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Abstract 

We present a simple and scalable algorithm for 
clustering tens of milli ons of phrases and use 
the resulting clusters as features in 
discriminative classifiers. To demonstrate the 
power and generality of this approach, we 
apply the method in two very different 
applications: named entity recognition and 
query classification. Our results show that 
phrase clusters offer significant improvements 
over word clusters. Our NER system achieves 
the best current result on the widely used 
CoNLL benchmark. Our query classifier is on 
par with the best system in KDDCUP 2005 
without resorting to labor intensive knowledge 
engineering efforts. 

1 Introduction 

Over the past decade, supervised learning 
algorithms have gained widespread acceptance in 
natural language processing (NLP). They have 
become the workhorse in almost all sub-areas 
and components of NLP, including part-of-
speech tagging, chunking, named entity 
recognition and parsing. To apply supervised 
learning to an NLP problem, one first represents 
the problem as a vector of features. The learning 
algorithm then optimizes a regularized, convex 
objective function that is expressed in terms of 
these features.  The performance of such 
learning-based solutions thus crucially depends 
on the informativeness of the features. The 
majority of the features in these supervised 
classifiers are predicated on lexical information, 
such as word identities. The long-tailed 
distribution of natural language words implies 
that most of the word types will be either unseen 
or seen very few times in the labeled training 
data, even if the data set is a relatively large one 
(e.g., the Penn Treebank). 

While the labeled data is generally very costly 
to obtain, there is a vast amount of unlabeled 
textual data freely available on the web. One way 
to alleviate the sparsity problem is to adopt a 

two-stage strategy: first create word clusters with 
unlabeled data and then use the clusters as 
features in supervised training. Under this 
approach, even if a word is not found in the 
training data, it may still fire cluster-based 
features as long as it shares cluster assignments 
with some words in the labeled data.  

Since the clusters are obtained without any 
labeled data, they may not correspond directly to 
concepts that are useful for decision making in 
the problem domain. However, the supervised 
learning algorithms can typically identify useful 
clusters and assign proper weights to them, 
effectively adapting the clusters to the domain. 

This method has been shown to be quite 
successful in named entity recognition (Miller et 
al. 2004) and dependency parsing (Koo et al., 
2008).  

In this paper, we present a semi-supervised 
learning algorithm that goes a step further. In 
addition to word-clusters, we also use phrase-
clusters as features. Out of context, natural 
language words are often ambiguous. Phrases are 
much less so because the words in a phrase 
provide contexts for one another.  

Consider the phrase “Land of Odds”. One 
would never have guessed that it is a company 
name based on the clusters containing Odds and 
Land. With phrase-based clustering, “Land of 
Odds” is grouped with many names that are 
labeled as company names, which is a strong 
indication that it is a company name as well. The 
disambiguation power of phrases is also 
evidenced by the improvements of phrase-based 
machine translation systems (Koehn et. al., 
2003) over word-based ones. 

Previous approaches, e.g., (Miller et al. 2004) 
and (Koo et al. 2008), have all used the Brown 
algorithm for clustering (Brown et al. 1992). The 
main idea of the algorithm is to minimize the 
bigram language-model perplexity of a text 
corpus. The algorithm is quadratic in the number 
of elements to be clustered. It is able to cluster 
tens of thousands of words, but is not scalable 
enough to deal with tens of millions of phrases. 
Uszkoreit and Brants (2008) proposed a 
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distributed clustering algorithm with a similar 
objective function as the Brown algorithm. It 
substantially increases the number of elements 
that can be clustered. However, since it still 
needs to load the current clustering of all 
elements into each of the workers in the 
distributed system, the memory requirement 
becomes a bottleneck. 

We present a distributed version of a much 
simpler K-Means clustering that allows us to 
cluster tens of millions of elements. We 
demonstrate the advantages of phrase-based 
clusters over word-based ones with experimental 
results from two distinct application domains: 
named entity recognition and query 
classification. Our named entity recognition 
system achieves an F1-score of 90.90 on the 
CoNLL 2003 English data set, which is about 1 
point higher than the previous best result. Our 
query classifier reaches the same level of 
performance as the KDDCUP 2005 winning 
systems, which were built with a great deal of 
knowledge engineering. 

2 Distributed K-Means clustering 

K-Means clustering (MacQueen 1967) is one of 
the simplest and most well-known clustering 
algorithms. Given a set of elements represented 
as feature vectors and a number, k, of desired 
clusters, the K-Means algorithm consists of the 
following steps: 

Step Operation 
i. Select k elements as the initial centroids 

for k clusters. 
ii. Assign each element to the cluster with 

the closest centroid according to a 
distance (or similarity) function. 

iii. Recompute each cluster’s centroid by 
averaging the vectors of its elements 

iv. Repeat Steps ii and iii until 
convergence 

Before describing our parallel implementation of 
the K-Means algorithm, we first describe the 
phrases to be clusters and how their feature 
vectors are constructed. 

2.1 Phrases 

To obtain a list of phrases to be clustered, we 
followed the approach in (Lin et al., 2008) by 
collecting 20 million unique queries from an 
anonymized query log that are found in a 700 
billion token web corpus with a minimum 
frequency count of 100. Note that many of these 
queries are not phrases in the linguistic sense. 

However, this does not seem to cause any real 
problem because non-linguistic phrases may 
form their own clusters. For example, one cluster 
contains {“Cory does”, “Ben saw”, “I can’t 
lose”, …..}.  

To reduce the memory requirement for storing 
a large number of phrases, we used Bloom Filter 
(Bloom 1970) to decide whether a sequence of 
tokens is a phrase. The Bloom filt er allows a 
small percentage of false positives to pass 
through. We did not remove them with post 
processing since our notion of phrases is quite 
loose to begin with. 

2.2 Context representation 

Distributional word clustering is based on the 
assumption that words that appear in similar 
contexts tend to have similar meanings. The 
same assumption holds for phrases as well.  
Following previous approaches to distributional 
clustering of words, we represent the contexts of 
a phrase as a feature vector. There are many 
possible definitions for what constitutes the 
contexts. In the literature, contexts have been 
defined as subject and object relations involving 
the word (Hindle, 1990), as the documents 
containing the word (Deerwester et al, 1990), or 
as search engine snippets for the word as a query 
(Sahami and Heilman, 2006). We define the 
contexts of a phrase to be small, fixed-sized 
windows centered on occurrences of the phrase 
in a large corpus. The features are the words 
(tokens) in the window. The context feature 
vector of a phrase is constructed by first 
aggregating the frequency counts of the words in 
the context windows of different instances of the 

Table 1 Cluster of “English lessons” 
Window Cluster members (partial list) 
size=1 environmental courses, summer school 

courses, professional development 
classes, professional training programs, 
further education courses, leadership 
courses, accelerated courses, vocational 
classes, technical courses, technical 
classes, special education courses, ….. 

size=3 learn english spanish, grammar learn, 
language learning spanish, translation 
spanish language, learning spanish 
language, english spanish language, 
learn foreign language, free english 
learning, language study english, 
spanish immersion course, how to 
speak french, spanish learning games, 
….. 
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phrase. The frequency counts are then converted 
into point-wise mutual information (PMI) values: 

2/+:LDNá B; L ���F 2:LDNá B;
2:LDN;2:B;G 

where phr is a phrase and  f  is a feature of 
phr. PMI effectively discounts the prior 
probability of the features and measures how 
much beyond random a feature tends to occur in 
a phrase’s context window.  Given two feature 
vectors, we compute the similarity between two 
vectors as the cosine function of the angle 
between the vectors. Note that even though a 
phrase phr can have multiple tokens, its feature f 
is always a single-word token.  

We impose an upper limit on the number of 
instances of each phrase when constructing its 
feature vector. The idea is that if we have already 
seen 300K instances of a phrase, we should have 
already collected enough data for the phrase. 
More data for the same phrase will not 
necessarily tell us anything more about it. There 
are two benefits for such an upper limit. First, it 
drastically reduces the computational cost. 
Second, it reduces the variance in the sizes of the 
feature vectors of the phrases. 

2.3 K-Means by MapReduce  

K-Means is an embarrassingly parallelizable 
algorithm. Since the centroids of clusters are 
assumed to be constant within each iteration, the 
assignment of elements to clusters (Step ii) can 
be done totally independently. 

The algorithm fits nicely into the MapReduce 
paradigm for parallel programming (Dean and 
Ghemawat, 2004). The most straightforward 
MapReduce implementation of K-Means would 
be to have mappers perform Step ii and reducers 
perform Step iii. The keys of intermediate pairs 
are cluster ids and the values are feature vectors 
of elements assigned to the corresponding 
cluster. When the number of elements to be 
clustered is very large, sorting the intermediate 
pairs in the shuffling stage can be costly. 
Furthermore, when summing up a large number 
of features vectors, numerical underflow 
becomes a potential problem.  

A more efficient and numerically more stable 
method is to compute, for each input partition, 
the partial vector sums of the elements belonging 
to each cluster. When the whole partition is done, 
the mapper emits the cluster ids as keys and the 
partial vector sums as values. The reducers then 
aggregate the partial sums to compute the 
centroids. 

2.4 Indexing centroid vectors 

In a naïve implementation of Step ii of K-Means, 
one would compute the similarities between a 
feature vector and all the centroids in order to 
find the closest one. The kd-tree algorithm 
(Bentley 1980) aims at speeding up nearest 
neighbor search. However, it only works when 
the vectors are low-dimensional, which is not the 
case here. Fortunately, the high-dimensional and 
sparse nature of our feature vectors can also be 
exploited.  

Since the cosine measure of two unit length 
vectors is simply their dot product, when 
searching for the closest centroid to an element, 
we only care about features in the centroids that 
are in common with the element. We therefore 
create an inverted index that maps a feature to 
the list of centroids having that feature. Given an 
input feature vector, we can iterate through all of 
its components and compute its dot product with 
all the centroids at the same time. 

2.5 Sizes of context window 

In our experiments, we use either 1 or 3 as the 
size of the context windows. Window size has an 
interesting effect on the types of clusters. With 
larger windows, the clusters tend to be more 
topical, whereas smaller windows result in 
categorical clusters.  

For example, Table 1 contains the cluster that 
the phrase “English lessons” belongs to. With 3-
word context windows, the cluster is about 
language learning and translation. With 1-word 
context windows, the cluster contains different 
types of lessons. 

The ability to produce both kinds of clusters 
turns out to be very useful. In different 
applications we need different types of clusters. 
For example, in the named entity recognition 
task, categorical clusters are more successful, 
whereas in query categorization, the topical 
clusters are much more beneficial.  

The Brown algorithm uses essentially the 
same information as our 1-word window 
clusters. We therefore expect it to produce 
mostly categorical clusters.  

2.6 Soft clustering 

Although K-Means is generally described as a 
hard clustering algorithm (each element belongs 
to at most one cluster), it can produce soft 
clustering simply by assigning an element to all 
clusters whose similarity to the element is greater 
than a threshold. For natural language words and 
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phrases, the soft cluster assignments often reveal 
different senses of a word. For example, the 
word Whistler may refer to a town in British 
Columbia, Canada, which is also a ski resort, or 
to a painter. These meanings are reflected in the 
top clusters assignments for Whistler in Table 2 
(window size = 3). 

2.7 Clustering data sets 

We experimented with two corpora (Table 3). 
One contains web documents with 700 billion 
tokens. The second consists of various news texts 
from LDC: English Gigaword, the Tipster corpus 
and Reuters RCV1. The last column lists the 
numbers of phrases we used when running the 
clustering with that corpus.  

Even though our cloud computing 
infrastructure made phrase clustering possible, 
there is no question that it is still very time 
consuming. To create 3000 clusters among 20 
million phrases using 3-word windows, each K-
Means iteration takes about 20 minutes on 1000 
CPUs. Without using the indexing technique in 
Section 2.4, each iteration takes about 4 times as 
long. In all our experiments, we set the 
maximum number of iterations to be 50. 

3 Named Entity Recognition 

Named entity recognition (NER) is one of the 
first steps in many applications of information 
extraction, information retrieval, question 
answering and other applications of NLP. 
Conditional Random Fields (CRF) (Lafferty et. 
al. 2001) is one of the most competitive NER 
algorithms. We employed a linear chain CRF 
with L2 regularization as the baseline algorithm 
to which we added phrase cluster features. 

The CoNLL 2003 Shared Task (Tjong Kim 
Sang and Meulder 2003) offered a standard 
experimental platform for NER. The CoNLL 
data set consists of news articles from Reuters1. 
The training set has 203,621 tokens and the 
development and test set have 51,362 and 46,435 
tokens, respectively. We adopted the same 
evaluation criteria as the CoNLL 2003 Shared 
Task. 

To make the clusters more relevant to this 
domain, we adopted the following strategy: 

1. Construct the feature vectors for 20 
million phrases using the web data. 

2. Run K-Means clustering on the phrases 
that appeared in the CoNLL training data 
to obtain K centroids. 

3. Assign each of the 20 million phrases to 
the nearest centroid in the previous step. 

3.1 Baseline features 

The features in our baseline CRF classifier are a 
subset of the conventional features. They are 
defined with the following templates: >Uæ?,��>Uæ?5ãæ?,��<>UæáSè?=è@æ?5æ>5 á <>Uæ?5ãæáSè?=è@æ?5æ>5 ,  <>Uæá OBTuè?=è@æ?5æ>5 ,   <>Uæ?5ãæá OBTuè?=è@æ?5æ>5 ,  <<>UæáSPLèç ?=è@æ?5æ>5 =ç@68 ,����<<>Uæ?5ãæáSPLèç ?=è@æ?5æ>5 =ç@68 á�  <>UæáSè?5ãè?=è@ææ>5,�����<>Uæ?5ãæáSè?5ãè?=è@ææ>5,       <<>UæáSPLè?5ãèç ?=è@ææ>5=ç@57 ,�<<>Uæ?5ãæáSPLè?5ãèç ?=è@ææ>5=ç@57  

Here, s denotes a position in the input sequence; 
ys is a label that indicates whether the token at 
position s is a named entity as well as its type; wu 

is the word at position u; sfx3 is a word’s three-
letter suffix; <SPLç=�ç@58  are indicators of 

                                                           
1 http://www.reuters.com/researchandstandards/ 

Table 2 Soft clusters for Whistler 
cluster1: sim=0.17, members=104048 
bc vancouver, british columbia accommodations, 
coquitlam vancouver, squamish vancouver, 
langley vancouver, vancouver surrey,  … 

cluster2: sim=0. 16, members= 182692 
vail skiing, skiing colorado, tahoe ski vacation, 
snowbird skiing, lake tahoe skiing, breckenridge 
skiing, snow ski packages, ski resort whistler, … 

cluster3: sim=0.12, members= 91895 
ski chalets france, ski chalet holidays, france ski, 
catered chalets, luxury ski chalets, france skiing, 
france skiing, ski chalet holidays, …… 

cluster4: sim=0.11, members=237262 
ocean kayaking, mountain hiking, horse trekking, 
river kayaking, mountain bike riding, white water 
canoeing, mountain trekking, sea kayaking, …… 

cluster5: sim=0.10, members=540775 
rent cabin, pet friendly cabin, cabins rental, cabin 
vacation, cabins colorado, cabin lake tahoe, maine 
cabin, tennessee mountain cabin,  … 

cluster6: sim=0.09, members=117365 
mary cassatt, oil painting reproductions, henri 
matisse, pierre bonnard, edouard manet, auguste 
renoir, paintings famous, picasso paintings, …… 

…… 

 

Table 3 Corpora used in experiments 
Corpus Description tokens phrases 
Web web documents 700B 20M 
LDC News text from LDC 3.4B 700K 
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different word types: wtp1 is true when a word is 
punctuation; wtp2 indicates whether a word is in 
lower case, upper case, or all-caps; wtp3 is true 
when a token is a number; wtp4 is true when a 
token is a hyphenated word with different 
capitalization before and after the hyphen. 

NER systems often have global features to 
capture discourse-level regularities (Chieu and 
Ng 2003). For example, documents often have a 
full mention of an entity at the beginning and 
then refer to the entity in partial or abbreviated 
forms. To help in recognizing the shorter 
versions of the entities, we maintain a history of 
unigram word features. If a token is encountered 
again, the word unigram features of the previous 
instances are added as features for the current 
instance as well. We have a total of 48 feature 
templates. In comparison, there are 79 templates 
in (Suzuki and Isozaki, 2008).  

Part-of-speech tags were used in the top-
ranked systems in CoNLL 2003, as well as in 
many follow up studies that used the data set 
(Ando and Zhang 2005; Suzuki and Isozaki 
2008).  Our system does not need this 
information to achieve its peak performance. An 
important advantage of not needing a POS tagger 
as a preprocessor is that the system is much 
easier to adapt to other languages, since training 
a tagger often requires a larger amount of more 
extensively annotated data than the training data 
for NER. 

3.2 Phrase cluster features 

We used hard clustering with 1-word context 
windows for NER. For each input token 
sequence, we identify all sequences of tokens 
that are found in the phrase clusters. The phrases 
are allowed to overlap with or be nested in one 
another. If a phrase belonging to cluster c is 
found at positions b to e (inclusive), we add the 
following features to the CRF classifier: >UÕ?5á$Ö?á >UØ>5á#Ö?á >UÕ?6ãÕ?5á$Ö?á >UØãØ>5á#Ö? >UÕá 5Ö?á <>Uèá/Ö?=è@Õ>5Ø?5 á >UØ á'Ö? >UÕ?5ãÕá 5Ö?á <>Uè?5ãèá/Ö?=è@Õ>5Ø?5 á >UØ?5ãØ á'Ö? 
where B (before), A (after), S (start), M (middle), 
and E (end) denote a position in the input 
sequence relative to the phrase belonging to 
cluster c. We treat the cluster membership as 
binary. The similarity between an element and its 
cluster centroid is ignored. For example, suppose 
the input sentence is “… guitar legend Jimi 
Hendrix was …” and “Jimi Hendrix” belongs to 
cluster 183. Figure 1 shows the attributes at 

different input positions. The cluster features are 
the cross product of the unigram/bigram labels 
and the attributes. 

 
Figure 1 Phrase cluster features 
 

The phrasal cluster features not only help in 
resolving the ambiguities of words within a 
phrase, the B and A features also allow words 
adjacent to a phrase to consider longer contexts 
than a single word. Although one may argue 
longer n-grams can also capture this information, 
the sparseness of n-grams means that long n-
gram features are rarely useful in practice.  

We can easily use multiple clusterings in 
feature extraction. This allows us to side-step the 
matter of choosing the optimal value k in the K-
Means clustering algorithm.  

Even though the phrases include single token 
words, we create word clusters with the same 
clustering algorithm as well. The reason is that 
the phrase list, which comes from query logs, 
does not necessarily contain all the single token 
words in the documents. Furthermore, due to 
tokenization differences between the query logs 
and the documents, we systematically missed 
some words, such as hyphenated words. When 
creating the word clusters, we do not rely on a 
predefined list. Instead, any word above a 
minimum frequency threshold is included.  

In their dependency parser with cluster-based 
features, Koo et al. (2008) found it helpful to 
restrict lexicalized features to only relatively 
frequent words. We did not observe a similar 
phenomenon with our CRF. We include all 
words as features and rely on the regularized 
CRF to select from them.  

3.3 Evaluation results 

Table 4 summarizes the evaluation results for 
our NER system and compares it with the two 
best results on the data set in the literature, as 
well the top-3 systems in CoNLL 2003. In this 
table, W and P refer to word and phrase clusters 
created with the web corpus. The superscripts are 
the numbers of clusters. LDC refers to the 
clusters created with the smaller LDC corpus and 
+pos indicates the use of part-of-speech tags as 
features.  

The performance of our baseline system is 
rather mediocre because it has far fewer feature 
functions than the more competitive systems. 
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The Top CoNLL 2003 systems all employed 
gazetteers or other types of specialized resources 
(e.g., lists of words that tend to co-occur with 
certain named entity types) in addition to part-of-
speech tags. 

Introducing the word clusters immediately 
brings the performance up to a very competitive 
level. Phrasal clusters obtained from the LDC 
corpus give the same level of improvement as 
word clusters from the web corpus that is 20 
times larger. The best F-score of 90.90, which is 
about 1 point higher than the previous best result, 
is obtained with a combination of clusters. 
Adding POS tags to this configuration caused a 
small drop in F1. 

4 Query Classification 

We now look at the use of phrasal clusters in a 
very different application: query classification. 
The goal of query classification is to determine 
to which ones of a predefined set of classes a 
query belongs. Compared with documents, 
queries are much shorter and their categories are 
much more ambiguous.  

4.1 KDDCUP 2005 data set 

The task in the KDDCUP 2005 competition2 is to 
classify 800,000 internet user search queries into 
67 predefined topical categories. The training set 
consists of 111 example queries, each of which 
belongs to up to 5 of the 67 categories. Table 5 
shows three example queries and their classes.  

Three independent human labelers classified 
800 queries that were randomly selected from the 

                                                           
2 http://www.acm.org/sigs/sigkdd/kdd2005/kddcup.html 

complete set of 800,000. The participating 
systems were evaluated by their average F-scores 
(F1) and average precision (P) over these three 
sets of answer keys for the 800 selected queries.  

� L Ã S�������������������������������gg

Ã S��������������������gg

 

� L Ã S������������������������������gg

Ã S���������������������������gg

 

	s L t H � H �
�E �  

Here, ‘tagged as’ refer to systems outputs and 
‘labeled as’ refer to human judgments. The 
subscript i ranges over all the query classes. 

Table 6 shows the scores of each of the three 
human labelers when each of them is evaluated 
against the other two. It can be seen that the 
consistency among the labelers is quite low, 
indicating that the query classification task is 
very difficult even for humans.  

To maximize the little information we have 
about the query classes, we treat the words in 
query class names as additional example queries. 
For example, we added three queries: living, 
tools, and hardware to the class Living\Tools & 
Hardware. 

4.2 Baseline classifier 

Since the query classes are not mutually 
exclusive, we treat the query classification task 
as 67 binary classification problems. For each 
query class, we train a logistic regression 
classifier (Vapnik 1999) with L2 regularization. 

Table 4 CoNLL NER test set results 
System Test F1  Improv. 
Baseline CRF (Sec. 3.1) 83.78  
W500 88.34 +4.56 
P64 89.73 +5.94 
P125 89.80 +6.02 
W500 + P125 90.62 +6.84 
W500 + P64 90.63 +6.85 
W500 + P125 + P64 90.90 +7.12 
W500 + P125 + P64+pos 90.62 +6.84 
LDC64 87.24 +3.46 
LDC125 88.33 +4.55 
LDC64 +LDC125 88.44 +4.66 
(Suzuki and Isozaki, 2008) 89.92  
(Ando and Zhang, 2005) 89.31  
(Florian et al., 2003) 88.76  
(Chieu and Ng, 2003) 88.31  
(Klein et al., 2003) 86.31  

Table 5 Example queries and their classes 

ford field 
   Sports/American Football 
   Information/Local & Regional 
   Sports/Schedules & Tickets 
john deere gator 
   Living/Landscaping & Gardening 
   Living/Tools & Hardware 
   Information/Companies & Industries 
   Shopping/Stores & Products 
   Shopping/Buying Guides & Researching 
justin timberlake lyrics 
   Entertainment/Music 
   Information/Arts & Humanities 
   Entertainment/Celebrities 

Table 6 Labeler Consistency 
 L1  L2 L3 Average
F1 0.538 0.477 0.512 0.509
P 0.501 0.613 0.463 0.526
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Given an input x, represented as a vector of m 
features: (x1, x2, ....., xm), a logistic regression 
classifier with parameter vector � L(w1, w2, ....., 
wm) computes the posterior probability of the 
output y, which is either 1 or -1, as 

L:U��; L s

sE A?ì�Å	� 
We tag a query as belonging to a class if the 

probability of the class is among the highest 5 
and is greater than 0.5. 

The baseline system uses only the words in the 
queries as features (the bag-of-words 
representation), treating the query classification 
problem as a typical text categorization problem. 

We found the prior distribution of the query 
classes to be extremely important. In fact, a 
system that always returns the top-5 most 
frequent classes has an F1 score of 26.55, which 
would have outperformed 2/3 of the 37 systems 
in the KDDCUP and ranked 13th. 

We made a small modification to the objective 
function for logistic regression to take into 
account the prior distribution and to use 50% as a 
uniform decision boundary for all the classes. 
Normally, training a logistic regression classifier 
amounts to solving: 

���IEJ� ]ã�Í
� E s

J
Í ���@sE A?ìÔ�Å	�ÔAá

Ü@5

a 
where n is the number of training examples and ã  
is the regularization constant. In this formula, 1/n 
can be viewed as the weight of an example in the 
training corpus. When training the classifier for a 
class with p positive examples out of a total of n 
examples, we change the objective function to: 

���IEJ� Pã�Í
�E Ã ���@sE A?ìÔ�Å	�ÔAá

Ü@5

J E UÜ:tL F J; Q 

With this modification, the total weight of the 
positive and negative examples become equal. 

4.3 Phrasal clusters in query classification 

Since topical information is much more relevant 
to query classification than categorical 
information, we use clusters created with 3-word 
context windows. Moreover, we use soft 
clustering instead of hard clustering. A phrase 
belongs to a cluster if the cluster’s centroid is 
among the top-50 most similar centroids to the 
phrase (by cosine similarity), and the similarity is 
greater than 0.04.  

Given a query, we first retrieve all its phrases 
(allowing overlap) and the clusters they belong 

to. For each of these clusters, we sum the 
cluster’s similarity to all the phrases in the query 
and select the top-N as features for the logistic 
regression classifier (N=150 in our experiments). 
When we extract features from multiple 
clusterings, the selection of the top-N clusters is 
done separately for each clustering. Once a 
cluster is selected, its similarity values are 
ignored. Using the numerical feature values in 
our experiments always led to worse results. We 
suspect that such features make the optimization 
of the objective function much more difficult. 

 
Figure 2 Comparison with KDDCUP systems 

4.4 Evaluation results 

Table 7 contains the evaluation results of various 
configurations of our system. Here, bow 
indicates the use of bag-of-words features; WN 
refers to word clusters of size N; and PN refers to 
phrase clusters of size N. All the clusters are soft 
clusters created with the web corpus using 3-
word context windows. 

The bag-of-words features alone have dismal 
performance. This is obviously due to the 
extreme paucity of training examples. In fact, 
only 12% of the words in the 800 test queries are 
found in the training examples. Using word 
clusters as features resulted in a big increase in 
F-score. The phrasal cluster features offer 
another big improvement. The best result is 
achieved with multiple phrasal clusterings.  

Figure 2 compares the performance of our 
system (the dark bar at 2) with the top tercile 
systems in KDDCUP 2005. The best two 
systems in the competition (Shen et al., 2005) 
and (Vogel et al., 2005) resorted to knowledge 
engineering techniques to bridge the gap between 
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Table 7 Query Classification results 
System F1  
bow 11.58 
bow+W3K 34.71 
bow+P500 39.84 
bow+P3K 40.80 
bow+P500+P1K +P2K +P3K+P5K 43.80 
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the small set of examples and the new queries. 
They manually constructed a mapping from the 
query classes to hierarchical directories such as 
Google Directory3 or Open Directory Project4. 
They then sent training and testing queries to 
internet search engines to retrieve the top pages 
in these directories. The positions of the result 
pages in the directory hierarchies as well as the 
words in the pages are used to classify the 
queries. With phrasal clusters, we can achieve 
top-level performance without manually 
constructed resources, or having to rely on 
internet search results.  

5 Discussion and Related Work  

In earlier work on semi-supervised learning, e.g., 
(Blum and Mitchell 1998), the classifiers learned 
from unlabeled data were used directly. Recent 
research shows that it is better to use whatever is 
learned from the unlabeled data as features in a 
discriminative classifier. This approach is taken 
by (Miller et. al. 2004), (Wong and Ng 2007), 
(Suzuki and Isozaki 2008), and (Koo et. al., 
2008), as well as this paper.  

Wong and Ng (2007) and Suzuki and Isozaki 
(2008) are similar in that they run a baseline 
discriminative classifier on unlabeled data to 
generate pseudo examples, which are then used  
to train a different type of classifier for the same 
problem. Wong and Ng (2007) made the 
assumption that each proper named belongs to 
one class (they observed that this is true about 
85% of the time for English). Suzuki and Isozaki 
(2008), on the other hand, used the automatically 
labeled corpus to train HMMs. 

Ando and Zhang (2005) defined an objective 
function that combines the original problem on 
the labeled data with a set of auxiliary problems 
on unlabeled data. The definition of an auxiliary 
problem can be quite flexible as long as it can be 
automatically labeled and shares some structural 
properties with the original problem. The 
combined objective function is then alternatingly 
optimized with the labeled and unlabeled data. 
This training regime puts pressure on the 
discriminative learner to exploit the structures 
uncovered from the unlabeled data. 

In the two-stage cluster-based approaches such 
as ours, clustering is mostly decoupled from the 
supervised learning problem. However, one can 
rely on a discriminative classifier to establish the 
connection by assigning proper weights to the 
                                                           
3 http://directory.google.com 
4 http://www.dmoz.org 

cluster features. One advantage of the two-stage 
approach is that the same clusterings may be 
used for different problems or different 
components of the same system. Another 
advantage is that it can be applied to a wider 
range of domains and problems. Although the 
method in (Suzuki and Isozaki 2008) is quite 
general, it is hard to see how it can be applied to 
the query classification problem. 

Compared with Brown clustering, our 
algorithm for distributional clustering with 
distributed K-Means offers several benefits: (1) it 
is more scalable and parallelizable; (2) it has the 
ability to generate topical as well as categorical 
clusters for use in different applications; (3) it 
can create soft clustering as well as hard ones. 

There are two main scenarios that motivate 
semi-supervised learning. One is to leverage a 
large amount of unsupervised data to train an 
adequate classifier with a small amount of 
labeled data. Another is to further boost the 
performance of a supervised classifier that is 
already trained with a large amount of supervised 
data. The named entity problem in Section 3 and 
the query classification problem in Section 4 
exemplify  the two scenarios. 

One nagging issue with K-Means clustering is 
how to set k. We show that this question may not 
need to be answered because we can use 
clusterings with different k’s at the same time 
and let the discriminative classifier cherry-pick 
the clusters at different granularities according to 
the supervised data. This technique has also been 
used with Brown clustering (Miller et. al. 2004, 
Koo, et. al. 2008). However, they require clusters 
to be strictly hierarchical, whereas we do not. 

6 Conclusions 

We presented a simple and scalable algorithm to 
cluster tens of millions of phrases and we used 
the resulting clusters as features in discriminative 
classifiers. We demonstrated the power and 
generality of this approach on two very different 
applications: named entity recognition and query 
classification. Our system achieved the best 
current result on the CoNLL NER data set. Our 
query categorization system is on par with the 
best system in KDDCUP 2005, which, unlike 
ours, involved a great deal of knowledge 
engineering effort. 
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