
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 968–975,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Generalizing Tree Transformations for Inductive Dependency Parsing

Jens Nilsson∗ Joakim Nivre∗†

∗Växjö University, School of Mathematics and Systems Engineering, Sweden
†Uppsala University, Dept. of Linguistics and Philology, Sweden

{jni,nivre,jha}@msi.vxu.se

Johan Hall∗

Abstract

Previous studies in data-driven dependency
parsing have shown that tree transformations
can improve parsing accuracy for specific
parsers and data sets. We investigate to
what extent this can be generalized across
languages/treebanks and parsers, focusing
on pseudo-projective parsing, as a way of
capturing non-projective dependencies, and
transformations used to facilitate parsing of
coordinate structures and verb groups. The
results indicate that the beneficial effect of
pseudo-projective parsing is independent of
parsing strategy but sensitive to language or
treebank specific properties. By contrast, the
construction specific transformations appear
to be more sensitive to parsing strategy but
have a constant positive effect over several
languages.

1 Introduction

Treebank parsers are trained on syntactically anno-
tated sentences and a major part of their success can
be attributed to extensive manipulations of the train-
ing data as well as the output of the parser, usually
in the form of various tree transformations. This
can be seen in state-of-the-art constituency-based
parsers such as Collins (1999), Charniak (2000), and
Petrov et al. (2006), and the effects of different trans-
formations have been studied by Johnson (1998),
Klein and Manning (2003), and Bikel (2004). Corre-
sponding manipulations in the form of tree transfor-
mations for dependency-based parsers have recently

gained more interest (Nivre and Nilsson, 2005; Hall
and Novák, 2005; McDonald and Pereira, 2006;
Nilsson et al., 2006) but are still less studied, partly
because constituency-based parsing has dominated
the field for a long time, and partly because depen-
dency structures have less structure to manipulate
than constituent structures.

Most of the studies in this tradition focus on a par-
ticular parsing model and a particular data set, which
means that it is difficult to say whether the effect
of a given transformation is dependent on a partic-
ular parsing strategy or on properties of a particu-
lar language or treebank, or both. The aim of this
study is to further investigate some tree transforma-
tion techniques previously proposed for data-driven
dependency parsing, with the specific aim of trying
to generalize results across languages/treebanks and
parsers. More precisely, we want to establish, first
of all, whether the transformation as such makes
specific assumptions about the language, treebank
or parser and, secondly, whether the improved pars-
ing accuracy that is due to a given transformation is
constant across different languages, treebanks, and
parsers.

The three types of syntactic phenomena that will
be studied here are non-projectivity, coordination
and verb groups, which in different ways pose prob-
lems for dependency parsers. We will focus on tree
transformations that combine preprocessing with
post-processing, and where the parser is treated as
a black box, such as the pseudo-projective parsing
technique proposed by Nivre and Nilsson (2005)
and the tree transformations investigated in Nils-
son et al. (2006). To study the influence of lan-

968

guage and treebank specific properties we will use
data from Arabic, Czech, Dutch, and Slovene, taken
from the CoNLL-X shared task on multilingual de-
pendency parsing (Buchholz and Marsi, 2006). To
study the influence of parsing methodology, we will
compare two different parsers: MaltParser (Nivre et
al., 2004) and MSTParser (McDonald et al., 2005).
Note that, while it is possible in principle to distin-
guish between syntactic properties of a language as
such and properties of a particular syntactic annota-
tion of the language in question, it will be impossi-
ble to tease these apart in the experiments reported
here, since this would require having not only mul-
tiple languages but also multiple treebanks for each
language. In the following, we will therefore speak
about the properties of treebanks (rather than lan-
guages), but it should be understood that these prop-
erties in general depend both on properties of the
language and of the particular syntactic annotation
adopted in the treebank.

The rest of the paper is structured as follows. Sec-
tion 2 surveys tree transformations used in depen-
dency parsing and discusses dependencies between
transformations, on the one hand, and treebanks and
parsers, on the other. Section 3 introduces the four
treebanks used in this study, and section 4 briefly
describes the two parsers. Experimental results are
presented in section 5 and conclusions in section 6.

2 Background

2.1 Non-projectivity

The tree transformations that have attracted most in-
terest in the literature on dependency parsing are
those concerned with recovering non-projectivity.
The definition of non-projectivity can be found in
Kahane et al. (1998). Informally, an arc is projec-
tive if all tokens it covers are descendants of the arc’s
head token, and a dependency tree is projective if all
its arcs are projective.1

The full potential of dependency parsing can only
be realized if non-projectivity is allowed, which
pose a problem for projective dependency parsers.
Direct non-projective parsing can be performed with
good accuracy, e.g., using the Chu-Liu-Edmonds al-

1If dependency arcs are drawn above the linearly ordered
sequence of tokens, preceded by a special root node, then a non-
projective dependency tree always has crossing arcs.

gorithm, as proposed by McDonald et al. (2005). On
the other hand, non-projective parsers tend, among
other things, to be slower. In order to maintain the
benefits of projective parsing, tree transformations
techniques to recover non-projectivity while using a
projective parser have been proposed in several stud-
ies, some described below.

In discussing the recovery of empty categories in
data-driven constituency parsing, Campbell (2004)
distinguishes between approaches based on pure
post-processing and approaches based on a combi-
nation of preprocessing and post-processing. The
same division can be made for the recovery of non-
projective dependencies in data-driven dependency
parsing.

Pure Post-processing
Hall and Novák (2005) propose a corrective model-
ing approach. The motivation is that the parsers of
Collins et al. (1999) and Charniak (2000) adapted
to Czech are not able to create the non-projective
arcs present in the treebank, which is unsatisfac-
tory. They therefore aim to correct erroneous arcs in
the parser’s output (specifically all those arcs which
should be non-projective) by training a classifier that
predicts the most probable head of a token in the
neighborhood of the head assigned by the parser.

Another example is the second-order approximate
spanning tree parser developed by McDonald and
Pereira (2006). It starts by producing the highest
scoring projective dependency tree using Eisner’s al-
gorithm. In the second phase, tree transformations
are performed, replacing lower scoring projective
arcs with higher scoring non-projective ones.

Preprocessing with Post-processing
The training data can also be preprocessed to facili-
tate the recovery of non-projective arcs in the output
of a projective parser. The pseudo-projective trans-
formation proposed by Nivre and Nilsson (2005) is
such an approach, which is compatible with differ-
ent parser engines.

First, the training data is projectivized by making
non-projective arcs projective using a lifting oper-
ation. This is combined with an augmentation of
the dependency labels of projectivized arcs (and/or
surrounding arcs) with information that probably re-
veals their correct non-projective positions. The out-

969

(PS)

C1

� �
?

S1

?
C2

� �
?

(MS)

C1

?
S1

� �
?

C2

� �
?

(CS)

C1

?
S1

� �
?

C2

� �
?

Figure 1: Dependency structure for coordination

put of the parser, trained on the projectivized data,
is then deprojectivized by a heuristic search using
the added information in the dependency labels. The
only assumption made about the parser is therefore
that it can learn to derive labeled dependency struc-
tures with augmented dependency labels.

2.2 Coordination and Verb Groups

The second type of transformation concerns linguis-
tic phenomena that are not impossible for a projec-
tive parser to process but which may be difficult to
learn, given a certain choice of dependency analy-
sis. This study is concerned with two such phe-
nomena, coordination and verb groups, for which
tree transformations have been shown to improve
parsing accuracy for MaltParser on Czech (Nils-
son et al., 2006). The general conclusion of this
study is that coordination and verb groups in the
Prague Dependency Treebank (PDT), based on the-
ories of the Prague school (PS), are annotated in a
way that is difficult for the parser to learn. By trans-
forming coordination and verb groups in the train-
ing data to an annotation similar to that advocated
by Mel’čuk (1988) and then performing an inverse
transformation on the parser output, parsing accu-
racy can therefore be improved. This is again an
instance of the black-box idea.

Schematically, coordination is annotated in the
Prague school as depicted in PS in figure 1, where
the conjuncts are dependents of the conjunction. In
Mel’čuk style (MS), on the other hand, conjuncts
and conjunction(s) form a chain going from left to
right. A third way of treating coordination, not dis-
cussed by Nilsson et al. (2006), is used by the parser
of Collins (1999), which internally represents coor-
dination as a direct relation between the conjuncts.
This is illustrated in CS in figure 1, where the con-
junction depends on one of the conjuncts, in this
case on the rightmost one.

Nilsson et al. (2006) also show that the annotation

of verb groups is not well-suited for parsing PDT
using MaltParser, and that transforming the depen-
dency structure for verb groups has a positive impact
on parsing accuracy. In PDT, auxiliary verbs are de-
pendents of the main verb, whereas it according to
Mel’čuk is the (finite) auxiliary verb that is the head
of the main verb. Again, the parsing experiments in
this study show that verb groups are more difficult
to parse in PS than in MS.

2.3 Transformations, Parsers, and Treebanks
Pseudo-projective parsing and transformations for
coordination and verb groups are instances of the
same general methodology:

1. Apply a tree transformation to the training data.

2. Train a parser on the transformed data.

3. Parse new sentences.

4. Apply an inverse transformation to the output
of the parser.

In this scheme, the parser is treated as a black
box. All that is assumed is that it is a data-driven
parser designed for (projective) labeled dependency
structures. In this sense, the tree transformations
are independent of parsing methodology. Whether
the beneficial effect of a transformation, if any, is
also independent of parsing methodology is another
question, which will be addressed in the experimen-
tal part of this paper.

The pseudo-projective transformation is indepen-
dent not only of parsing methodology but also of
treebank (and language) specific properties, as long
as the target representation is a (potentially non-
projective) labeled dependency structure. By con-
trast, the coordination and verb group transforma-
tions presuppose not only that the language in ques-
tion contains these constructions but also that the
treebank adopts a PS annotation. In this sense, they
are more limited in their applicability than pseudo-
projective parsing. Again, it is a different question
whether the transformations have a positive effect
for all treebanks (languages) to which they can be
applied.

3 Treebanks

The experiments are mostly conducted using tree-
bank data from the CoNLL shared task 2006. This

970

Slovene Arabic Dutch Czech
SDT PADT Alpino PDT

T 29 54 195 1249
S 1.5 1.5 13.3 72.7

%-NPS 22.2 11.2 36.4 23.2
%-NPA 1.8 0.4 5.4 1.9

%-C 9.3 8.5 4.0 8.5
%-A 8.8 - - 1.3

Table 1: Overview of the data sets (ordered by size),
where # S * 1000 = number of sentences, # T * 1000
= number of tokens, %-NPS = percentage of non-
projective sentences, %-NPA = percentage of non-
projective arcs, %-C = percentage of conjuncts, %-A
= percentage of auxiliary verbs.

subsection summarizes some of the important char-
acteristics of these data sets, with an overview in ta-
ble 1. Any details concerning the conversion from
the original formats of the various treebanks to the
CoNLL format, a pure dependency based format, are
found in documentation referred to in Buchholz and
Marsi (2006).

PDT (Hajič et al., 2001) is the largest manually
annotated treebank, and as already mentioned, it
adopts PS for coordination and verb groups. As
the last four rows reveal, PDT contains a quite high
proportion of non-projectivity, since almost every
fourth dependency graph contains at least one non-
projective arc. The table also shows that coordina-
tion is more common than verb groups in PDT. Only
1.3% of the tokens in the training data are identified
as auxiliary verbs, whereas 8.5% of the tokens are
identified as conjuncts.

Both Slovene Dependency Treebank (Džeroski et
al., 2006) (SDT) and Prague Arabic Dependency
Treebank (Hajič et al., 2004) (PADT) annotate co-
ordination and verb groups as in PDT, since they too
are influenced by the theories of the Prague school.
The proportions of non-projectivity and conjuncts in
SDT are in fact quite similar to the proportions in
PDT. The big difference is the proportion of auxil-
iary verbs, with many more auxiliary verbs in SDT
than in PDT. It is therefore plausible that the trans-
formations for verb groups will have a larger impact
on parser accuracy in SDT.

Arabic is not a Slavic languages such as Czech

and Slovene, and the annotation in PADT is there-
fore more dissimilar to PDT than SDT is. One such
example is that Arabic does not have auxiliary verbs.
Table 1 thus does not give figures verb groups. The
amount of coordination is on the other hand compa-
rable to both PDT and SDT. The table also reveals
that the amount of non-projective arcs is about 25%
of that in PDT and SDT, although the amount of
non-projective sentences is still as large as 50% of
that in PDT and SDT.

Alpino (van der Beek et al., 2002) in the CoNLL
format, the second largest treebank in this study,
is not as closely tied to the theories of the Prague
school as the others, but still treats coordination in
a way similar to PS. The table shows that coor-
dination is less frequent in the CoNLL version of
Alpino than in the three other treebanks. The other
characteristic of Alpino is the high share of non-
projectivity, where more than every third sentence
is non-projective. Finally, the lack of information
about the share of auxiliary verbs is not due to the
non-existence of such verbs in Dutch but to the fact
that Alpino adopts an MS annotation of verb groups
(i.e., treating main verbs as dependents of auxiliary
verbs), which means that the verb group transforma-
tion of Nilsson et al. (2006) is not applicable.

4 Parsers

The parsers used in the experiments are Malt-
Parser (Nivre et al., 2004) and MSTParser (Mc-
Donald et al., 2005). These parsers are based on
very different parsing strategies, which makes them
suitable in order to test the parser independence
of different transformations. MaltParser adopts a
greedy, deterministic parsing strategy, deriving a la-
beled dependency structure in a single left-to-right
pass over the input and uses support vector ma-
chines to predict the next parsing action. MST-
Parser instead extracts a maximum spanning tree
from a dense weighted graph containing all possi-
ble dependency arcs between tokens (with Eisner’s
algorithm for projective dependency structures or
the Chu-Liu-Edmonds algorithm for non-projective
structures), using a global discriminative model and
online learning to assign weights to individual arcs.2

2The experiments in this paper are based on the first-order
factorization described in McDonald et al. (2005)

971

5 Experiments

The experiments reported in section 5.1–5.2 below
are based on the training sets from the CoNLL-X
shared task, except where noted. The results re-
ported are obtained by a ten-fold cross-validation
(with a pseudo-randomized split) for all treebanks
except PDT, where 80% of the data was used for
training and 20% for development testing (again
with a pseudo-randomized split). In section 5.3, we
give results for the final evaluation on the CoNLL-
X test sets using all three transformations together
with MaltParser.

Parsing accuracy is primarily measured by the un-
labeled attachment score (ASU), i.e., the propor-
tion of tokens that are assigned the correct head, as
computed by the official CoNLL-X evaluation script
with default settings (thus excluding all punctuation
tokens). In section 5.3 we also include the labeled
attachment score (ASL) (where a token must have
both the correct head and the correct dependency la-
bel to be counted as correct), which was the official
evaluation metric in the CoNLL-X shared task.

5.1 Comparing Treebanks

We start by examining the effect of transformations
on data from different treebanks (languages), using
a single parser: MaltParser.

Non-projectivity
The question in focus here is whether the effect of
the pseudo-projective transformation for MaltParser
varies with the treebank. Table 2 presents the un-
labeled attachment score results (ASU), compar-
ing the pseudo-projective parsing technique (P-Proj)
with two baselines, obtained by training the strictly
projective parser on the original (non-projective)
training data (N-Proj) and on projectivized train-
ing data with no augmentation of dependency labels
(Proj).

The first thing to note is that pseudo-projective
parsing gives a significant improvement for PDT,
as previously reported by Nivre and Nilsson (2005),
but also for Alpino, where the improvement is even
larger, presumably because of the higher proportion
of non-projective dependencies in the Dutch tree-
bank. By contrast, there is no significant improve-
ment for either SDT or PADT, and even a small drop

N-Proj Proj P-Proj
SDT 77.27 76.63∗∗ 77.11

PADT 76.96 77.07∗ 77.07∗
Alpino 82.75 83.28∗∗ 87.08∗∗

PDT 83.41 83.32∗∗ 84.42∗∗

Table 2: ASU for pseudo-projective parsing with
MaltParser. McNemar’s test: ∗ = p < .05 and
∗∗ = p < 0.01 compared to N-Proj.

1 2 3 >3
SDT 88.4 9.1 1.7 0.84

PADT 66.5 14.4 5.2 13.9
Alpino 84.6 13.8 1.5 0.07

PDT 93.8 5.6 0.5 0.1

Table 3: The number of lifts for non-projective arcs.

in the accuracy figures for SDT. Finally, in contrast
to the results reported by Nivre and Nilsson (2005),
simply projectivizing the training data (without us-
ing an inverse transformation) is not beneficial at all,
except possibly for Alpino.

But why does not pseudo-projective parsing im-
prove accuracy for SDT and PADT? One possi-
ble factor is the complexity of the non-projective
constructions, which can be measured by counting
the number of lifts that are required to make non-
projective arcs projective. The more deeply nested
a non-projective arc is, the more difficult it is to re-
cover because of parsing errors as well as search er-
rors in the inverse transformation. The figures in ta-
ble 3 shed some interesting light on this factor.

For example, whereas 93.8% of all arcs in PDT
require only one lift before they become projec-
tive (88.4% and 84.6% for SDT and Alpino, respec-
tively), the corresponding figure for PADT is as low
as 66.5%. PADT also has a high proportion of very
deeply nested non-projective arcs (>3) in compari-
son to the other treebanks, making the inverse trans-
formation for PADT more problematic than for the
other treebanks. The absence of a positive effect for
PADT is therefore understandable given the deeply
nested non-projective constructions in PADT.

However, one question that still remains is why
SDT and PDT, which are so similar in terms of both
nesting depth and amount of non-projectivity, be-

972

Figure 2: Learning curves for Alpino measured as
error reduction for ASU .

have differently with respect to pseudo-projective
parsing. Another factor that may be important here
is the amount of training data available. As shown
in table 1, PDT is more than 40 times larger than
SDT. To investigate the influence of training set
size, a learning curve experiment has been per-
formed. Alpino is a suitable data set for this due
to its relatively large amount of both data and non-
projectivity.

Figure 2 shows the learning curve for pseudo-
projective parsing (P-Proj), compared to using only
projectivized training data (Proj), measured as error
reduction in relation to the original non-projective
training data (N-Proj). The experiment was per-
formed by incrementally adding cross-validation
folds 1–8 to the training set, using folds 9–0 as static
test data.

One can note that the error reduction for Proj is
unaffected by the amount of data. While the error
reduction varies slightly, it turns out that the error
reduction is virtually the same for 10% of the train-
ing data as for 80%. That is, there is no correla-
tion if information concerning the lifts are not added
to the labels. However, with a pseudo-projective
transformation, which actively tries to recover non-
projectivity, the learning curve clearly indicates that
the amount of data matters. Alpino, with 36% non-
projective sentences, starts at about 17% and has a
climbing curve up to almost 25%.

Although this experiment shows that there is a
correlation between the amount of data and the accu-
racy for pseudo-projective parsing, it does probably
not tell the whole story. If it did, one would expect
that the error reduction for the pseudo-projective
transformation would be much closer to Proj when

None Coord VG
SDT 77.27 79.33∗∗ 77.92∗∗

PADT 76.96 79.05∗∗ -
Alpino 82.75 83.38∗∗ -

PDT 83.41 85.51∗∗ 83.58∗∗

Table 4: ASU for coordination and verb group trans-
formations with MaltParser (None = N-Proj). Mc-
Nemar’s test: ∗∗ = p < .01 compared to None.

the amount of data is low (to the left in the fig-
ure) than they apparently are. Of course, the dif-
ference is likely to diminish with even less data, but
it should be noted that 10% of Alpino has about half
the size of PADT, for which the positive impact of
pseudo-projective parsing is absent. The absence
of increased accuracy for SDT can partially be ex-
plained by the higher share of non-projective arcs in
Alpino (3 times more).

Coordination and Verb Groups

The corresponding parsing results using MaltParser
with transformations for coordination and verb
groups are shown in table 4. For SDT, PADT and
PDT, the annotation of coordination has been trans-
formed from PS to MS, as described in Nilsson et
al. (2006). For Alpino, the transformation is from
PS to CS (cf. section 2.2), which was found to give
slightly better performance in preliminary experi-
ments. The baseline with no transformation (None)
is the same as N-Proj in table 2.

As the figures indicate, transforming coordination
is beneficial not only for PDT, as reported by Nilsson
et al. (2006), but also for SDT, PADT, and Alpino. It
is interesting to note that SDT, PADT and PDT, with
comparable amounts of conjuncts, have compara-
ble increases in accuracy (about 2 percentage points
each), despite the large differences in training set
size. It is therefore not surprising that Alpino, with
a much smaller amount of conjuncts, has a lower in-
crease in accuracy. Taken together, these results in-
dicate that the frequency of the construction is more
important than the size of the training set for this
type of transformation.

The same generalization over treebanks holds for
verb groups too. The last column in table 4 shows
that the expected increase in accuracy for PDT is ac-

973

Algorithm N-Proj Proj P-Proj
Eisner 81.79 83.23 86.45

CLE 86.39

Table 5: Pseudo-projective parsing results (ASU) for
Alpino with MSTParser.

companied by a even higher increase for SDT. This
can probably be attributed to the higher frequency of
auxiliary verbs in SDT.

5.2 Comparing Parsers

The main question in this section is to what extent
the positive effect of different tree transformations
is dependent on parsing strategy, since all previ-
ous experiments have been performed with a single
parser (MaltParser). For comparison we have per-
formed two experiments with MSTParser, version
0.1, which is based on a very different parsing meth-
dology (cf. section 4). Due to some technical dif-
ficulties (notably the very high memory consump-
tion when using MSTParser for labeled dependency
parsing), we have not been able to replicate the ex-
periments from the preceding section exactly. The
results presented below must therefore be regarded
as a preliminary exploration of the dependencies be-
tween tree transformations and parsing strategy.

Table 5 presents ASU results for MSTParser in
combination with pseudo-projective parsing applied
to the Alpino treebank of Dutch.3 The first row
contains the result for Eisner’s algorithm using no
transformation (N-Proj), projectivized training data
(Proj), and pseudo-projective parsing (P-Proj). The
figures show a pattern very similar to that for Malt-
Parser, with a boost in accuracy for Proj compared
to N-Proj, and with a significantly higher accuracy
for P-Proj over Proj. It is also worth noting that the
error reduction between N-Proj and P-Proj is actu-
ally higher for MSTParser here than for MaltParser
in table 2.

The second row contains the result for the Chu-
Liu-Edmonds algorithm (CLE), which constructs
non-projective structures directly and therefore does

3The figures are not completely comparable to the previ-
ously presented Dutch results for MaltParser, since MaltParser’s
feature model has access to all the information in the CoNLL
data format, whereas MSTParser in this experiment only could
handle word forms and part-of-speech tags.

Trans. None Coord VG
ASU 84.5 83.5 84.5

Table 6: Coordination and verb group transforma-
tions for PDT with the CLE algorithm.

Dev Eval Niv McD
SDT ASU 80.40 82.01 78.72 83.17

ASL 71.06 72.44 70.30 73.44
PADT ASU 78.97 78.56 77.52 79.34

ASL 67.63 67.58 66.71 66.91
Alpino ASU 87.63 82.85 81.35 83.57

ASL 84.02 79.73 78.59 79.19
PDT ASU 85.72 85.98 84.80 87.30

ASL 78.56 78.80 78.42 80.18

Table 7: Evaluation on CoNLL-X test data; Malt-
Parser with all transformations (Dev = development,
Eval = CoNLL test set, Niv = Nivre et al. (2006),
McD = McDonald et al. (2006))

not require the pseudo-projective transformation.
A comparison between Eisner’s algorithm with
pseudo-projective transformation and CLE reveals
that pseudo-projective parsing is at least as accurate
as non-projective parsing for ASU . (The small dif-
ference is not statistically significant.)

By contrast, no positive effect could be detected
for the coordination and verb group transformations
togther with MSTParser. The figures in table 6 are
not based on CoNLL data, but instead on the evalu-
ation test set of the original PDT 1.0, which enables
a direct comparison to McDonald et. al. (2005) (the
None column). We see that there is even a negative
effect for the coordination transformation. These re-
sults clearly indicate that the effect of these transfor-
mations is at least partly dependent on parsing strat-
egy, in contrast to what was found for the pseudo-
projective parsing technique.

5.3 Combining Transformations

In order to assess the combined effect of all three
transformations in relation to the state of the art,
we performed a final evaluation using MaltParser on
the dedicated test sets from the CoNLL-X shared
task. Table 7 gives the results for both develop-
ment (cross-validation for SDT, PADT, and Alpino;

974

development set for PDT) and final test, compared
to the two top performing systems in the shared
task, MSTParser with approximate second-order
non-projective parsing (McDonald et al., 2006) and
MaltParser with pseudo-projective parsing (but no
coordination or verb group transformations) (Nivre
et al., 2006). Looking at the labeled attachment
score (ASL), the official scoring metric of the
CoNLL-X shared task, we see that the combined ef-
fect of the three transformations boosts the perfor-
mance of MaltParser for all treebanks and in two
cases out of four outperforms MSTParser (which
was the top scoring system for all four treebanks).

6 Conclusion

In this paper, we have examined the generality
of tree transformations for data-driven dependency
parsing. The results indicate that the pseudo-
projective parsing technique has a positive effect
on parsing accuracy that is independent of parsing
methodology but sensitive to the amount of training
data as well as to the complexity of non-projective
constructions. By contrast, the construction-specific
transformations targeting coordination and verb
groups appear to have a more language-independent
effect (for languages to which they are applicable)
but do not help for all parsers. More research is
needed in order to know exactly what the dependen-
cies are between parsing strategy and tree transfor-
mations. Regardless of this, however, it is safe to
conclude that pre-processing and post-processing is
important not only in constituency-based parsing, as
previously shown in a number of studies, but also for
inductive dependency parsing.

References
D. Bikel. 2004. Intricacies of Collins’ parsing model. Compu-

tational Linguistics, 30:479–511.

S. Buchholz and E. Marsi. 2006. CoNLL-X Shared Task
on Multilingual Dependency Parsing. In Proceedings of
CoNLL, pages 1–17.

R. Campbell. 2004. Using Linguistic Principles to Recover
Empty Categories. In Proceedings of ACL, pages 645–652.

E. Charniak. 2000. A Maximum-Entropy-Inspired Parser. In
Proceedings of NAACL, pages 132–139.

M. Collins, J. Hajič, L. Ramshaw, and C. Tillmann. 1999. A
statistical parser for Czech. In Proceedings of ACL, pages
100–110.

M. Collins. 1999. Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania.

S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas, Z. Žabokrtsky, and
A. Žele. 2006. Towards a Slovene Dependency Treebank.
In LREC.

J. Hajič, B. V. Hladka, J. Panevová, Eva Hajičová, Petr Sgall,
and Petr Pajas. 2001. Prague Dependency Treebank 1.0.
LDC, 2001T10.

J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška. 2004.
Prague Arabic Dependency Treebank: Development in Data
and Tools. In NEMLAR, pages 110–117.

K. Hall and V. Novák. 2005. Corrective modeling for non-
projective dependency parsing. In Proceedings of IWPT,
pages 42–52.

M. Johnson. 1998. PCFG Models of Linguistic Tree Represen-
tations. Computational Linguistics, 24:613–632.

S. Kahane, A. Nasr, and O. Rambow. 1998. Pseudo-
Projectivity: A Polynomially Parsable Non-Projective De-
pendency Grammar. In Proceedings of COLING/ACL, pages
646–652.

D. Klein and C. Manning. 2003. Accurate unlexicalized pars-
ing. In Proceedings of ACL, pages 423–430.

R. McDonald and F. Pereira. 2006. Online Learning of Ap-
proximate Dependency Parsing Algorithms. In Proceedings
of EACL, pages 81–88.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
Non-projective dependency parsing using spanning tree al-
gorithms. In Proceedings of HLT/EMNLP, pages 523–530.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multilingual
dependency analysis with a two-stage discriminative parser.
In Proceedings of CoNLL, pages 216–220.

I. Mel’čuk. 1988. Dependency Syntax: Theory and Practice.
State University of New York Press.

J. Nilsson, J. Nivre, and J. Hall. 2006. Graph Transforma-
tions in Data-Driven Dependency Parsing. In Proceedings
of COLING/ACL, pages 257–264.

J. Nivre and J. Nilsson. 2005. Pseudo-Projective Dependency
Parsing. In Proceedings of ACL, pages 99–106.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-based Depen-
dency Parsing. In H. T. Ng and E. Riloff, editors, Proceed-
ings of CoNLL, pages 49–56.

J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov. 2006.
Labeled Pseudo-Projective Dependency Parsing with Sup-
port Vector Machines. In Proceedings of CoNLL, pages
221–225.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006. Learning
Accurate, Compact, and Interpretable Tree Annotation. In
Proceedings of COLING/ACL, pages 433–440.

L. van der Beek, G. Bouma, R. Malouf, and G. van Noord.
2002. The Alpino dependency treebank. In Computational
Linguistics in the Netherlands (CLIN).

975

