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Abstract

This paper proposes a hierarchical text catego-
rization (TC) approach to encoding free-text
clinical notes with ICD-9-CM codes. Prelim-
inary experimental result on the 2007 Com-
putational Medicine Challenge data shows a
hierarchical TC system has achieved a micro-
averagedF1 value of 86.6, which is compara-
ble to the performance of state-of-the-art flat
classification systems.

1 Introduction

The task of assigning meaningful categories to free
text has attracted researchers in the Natural Lan-
guage Processing (NLP) and Information Retrieval
(IR) field for more than 10 years. However, it has
only recently emerged as a hot topic in the clinical
domain where categories to be assigned are orga-
nized in taxonomies which cover common medical
concepts and link them together in hierarchies. This
paper evaluates the effectiveness of adopting a hi-
erarchical text categorization approach to the 2007
Computational Medicine Challenge which aims to
assign appropriate ICD-9-CM codes to free text ra-
diology reports. (Pestian et al., 2007)

The ICD-9-CM1, which stands for International
Classification of Diseases, 9th Revision, Clinical
Modification, is an international standard which is
used for classifying common medical concepts, such
as diseases, symptoms and signs, by hospitals, insur-
ance companies, and other health organizations. The
2007 Computational Medicine Challenge was set in

1see http://www.cdc.gov/nchs/icd9.htm

a billing scenario in which hospitals claim reim-
bursement from health insurance companies based
on the ICD-9-CM codes assigned to each patient
case. The competition has successfully attracted 44
submissions with a mean micro-averagedF1 perfor-
mance of 76.70. (Pestian et al., 2007)

To the best of our knowledge, the systems re-
ported were all adopting a flat classification ap-
proach in which a dedicated classifier has been built
for every targeted ICD-9-CM code. Each classifier
makes a binary decision of True or False according
to whether or not a clinical note should be assigned
with the targeted ICD-9-CM code. An incoming
clinical note has to be tested against all the classi-
fiers before a final coding decision can be made. The
response time of a flat approach therefore grows lin-
early with the number of categories in the taxonomy.
Moreover, low-frequency ICD-9-CM codes suffer
the data imbalance problem in which positive train-
ing instances are overwhelmed by negative ones.

A hierarchical system takes into account relation-
ships among categories. Classifiers are assigned
to both leaf and internal nodes of a taxonomy and
training instances are distributed among these nodes.
When a test instance comes in, a coding decision is
made by generating all possible paths (start from the
root node of the taxonomy) where classifiers along
path return favorable decisions. In other words, a
node is visited only if the classifier assigned to its
parent returns a True decision. This strategy signif-
icantly reduces the average number of classifiers to
be used in the test stage when the taxonomy is very
large. (Liu et al., 2005; Yang et al., 2003)
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2 Related Works

Most top systems in the 2007 Computational
Medicine Challenge have benefited from incorpo-
rating domain knowledge of free-text clinical notes,
such as negation, synonymy, and hypernymy, ei-
ther as hand-crafted rules in a symbolic approach,
or as carefully engineered features in a machine-
learning component. (Goldstein et al., 2007; Farkas
and Szarvas, 2007; Crammer et al., 2007; Aronson
et al., 2007; Patrick et al., 2007)

Aronson et al. (2007) used a variant of National
Library of Medicine Medical Text Indexer (MTI)
which was originally developed for discovering
Medical Subject Headings (MeSH)2 terms for in-
dexing biomedical citations and articles. The output
of MTI was converted into ICD-9-CM codes by ap-
plying different approaches of mapping discovered
Unified Medical Language System (UMLS)3 con-
cepts into ICD-9-CM codes, such as using synonym
and built-in mapping relations in UMLS Metathe-
saurus. This approach can easily adapt to any sub-
domain of the UMLS Metathesaurus since it only
requires very little examples for tuning purposes.
However, MTI performed slightly behind an SVM
system with only bag-of-words features, which sug-
gests the difficulty of optimizing a general purpose
system without any statistical learning on the tar-
geted corpus. By stacking MTI, SVM, KNN and a
simple pattern matching system together, a finalF1

score of 85 was reported on the official test set.
Farkas and Szarvas (2007) automatically translate

definitions of the ICD-9-CM into rules of a sym-
bolic system. Decision tree was then used to model
the disagreement between the prediction of the sys-
tem and the gold-standard annotation of the training
data set. This has improved the performance of the
system to aF1 value of 89. Goldstein et al. (2007)
also reported that a rule-based system enhanced by
negation, synonymy, and uncertainty information,
has outperformed machine learning models which
only use n-gram features. The rules were manually
tuned for every ICD-9-CM code found in the chal-
lenge training data set and therefore suffer the scal-
ing up problem.

On the other hand, researchers tried to encode do-

2http://www.nlm.nih.gov/mesh/
3http://www.nlm.nih.gov/research/umls/

Total radiology records 1,954
Total tokens 51,940
Total ICD-9-Codes 45
Total code instances 2,423

Table 1: Statistics of the data set

main knowledge into machine learning systems by
developing more sophisticated feature types. Patrick
et al. (2007) developed a variety of new feature types
to model human coder’s expertise, such as negation
and code overlaps. Different combination of fea-
ture types were tested for each individual ICD-9-CM
code and the best combination was used in the final
system. Crammer et al. (2007) also used a rich fea-
ture set in their MIRA system which is an online
learning algorithm.

Figure 1: Distribution of ICD-9-CM codes in the chal-
lenge data set.

3 The Corpus

The corpus used in this study is the official data
set of the 2007 Computational Medicine Challenge.
The challenge corpus consists of 1,954 radiology re-
ports from the Cincinnati Children’s Hospital Med-
ical Center and was divided into a training set with
978 records, and a test set with 976 records. The
statistics of the corpus is shown in Table 1.

Each radiology record in the corpus has two sec-
tions: ‘Clinical History’ which is provided by an
ordering physician before a radiological procedure,
and ‘Impression’ which is reported by a radiologist
after the procedure. A typical radiology report is
shown below:
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786 
Symptoms involving respiratory system 

and other chest symptoms
(0/698)

786.0 
Dyspnea and respiratory abnormalities

(0/98)

786.1 
Stridor
(0/0)

786.2 
Cough

(529/529)

786.5 
Chest pain

(69/71)

786.05 
Shortness of breath

(6/6)

786.07 
Wheezing
(85/85)

786.09 
Other
(7/7)

786.59 
Other
(2/2)

Figure 2: A part of the ICD-9-CM taxonomy: the tree covers symptoms involving respiratory system and other chest
symptoms. There are two figures shown in each node: the first figure is the number of positive instances assigned to
the current node, and the next figure shows the number of all the instances in its subtree.

Clinical history

Persistent cough, no fever.

Impression

Retained secretions vs atelectasis in the
right lower lobe. No infiltrates to support
pneumonia

Three different institutions were invited to assign
ICD-9-CM codes to the corpus. The majority code
with at least two votes from the three annotators was
considered as the gold-standard code for the record.
Moreover, a clinical record can be assigned with
multiple ICD-9-CM codes at a time.

The general guideline of assigning ICD-9-CM
codes includes two important rules:

• If there is a definite diagnosis in text, the
diagnosis should be coded and all symptom
and sign codes should be ignored.

• If the diagnosis is undecided, or there is no
diagnosis found, the symptoms and signs
should be coded rather than the uncertain
diagnosis.

According to the guideline, the above radiology
record should be assigned with only a ‘Cough’ code

because ‘Atelectasis’ and ‘Pneumonia’ are not cer-
tain, and ‘Fever’ has been negated.

There are 45 ICD-9-CM codes found in the cor-
pus and their distribution is imbalanced. Figure 1
shows a pie chart of three types of the ICD-9-CM
codes found in the corpus and their accumulated cat-
egory frequencies. The 20 low-frequency (less than
10 occurrences) codes account for only 3% of the to-
tal code occurrence in the challenge data set. There
are 19 codes with a frequency between 10 and 100
and altogether they account for 34% total code oc-
currence. Finally, the most frequent six codes ac-
count for over 60% of total code instances.

4 Hierarchical Text Categorization
Framework

In a hierarchical text categorization system, cate-
gories are linked together and classifiers are as-
signed to each node in the taxonomy. In the training
stage, instances are distributed to their correspond-
ing nodes. For instance, Figure 2 shows a populated
subtree of ICD-9-CM code ‘786’ which covers con-
cepts involving respiratory system and other chest
symptoms. Nodes in grey box such as 786.2 and
786.5 are among 45 gold-standard codes found in
the challenge data set. Nodes in white box such as
786 and 786.0 are internal nodes which have non-

69



empty subtrees. For instance, the numbers (0, 698)
of ‘786’ suggest that the node is assigned with zero
instances for training while there are 698 positive
instances assigned to nodes in its subtree. The node
‘786.1’ is in dotted box because there is no instance
assigned to it, nor any of its subtrees. In the ex-
periment, all nodes (such as ‘786.1’) with empty in-
stance in its subtree were removed from the training
and testing stage.

When training a classifier for a node A in the tree,
all the instances in the subtree rooted in the parent of
A become the only source of training instances. For
instance, code ‘786.0’ in Figure 2 uses all the 698 in-
stances rooted in node ‘786’ as the full training data
set. The 98 instances rooted in node ‘786.0’ itself
are the positive instances while the remaining 600
instances in the tree as the negative ones. This hier-
archical approach of distributing training instances
can reduce the size of training data set for most clas-
sifiers and minimize the data imbalance problem for
low-frequency codes in the taxonomy.

In the test stage, the system starts from the root of
the ICD-9-CM taxonomy and evaluates an incoming
clinical note against classifiers assigned to its chil-
dren nodes. The system will then visit every child
node which returns a positive classification result.
The process repeats recursively until a possible path
ends by reaching a node that returns a negative clas-
sification result. This strategy enables the sytem to
assign multiple codes to a clinical note by visiting
different paths in the ICD-9-CM taxonomy simulta-
neously.

5 Methods and Experiments

5.1 Experiment Settings

In this study, Support Vector Machines (SVM) was
used for both flat and hierarchical text categoriza-
tion. The LibSVM (Chang and Lin, 2001) package
was used with a linear kernel.

5.1.1 Hierarchical TC

A tree of ICD-9-CM taxonomy was constructed
by enquiring the UMLS Metathesaurus. During
each iteration of 10-fold cross-validation experi-
ment, the training instances were assigned to the
ICD-9-CM tree and all nodes assigned with zero
training instance in its subtree were removed from

the tree. This ended with an ICD-9-CM tree with
around 100 nodes for each training and test iteration.

Nodes in the tree were uniquely identified by
their concept id (CUI) found in the UMLS Metathe-
saurus. However, two ICD-9-CM codes (‘599.0’
and ‘V13.02’) were found to share the same CUI in
the UMLS Metathesaurus. As a result, 44 unique
UMLS CUIs were used as the gold-standard codes
in the experiment for the original 45 ICD-9-CM
codes.

In the test stage, the hierarchical system returns
the terminal nodes of the predicted path. Moreover,
if the terminal ends in an internal code which is not
one of the 44 gold-standard UMLS CUI found in the
training corpus, the system should ignore the whole
path.

5.1.2 Flat TC

In a flat text categorization setting, 44 classifiers
were created for each UMLS Metathesaurus CUI
found in the corpus. Each classifier makes a binary
decision of ‘Yes’ or ‘No’ to a clinical record accord-
ing to whether or not it should be assigned with the
current code.

5.2 Preprocessing

The corpus was first submitted to the GENIA tag-
ger (Tsuruoka et al., 2005) for part-of-speech tag-
ging and shallow syntactic analysis. The result was
used by the negation finding module and all the iden-
tified negated terms were removed from the corpus.
The cleaned text was used by the MetaMap (Aron-
son, 2001) for identifying possible medical concepts
in text. The MetaMap software is configured to re-
turn only concepts of ICD-9-CM and SNOMED CT
which is another comprehensive medical ontology
widely used for mapping concepts in free-text clini-
cal notes.

5.3 Evaluation

The main evaluation metric used in the experiment
is the micro-averagedF1 which is defined as the har-
monic mean betweenPrecision andRecall:

F1 =
2 × Precision × Recall

Precision + Recall

where
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Precision =

∑
i
TP (Codei)∑

i
TP (Codei) +

∑
i
FP (Codei)

Recall =

∑
i
TP (Codei)∑

i
TP (Codei) +

∑
i
FN(Codei)

In the above equation,TP (Codei), FP (Codei),
and FN(Codei) are the numbers of true posi-
tives, false positives, and false negatvies for theith
code. The micro-averagedF1 considers every sin-
gle coding decision equally important and is there-
fore dominant by the performance on frequent codes
in data. Moreover, a hierarchical micro-averaged
F

(hierarchical)
1 is also introduced by adding all an-

cestors of the current gold-standard code into cal-
culation. TheF (hierarchical)

1 value helps to evaluate
how accurate a system predicts in terms of the gold-
standard path in the ICD-9-CM tree.

5.4 Features

The feature set is descibed in Table 2.

• Bag-of-words

Both unigram (F1) and bigram (F2) were used.

• Negation and Bag-of-concepts

An algorithm similar to NegEx (Chapman et
al., 2001) was used to find negations in text.
A small set of 35 negation keywords, such as
‘no’, ‘without’, and ‘no further’, was compiled
to trigger the finding of the negated phrases
in text based on the shallow syntactic analy-
sis returned by GENIA tagger. After removing
negated phrases in text, MetaMap was used to
find medical concepts in text as new features in
a bag-of-concepts manner (F3 and F4).

Different combination of feature types (F5, F6,
and F7) were also used in the experiment. Infor-
mation gain was used to rank the features and the
feature cut-off threshold was set to 4, 000.

6 Result and Discussion

The 10-fold cross-validation technique was used in
the experiments. The 1,954 radiology reports were
randomly divided into ten folds. In each iteration of
the experiment, one fold of data was used as the test
set and the other nine folds as the training set.

The experimental results are shown in Table 2.
The flat TC system has achieved higherF1 scores
than a hierarchical TC system in all experimental
settings. However, paired t-test suggests the differ-
ences are not statistically significant at a (p < 0.05)
level in most cases. This suggests the potential of
adopting a hierarchical TC approach in the task. The
effectiveness of the system is not sacrificed while the
system now has the potential to scale up to much
larger problems.

Similarly, the hierarchical TC system has better
F hierarchical

1 scores than the flat TC system while
this difference is still not statistically significant at
a (p < 0.05) level in most cases. This is partly
due to the current strategy of not allowing unknown
ICD-9-CM codes to be assigned in the system. As a
result, many originally predicted internal nodes were
removed in a hierarchical TC system.

Both the flat and hierarchical systems using bag-
of-words feature set F1 have achieved aF1 score
above 0.85. Adding bigram features into F2 has
shown minimum impact on the performance of both
systems. Using a bag-of-concepts strategy in F3
and F4 has lowered the performance of the system.
However, adding F3 and F4 into bag-of-words fea-
ture set has improved the performance of both sys-
tems. Finally, the best performance were reported
on using feature set F5 which combines unigram and
ICD-9-CM concepts returned by MetaMap software
on the preprocessed text where negated terms were
removed.

7 Conclusion and Future Work

Compared to a flat classification approach, a hier-
archical framework is able to exploit relationships
among categories to be assigned and easily adapts
to much larger text categorization problems where
real-time response is needed. This study has pro-
posed a hierarchical text categorization approach to
the task of encoding clinical notes with ICD-9-CM
codes. The preliminary experiment shows that a hi-
erarchical text categorization system has achieved a
performance comparable to other state-of-the-art flat
classification systems.

Future work includes developing more sophisti-
cated features, such as synonym and phrase-level
paraphrasing and entailment, to encode the knowl-
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Feature Description Flat TC Hierarchical TC

F1 F
(hierarchical)
1 F1 F

(hierarchical)
1

F1 Unigram 85.90± 2.00 89.50± 1.51 85.52± 1.30 90.49± 1.13
F2 Unigram, Bigram 85.99± 2.17 89.65± 1.70 85.27± 1.32 90.69± 1.20
F3 ICD-9-CM concepts

on no negation text
81.96± 1.44 85.39± 1.47 81.45± 1.79 86.89± 1.65

F4 SNOMED CT con-
cepts on no negation
text

84.97± 1.55 89.00± 1.04 84.77± 1.04 89.82± 0.97

F5 F1 + F3 87.09± 1.70 90.26± 1.33 86.58± 1.30 91.08± 0.95
F6 F1 + F4 86.56± 1.69 89.99± 1.34 86.10± 1.80 90.70± 1.58
F7 F1 + F3 + F4 86.83± 1.34 90.23± 1.17 86.57± 1.28 91.06± 1.10

Table 2: 10-fold cross-validation experimental results

edge of human experts. How to manage a rich fea-
ture set in a hierarchical TC setting would be another
big challenge. Moreover, this work did not use any
thresholding tuning technique in the training stage.
Therefore, a thorough study on the effectiveness of
threshold tuning in the task is required.
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