3 to 30. In the in-domain scenario, i.e. the
FN-BNC dataset reported in column 2, it is worth
noticing that the proposed model, with backoff and
global reranking, is quite effective with respect to
the state-of-the-art.

Although results on the FN-BNC do not outper-
form the state-of-the-art for the FrameNet corpus,
we still need to study the generalization capabil-
ity of our SRL model in out-of-domain conditions.
In a further experiment, we applied the same sys-
tem, as trained over the FN-BNC data, to the other
corpora, i.e. NTI and ANC, used entirely as test
sets. Results, reported in column 3 and 4 of Ta-
ble 4 and shown in Figure 2, confirm that no ma-
jor drop in performance is observed. Notice how
the positive impact of the backoff models and the
HMM reranking policy is similarly reflected by all
the collections. Moreover, the results on the NTI
corpus are even better than those obtained on the
BNC, with a resulting 90.5% accuracy on the AC
task.

86,3%
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79,9%
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80,0%

90,0%

100,0%

Local        
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+HMMRR

FN-BNC

NTI
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Figure 2: Accuracy of the AC task over different
corpora

4.3 Discussion
The above empirical findings are relevant if com-
pared with the outcome of a similar test on the NTI
collection, discussed in (Johansson and Nugues,
2008b)6. There, under the same training condi-
tions, a performance drop of about -19% is re-
ported (from 89.9 to 71.1%) over gold standard
argument boundaries. The model proposed in this
paper exhibits no such drop in any collection (NTI
and ANC). This seems to confirm the hypothesis
that the model is able to properly generalize the
required lexical information across different do-
mains.

It is interesting to outline that the individual
stages of the proposed model play different roles
in the different domains, as Table 4 suggests. Al-
though the positive contributions of the individual
processing stages are uniformly confirmed, some
differences can be outlined:

• The beneficial impact of the lexical informa-
tion (i.e. the distributional model) applies dif-
ferently across the different domains. The
ANC domain seems not to significantly ben-
efit when the distributional model (Eq. 5) is
applied. Notice how Eq. 5 depends both from
the evidence gathered in the corpus about lex-
ical heads h as well as about the relation r. In
ANC the percentage of times that the Eq. 5 is
backed off against test instances (as h or r are
not available from the training data) is twice
as high as in the BNC-FN or in the NTI do-
main (i.e. 15.5 vs. 7.2 or 8.7, respectively).
The different syntactic style of ANC seems
thus the main responsible of the poor impact
of distributional information, as it is often un-
applicable to ANC test cases.

• The complexity of the three test sets is dif-
ferent, as the three plots show. The NTI col-

6Notice that in this paper only the training portion of the
NTI data set is employed as reported in Table 2 and results are
not directly comparable to (Johansson and Nugues, 2008b).
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lections seems characterized by a lower level
of complexity (see for example the accuracy
of the Local prior model, that is about 51%
as for the ANC). It then gets benefits from
all the analysis stages, in particular the final
HMM reranking. The BNC-FN test collec-
tion seems the most complex one, and the im-
pact of the lexical information brought by the
distributional model is here maximal. This
is mainly due to the coherence between the
distributions of lexical and grammatical phe-
nomena in the test and training data.

• The role of HMM reranking is an effective
way to compensate errors in the local argu-
ment classifications for all the three domains.
However, it is particularly effective for the
outside domain cases, while, in the BNC cor-
pus, it produces just a small improvement in-
stead (i.e. +2%, as shown in Table 4 ). It is
worth noticing that the average length of the
sentences in the BNC test collection is about
23 words per sentence, while it is higher for
the NTI and ANC data sets (i.e. 34 and 31,
respectively). It seems that the HMM model
well captures some information on the global
semantic structure of a sentence: this is help-
ful in cases where errors in the grammati-
cal recognition (of individual arguments or
at sentence level) are more frequent and af-
flict the local distributional model. The more
complex is the syntax of a corpus (e.g. in the
NTI and ANC data sets), the higher seems the
impact of the reranking phase.

The significant performance of the AC model
here presented suggest to test it when integrated
within a full SRL architecture. Table 5 reports the
results of the processing cascade over three col-
lections. Results on the Boundary Detection BD
task are obtained by training an SVM model on
the same feature set presented in (Johansson and
Nugues, 2008b) and are slightly below the state-
of-the art BD accuracy reported in (Coppola et
al., 2009). However, the accuracy of the complete
BD + AC + RR chain (i.e. 68%) improves the
corresponding results of (Coppola et al., 2009).
Given the relatively simple feature set adopted
here, this result is very significant as for its result-
ing efficiency. The overall BD recognition pro-
cess is, on a standard architecture, performed at
about 6.74 sentences per second, that is basically

Corpus Eval. Setting Recall Precision F1

BNC BD 72.6 85.1 78.4
BD+AC+RR 62.6 74.5 68.0

NTI BD 63.9 80.0 71.0
BD+AC+RR 56.7 72.1 63.5

ANC BD 64.0 81.5 71.7
BD+AC+RR 47.4 62.5 53.9

Table 5: Accuracy of the full cascade of the SRL
system over three domain

the same as the time needed for applying the en-
tire BD+AC +RR chain, i.e. 6.21 sentence per
second.

5 Conclusions

In this paper, a distributional approach for acquir-
ing a semi-supervised model of argument classi-
fication (AC) preferences has been proposed. It
aims at improving the generalization capability of
the inductive SRL approach by reducing the com-
plexity of the employed grammatical features and
through a distributional representation of lexical
features. The obtained results are close to the
state-of-art in FrameNet semantic parsing. State
of the art accuracy is obtained instead in out-of-
domain experiments. The model seems to cap-
italize from simple methods of lexical modeling
(i.e. the estimation of lexico-grammatical pref-
erences through distributional analysis over unla-
beled data), estimation (through syntactic or lexi-
cal back-off where necessary) and reranking. The
result is an accurate and highly portable SRL cas-
cade. Experiments on the integrated SRL archi-
tecture (i.e. BD + AC + RR chain) show that
state-of-art accuracy (i.e. 68%) can be obtained
on raw texts. This result is also very significant
as for the achieved efficiency. The system is able
to apply the entire BD + AC + RR chain at a
speed of 6.21 sentences per second. This signif-
icant efficiency confirms the applicability of the
SRL approach proposed here in large scale NLP
applications. Future work will study the appli-
cation of the flexible SRL method proposed to
other languages, for which less resources are avail-
able and worst training conditions are the norm.
Moreover, dimensionality reduction methods al-
ternative to LSA, as currently studied on semi-
supervised spectral learning (Johnson and Zhang,
2008), will be experimented.
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