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Abstract

Automatic segmentation is important for
making multimedia archives comprehensi-
ble, and for developing downstream infor-
mation retrieval and extraction modules. In
this study, we explore approaches that can
segment multiparty conversational speech
by integrating various knowledge sources
(e.g., words, audio and video recordings,
speaker intention and context). In particu-
lar, we evaluate the performance of a Max-
imum Entropy approach, and examine the
effectiveness of multimodal features on the
task of dialogue segmentation. We also pro-
vide a quantitative account of the effect of
using ASR transcription as opposed to hu-
man transcripts.

1 Introduction

Recent advances in multimedia technologies have
led to huge archives of audio-video recordings of
multiparty conversations in a wide range of areas
including clinical use, online video sharing ser-
vices, and meeting capture and analysis. While it
is straightforward to replay such recordings, find-
ing information from the often lengthy archives is a
more challenging task. Annotating implicit seman-
tics to enhance browsing and searching of recorded
conversational speech has therefore posed new chal-
lenges to the field of multimedia information re-
trieval.

One critical problem is how to divide unstructured
conversational speech into a number of locally co-
herent segments. The problem is important for two

reasons: First, empirical analysis has shown that an-
notating transcripts with semantic information (e.g.,
topics) enables users to browse and find information
from multimedia archives more efficiently (Baner-
jee et al., 2005). Second, because the automatically
generated segments make up for the lack of explicit
orthographic cues (e.g., story and paragraph breaks)
in conversational speech, dialogue segmentation
is useful in many spoken language understanding
tasks, including anaphora resolution (Grosz and Sid-
ner, 1986), information retrieval (e.g., as input for
the TREC Spoken Document Retrieval (SDR) task),
and summarization (Zechner and Waibel, 2000).

This study therefore aims to explore whether a
Maximum Entropy (MaxEnt) classifier can inte-
grate multiple knowledge sources for segmenting
recorded speech. In this paper, we first evaluate the
effectiveness of features that have been proposed in
previous work, with a focus on features that can be
extracted automatically. Second, we examine other
knowledge sources that have not been studied sys-
tematically in previous work, but which we expect
to be good predictors of dialogue segments. In ad-
dition, as our ultimate goal is to develop an infor-
mation retrieval module that can be operated in a
fully automatic fashion, we also investigate the im-
pact of automatic speech recognition (ASR) errors
on the task of dialogue segmentation.

2 Previous Work

In previous work, the problem of automatic dia-
logue segmentation is often considered as similar to
the problem of topic segmentation. Therefore, re-
search has adopted techniques previously developed
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to segment topics in text (Kozima, 1993; Hearst,
1997; Reynar, 1998) and in read speech (e.g., broad-
cast news) (Ponte and Croft, 1997; Allan et al.,
1998). For example, lexical cohesion-based algo-
rithms, such as LCSEG (Galley et al., 2003), or its
word frequency-based predecessor TextTile (Hearst,
1997) capture topic shifts by modeling the similarity
of word repetition in adjacent windows.

However, recent work has shown that LCSEG is
less successful in identifying “agenda-based conver-
sation segments” (e.g., presentation, group discus-
sion) that are typically signalled by differences in
group activity (Hsueh and Moore, 2006). This is
not surprising since LCSEG considers only lexical
cohesion. Previous work has shown that training a
segmentation model with features that are extracted
from knowledge sources other than words, such as
speaker interaction (e.g., overlap rate, pause, and
speaker change) (Galley et al., 2003), or partici-
pant behaviors, e.g., note taking cues (Banerjee and
Rudnicky, 2006), can outperform LCSEG on similar
tasks.

In many other fields of research, a variety of fea-
tures have been identified as indicative of segment
boundaries in different types of recorded speech.
For example, Brown et al. (1980) have shown that
a discourse segment often starts with relatively high
pitched sounds and ends with sounds of pitch within
a more compressed range. Passonneau and Lit-
man (1993) identified that topic shifts often occur
after a pause of relatively long duration. Other
prosodic cues (e.g., pitch contour, energy) have been
studied for their correlation with story segments in
read speech (Tur et al., 2001; Levow, 2004; Chris-
tensen et al., 2005) and with theory-based discourse
segments in spontaneous speech (e.g., direction-
given monologue) (Hirschberg and Nakatani, 1996).
In addition, head and hand/forearm movements are
used to detect group-action based segments (Mc-
Cowan et al., 2005; Al-Hames et al., 2005).

However, many other features that we expect to
signal segment boundaries have not been studied
systematically. For instance, speaker intention (i.e.,
dialogue act types) and conversational context (e.g.,
speaker role). In addition, although these features
are expected to be complementary to one another,
few of the previous studies have looked at the ques-
tion how to use conditional approaches to model the

correlation among features.

3 Methodology

3.1 Meeting Corpus

This study aims to explore approaches that can in-
tegrate multimodal information to discover implicit
semantics from conversation archives. As our goal
is to identify multimodal cues of segmentation in
face-to-face conversation, we use the AMI meeting
corpus (Carletta et al., 2006), which includes audio-
video recordings, to test our approach. In particu-
lar, we are using 50 scenario-based meetings from
the AMI corpus, in which participants are assigned
to different roles and given specific tasks related to
designing a remote control. On average, AMI meet-
ings last 26 minutes, with over 4,700 words tran-
spired. This corpus includes annotation for dialogue
segmentation and topic labels. In the annotation pro-
cess, annotators were given the freedom to subdi-
vide a segment into subsegments to indicate when
the group was discussing a subtopic. Annotators
were also given a set of segment descriptions to be
used as labels. Annotators were instructed to add a
new label only if they could not find a match in the
standard set. The set of segment descriptions can
be divided to three categories: activity-based (e.g.,
presentation, discussion), issue-based (e.g., budget,
usability), and functional segments (e.g., chitchat,
opening, closing).

3.2 Preprocessing

The first step is to break a recorded meeting into
minimal units, which can vary from sentence chunks
to blocks of sentences. In this study, we use spurts,
that is, consecutive speech with no pause longer than
0.5 seconds, as minimal units.

Then, to examine the difference between the set
of features that are characteristic of segmentation at
both coarse and fine levels of granularity, this study
characterizes a dialogue as a sequence of segments
that may be further divided into sub-segments. We
take the theory-free dialogue segmentation annota-
tions in the corpus and flatten the sub-segment struc-
ture and consider only two levels of segmentation:
top-level segments and all sub-level segments.1 We

1We take the spurts which the annotators choose as the be-
ginning of a segment as the topic boundaries. On average,
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observed that annotators tended to annotate activity-
based segments only at the top level, whereas they
often included sub-topics when segmenting issue-
based segments. For example, a top-level interface
specialist presentation segment can be divided into
agenda/equipment issues, user requirements, exist-
ing products, and look and usability sub-level seg-
ments.

3.3 Intercoder Agreement

To measure intercoder agreement, we employ three
different metrics: the kappa coefficient, PK, and
WD. Kappa values measure how well a pair of an-
notators agree on where the segments break. PK is
the probability that two spurts drawn randomly from
a document are incorrectly identified as belonging
to the same segment. WindowDiff (WD) calculates
the error rate by moving a sliding window across the
transcript counting the number of times the hypoth-
esized and reference segment boundaries are differ-
ent. While not uncontroversial, the use of these met-
rics is widespread. Table 1 shows the intercoder
agreement of the top-level and sub-level segmenta-
tion respectively.

It is unclear whether the kappa values shown here
indicate reliable intercoder agreement.2 But given
the low disagreement rate among codings in terms
of the PK and WD scores, we will argue for the reli-
ability of the annotation procedure used in this study.
Also, to our knowledge the reported degree of agree-
ment is the best in the field of meeting dialogue seg-
mentation.3

Intercoder Kappa PK WD
TOP 0.66 0.11 0.17
SUB 0.59 0.23 0.28

Table 1: Intercoder agreement of annotations at the
top-level (TOP) and sub-level (SUB) segments.

the annotators marked 8.7 top-level segments and 14.6 sub-
segments per meeting.

2In computational linguistics, kappa values over 0.67
point to reliable intercoder agreement. But Di Eugenio and
Glass (2004) have found that this interpretation does not hold
true for all tasks.

3For example, Gruenstein et al.(2005) report kappa
(PK/WD) of 0.41(0.28/0.34) for determining the top-level and
0.45(0.27/0.35) for the sub-level segments in the ICSI meeting
corpus.

3.4 Feature Extraction

As reported in Section 2, there is a wide range of
features that are potentially characteristic of segment
boundaries, and we expect to find some of them use-
ful for automatic recognition of segment boundaries.
The features we explore can be divided into the fol-
lowing five classes:

Conversational Features: We follow Galley et
al. (2003) and extracted a set of conversational fea-
tures, including the amount of overlapping speech,
the amount of silence between speaker segments,
speaker activity change, the number of cue words,
and the predictions of LCSEG (i.e., the lexical co-
hesion statistics, the estimated posterior probability,
the predicted class).

Lexical Features: We compile the list of words
that occur more than once in the spurts that have
been marked as a top-level or sub-segment boundary
in the training set. Each spurt is then represented as
a vector space of unigrams from this list.

Prosodic Features: We use the direct modelling
approach proposed in Shriberg and Stolcke (2001)
and include maximum F0 and energy of the spurt,
mean F0 and energy of the spurt, pitch contour (i.e.,
slope) and energy at multiple points (e.g., the first
and last 100 and 200 ms, the first and last quarter,
the first and second half) of a spurt. We also include
rate of speech, in-spurt silence, preceding and sub-
sequent pauses, and duration. The rate of speech is
calculated as both the number of words and the num-
ber of syllables spoken per second.

Motion Features: We measure the magnitude
of relevant movements in the meeting room using
methods that detect movements directly from video
recordings in frames of 40 ms. Of special interest are
the frontal shots as recorded by the close up cameras,
the hand movements as recorded by the overview
cameras, and shots of the areas of the room where
presentations are made. We then average the magni-
tude of movements over the frames within a spurt as
its feature value.

Contextual Features: These include dialogue act
type4 and speaker role (e.g., project manager, mar-

4In the annotations, each dialogue act is classified as one
of 15 types, including acts about information exchange (e.g.,
Inform), acts about possible actions (e.g., Suggest), acts whose
primary purpose is to smooth the social functioning (e.g., Be-
positive), acts that are commenting on previous discussion (e.g.,
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keting expert). As each spurt may consist of multiple
dialogue acts, we represent each spurt as a vector of
dialogue act types, wherein a component is 1 or 0
depending on whether the type occurs in the spurt.

3.5 Multimodal Integration Using Maximum
Entropy Models

Previous work has used MaxEnt models for sentence
and topic segmentation and shown that conditional
approaches can yield competitive results on these
tasks (Christensen et al., 2005; Hsueh and Moore,
2006). In this study, we also use a MaxEnt clas-
sifier5 for dialogue segmentation under the typical
supervised learning scheme, that is, to train the clas-
sifier to maximize the conditional likelihood over
the training data and then to use the trained model
to predict whether an unseen spurt in the test set
is a segment boundary or not. Because continuous
features have to be discretized for MaxEnt, we ap-
plied a histogram binning approach, which divides
the value range into N intervals that contain an equal
number of counts as specified in the histogram, to
discretize the data.

4 Experimental Results

4.1 Probabilistic Models

The first question we want to address is whether
the different types of characteristic multimodal fea-
tures can be integrated, using the conditional Max-
Ent model, to automatically detect segment bound-
aries. In this study, we use a set of 50 meet-
ings, which consists of 17,977 spurts. Among these
spurts, only 1.7% and 3.3% are top-level and sub-
segment boundaries. For our experiments we use
10-fold cross validation. The baseline is the re-
sult obtained by using LCSEG, an unsupervised ap-
proach exploiting only lexical cohesion statistics.

Table 2 shows the results obtained by using the
same set of conversational (CONV) features used
in previous work (Galley et al., 2003; Hsueh and
Moore, 2006), and results obtained by using all the
available features (ALL). The evaluation metrics PK
and WD are conventional measures of error rates in
segmentation (see Section 3.3). In Row 2, we see

Elicit-Assessment), and acts that allow complete segmentation
(e.g., Stall).

5The parameters of the MaxEnt classifier are optimized us-
ing Limited-Memory Variable Metrics.

TOP SUB
Error Rate PK WD PK WD

BASELINE(LCSEG) 0.40 0.49 0.40 0.47
MAXENT(CONV) 0.34 0.34 0.37 0.37
MAXENT(ALL) 0.30 0.33 0.34 0.36

Table 2: Compare the result of MaxEnt models
trained with only conversational features (CONV)
and with all available features (ALL).

that using a MaxEnt classifier trained on the conver-
sational features (CONV) alone improves over the
LCSEG baseline by 15.3% for top-level segments
and 6.8% for sub-level segements. Row 3 shows
that combining additional knowledge sources, in-
cluding lexical features (LX1) and the non-verbal
features, prosody (PROS), motion (MOT), and con-
text (CTXT), yields a further improvement (of 8.8%
for top-level segmentation and 5.4% for sub-level
segmentation) over the model trained on conversa-
tional features.

4.2 Feature Effects

The second question we want to address is which
knowledge sources (and combinations) are good
predictors for segment boundaries. In this round of
experiments, we evaluate the performance of differ-
ent feature combinations. Table 3 further illustrates
the impact of each feature class on the error rate
metrics (PK/WD). In addition, as the PK and WD
score do not reflect the magnitude of over- or under-
prediction, we also report on the average number of
hypothesized segment boundaries (Hyp). The num-
ber of reference segments in the annotations is 8.7 at
the top-level and 14.6 at the sub-level.

Rows 2-6 in Table 3 show the results of models
trained with each individual feature class. We per-
formed a one-way ANOVA to examine the effect
of different feature classes. The ANOVA suggests
a reliable effect of feature class (F (5, 54) = 36.1;
p < .001). We performed post-hoc tests (Tukey
HSD) to test for significant differences. Analysis
shows that the model that is trained with lexical
features alone (LX1) performs significantly worse
than the LCSEG baseline (p < .001). This is
due to the fact that cue words, such as okay and
now, learned from the training data to signal seg-
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TOP SUB
Hyp PK WD Hyp PK WD

BASELINE 17.6 0.40 0.49 17.6 0.40 0.47
(LCSEG)

LX1 61.2 0.53 0.72 65.1 0.49 0.66
CONV 3.1 0.34 0.34 2.9 0.37 0.37
PROS 2.3 0.35 0.35 2.5 0.37 0.37
MOT 96.2 0.36 0.40 96.2 0.38 0.41
CTXT 2.6 0.34 0.34 2.2 0.37 0.37
ALL 7.7 0.29 0.33 7.6 0.35 0.38

Table 3: Effects of individual feature classes and
their combination on detecting segment boundaries.

ment boundaries, are often used for non-discourse
purposes, such as making a semantic contribution to
an utterance.6 Thus, we hypothesize that these am-
biguous cue words have led the LX1 model to over-
predict. Row 7 further shows that when all avail-
able features (including LX1) are used, the com-
bined model (ALL) yields performance that is sig-
nificantly better than that obtained with individual
feature classes (F (5, 54) = 32.2; p < .001).

TOP SUB
Hyp PK WD Hyp PK WD

ALL 7.7 0.29 0.33 7.6 0.35 0.38
ALL-LX1 3.9 0.35 0.35 3.5 0.37 0.38

ALL-CONV 6.6 0.30 0.34 6.8 0.35 0.37
ALL-PROS 5.6 0.29 0.31 7.4 0.33 0.35

ALL-MOTION 7.5 0.30 0.35 7.3 0.35 0.37
ALL-CTXT 7.2 0.29 0.33 6.7 0.36 0.38

Table 4: Performance change of taking out each
individual feature class from the ALL model.

Table 4 illustrates the error rate change (i.e., in-
creased or decreased PK and WD score)7 that is
incurred by leaving out one feature class from the
ALL model. Results show that CONV, PROS, MO-
TION and CTXT can be taken out from the ALL
model individually without increasing the error rate
significantly.8 Morevoer, the combined models al-

6Hirschberg and Litman (1987) have proposed to discrimi-
nate the different uses intonationally.

7Note that the increase in error rate indicates performance
degradation, and vice versa.

8Sign tests were used to test for significant differences be-
tween means in each fold of cross validation.

ways perform better than the LX1 model (p < .01),
cf. Table 3.

This suggests that the non-lexical feature classes
are complementary to LX1, and thus it is essential
to incorporate some, but not necessarily all, of the
non-lexical classes into the model.

TOP SUB
Hyp PK WD Hyp PK WD

LX1 61.2 0.53 0.72 65.1 0.49 0.66
MOT 96.2 0.36 0.40 96.2 0.38 0.41

LX1+CONV 5.3 0.27 0.30 6.9 0.32 0.35
LX1+PROS 6.2 0.30 0.33 7.3 0.36 0.38
LX1+MOT 20.2 0.39 0.49 24.8 0.39 0.47
LX1+CTXT 6.3 0.28 0.31 7.2 0.33 0.35
MOT+PROS 62.0 0.34 0.34 62.1 0.37 0.37
MOT+CTXT 2.7 0.33 0.33 2.3 0.37 0.37

Table 5: Effects of combining complementary fea-
tures on detecting segment boundaries.

Table 5 further illustrates the performance of dif-
ferent feature combinations on detecting segment
boundaries. By subtracting the PK or WD score in
Row 1, the LX1 model, from that in Rows 3-6, we
can tell how essential each of the non-lexical classes
is to be combined with LX1 into one model. Results
show that CONV is the most essential, followed by
CTXT, PROS and MOT. The advantage of incorpo-
rating the non-lexical feature classes is also shown
in the noticeably reduced number of overpredictions
as compared to that of the LX1 model.

To analyze whether there is a significant interac-
tion between feature classes, we performed another
round of ANOVA tests to examine the effect of LX1
and each of the non-lexical feature classes on de-
tecting segment boundaries. This analysis shows
that there is a significant interaction effect on de-
tecting both top-level and sub-level segment bound-
aries (p < .01), suggesting that the performance of
LX1 is significantly improved when combined with
any non-lexical feature class. Also, among the non-
lexical feature classes, combining prosodic features
significantly improves the performance of the model
in which the motion features are combined to detect
top-level segment boundaries (p < .05).
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4.3 Degradation Using ASR

The third question we want to address here is
whether using the output of ASR will cause sig-
nificant degradation to the performance of the seg-
mentation approaches. The ASR transcripts used in
this experiment are obtained using standard technol-
ogy including HMM based acoustic modeling and
N-gram based language models (Hain et al., 2005).
The average word error rates (WER) are 39.1%. We
also applied a word alignment algorithm to ensure
that the number of words in the ASR transcripts is
the same as that in the human-produced transcripts.
In this way we can compare the PK and WD metrics
obtained on the ASR outputs directly with that on
the human transcripts.

In this study, we again use a set of 50 meetings
and 10-fold cross validation. We compare the per-
formance of the reference models, which are trained
on human transcripts and tested on human tran-
scripts, with that of the ASR models, which are
trained on ASR transcripts and tested on ASR tran-
scripts. Table 6 shows that despite the word recogni-
tion errors, none of the LCSEG, the MaxEnt models
trained with conversational features, and the Max-
Ent models trained with all available features per-
form significantly worse on ASR transcripts than on
reference transcripts. One possible explanation for
this, which we have observed in our corpus, is that
the ASR system is likely to mis-recognize different
occurences of words in the same way, and thus the
lexical cohesion statistic, which captures the similar-
ity of word repetition between two adjacency win-
dows, is also likely to remain unchanged. In addi-
tion, when the models are trained with other features
that are not affected by the recognition errors, such
as pause and overlap, the negative impacts of recog-
nition errors are further reduced to an insignificant
level.

5 Discussion

The results in Section 4 show the benefits of includ-
ing additional knowledge sources for recognizing
segment boundaries. The next question to be ad-
dressed is what features in these sources are most
useful for recognition. To provide a qualitative ac-
count of the segmentation cues, we performed an
analysis to determine whether each proposed feature

TOP SUB
Error Rate PK WD PK WD
LCSEG(REF) 0.45 0.57 0.42 0.47
LCSEG(ASR) 0.45 0.58 0.40 0.47
MAXENT-CONV(REF) 0.34 0.34 0.37 0.37
MAXENT-CONV(ASR) 0.34 0.33 0.38 0.38
MAXENT-ALL(REF) 0.30 0.33 0.34 0.36
MAXENT-ALL(ASR) 0.31 0.34 0.34 0.37

Table 6: Effects of word recognition errors on de-
tecting segments boundaries.

discriminates the class of segment boundaries. Pre-
vious work has identified statistical measures (e.g.,
Log Likelihood ratio) that are useful for determin-
ing the statistical association strength (relevance) of
the occurrence of an n-gram feature to target class
(Hsueh and Moore, 2006). Here we extend that
study to calculate the LogLikelihood relevance of all
of the features used in the experiments, and use the
statistics to rank the features.

Our analysis shows that people do speak and be-
have differently near segment boundaries. Some
of the identified segmentation cues match previous
findings. For example, a segment is likely to start
with higher pitched sounds (Brown et al., 1980; Ay-
ers, 1994) and a lower rate of speech (Lehiste, 1980).
Also, interlocutors pause longer than usual to make
sure that everyone is ready to move on to a new dis-
cussion (Brown et al., 1980; Passonneau and Lit-
man, 1993) and use some conventional expressions
(e.g., now, okay, let’s, um, so).

Our analysis also identified segmentation cues
that have not been mentioned in previous research.
For example, interlocutors do not move around a lot
when a new discussion is brought up; interlocutors
mention agenda items (e.g., presentation, meeting)
or content words more often when initiating a new
discussion. Also, from the analysis of current di-
alogue act types and their immediate contexts, we
also observe that at segment boundaries interlocu-
tors do the following more often than usual: start
speaking before they are ready (Stall), give infor-
mation (Inform), elicit an assessment of what has
been said so far (Elicit-assessment), or act to smooth
social functioning and make the group happier (Be-
positive).
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6 Conclusions and Future Work

This study explores the use of features from mul-
tiple knowledge sources (i.e., words, prosody, mo-
tion, interaction cues, speaker intention and role) for
developing an automatic segmentation component
in spontaneous, multiparty conversational speech.
In particular, we addressed the following questions:
(1) Can a MaxEnt classifier integrate the potentially
characteristic multimodal features for automatic di-
alogue segmentation? (2) What are the most dis-
criminative knowledge sources for detecting seg-
ment boundaries? (3) Does the use of ASR tran-
scription significantly degrade the performance of a
segmentation model?

First of all, our results show that a well perform-
ing MaxEnt model can be trained with available
knowledge sources. Our results improve on previous
work, which uses only conversational features, by
8.8% for top-level segmentation and 5.4% for sub-
level segmentation. Analysis of the effectiveness of
the various features shows that lexical features (i.e.,
cue words) are the most essential feature class to
be combined into the segmentation model. How-
ever, lexical features must be combined with other
features, in particular, conversational features (i.e.,
lexical cohesion, overlap, pause, speaker change), to
train well performing models.

In addition, many of the non-lexical feature
classes, including those that have been identified as
indicative of segment boundaries in previous work
(e.g., prosody) and those that we hypothesized as
good predictors of segment boundaries (e.g., mo-
tion, context), are not beneficial for recognizing
boundaries when used in isolation. However, these
non-lexical features are useful when combined with
lexical features, as the presence of the non-lexical
features can balance the tendency of models trained
with lexical cues alone to overpredict.

Experiments also show that it is possible to seg-
ment conversational speech directly on the ASR out-
puts. These results encouragingly show that we
can segment conversational speech using features
extracted from different knowledge sources, and in
turn, facilitate the development of a fully automatic
segmentation component for multimedia archives.

With the segmentation models developed and dis-
criminative knowledge sources identified, a remain-

ing question is whether it is possible to automat-
ically select the discriminative features for recog-
nition. This is particularly important for prosodic
features, because the direct modelling approach we
adopted resulted in a large number of features. We
expect that by applying feature selection methods
we can further improve the performance of auto-
matic segmentation models. In the field of machine
learning and pattern analysis, many methods and se-
lection criteria have been proposed. Our next step
will be to examine the effectiveness of these meth-
ods for the task of automatic segmentation. Also, we
will further explore how to choose the best perform-
ing ensemble of knowledge sources so as to facili-
tate automatic selection of knowledge sources to be
included.
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