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Abstract
This paper presents pipeline iteration, an ap-
proach that uses output from later stages
of a pipeline to constrain earlier stages of
the same pipeline. We demonstrate sig-
nificant improvements in a state-of-the-art
PCFG parsing pipeline using base-phrase
constraints, derived either from later stages
of the parsing pipeline or from a finite-
state shallow parser. The best performance
is achieved by reranking the union of un-
constrained parses and relatively heavily-
constrained parses.

1 Introduction
A “pipeline” system consists of a sequence of pro-
cessing stages such that the output from one stage
provides the input to the next. Each stage in such a
pipeline identifies a subset of the possible solutions,
and later stages are constrained to find solutions
within that subset. For example, a part-of-speech
tagger could constrain a “base phrase” chunker (Rat-
naparkhi, 1999), or the n-best output of a parser
could constrain a reranker (Charniak and Johnson,
2005). A pipeline is typically used to reduce search
complexity for rich models used in later stages, usu-
ally at the risk that the best solutions may be pruned
in early stages.

Pipeline systems are ubiquitous in natural lan-
guage processing, used not only in parsing (Rat-
naparkhi, 1999; Charniak, 2000), but also machine
translation (Och and Ney, 2003) and speech recogni-
tion (Fiscus, 1997; Goel et al., 2000), among others.
Despite the widespread use of pipelines, they have
been understudied, with very little work on gen-
eral techniques for designing and improving pipeline
systems (although cf. Finkel et al. (2006)). This pa-
per presents one such general technique, here ap-
plied to stochastic parsing, whereby output from

later stages of a pipeline is used to constrain earlier
stages of the same pipeline. To our knowledge, this
is the first time such a pipeline architecture has been
proposed.

It may seem surprising that later stages of a
pipeline, already constrained to be consistent with
the output of earlier stages, can profitably inform
the earlier stages in a second pass. However, the
richer models used in later stages of a pipeline pro-
vide a better distribution over the subset of possible
solutions produced by the early stages, effectively
resolving some of the ambiguities that account for
much of the original variation. If an earlier stage is
then constrained in a second pass not to vary with re-
spect to these resolved ambiguities, it will be forced
to find other variations, which may include better so-
lutions than were originally provided.

To give a rough illustration, consider the Venn di-
agram in Fig. 1(i). Set A represents the original sub-
set of possible solutions passed along by the earlier
stage, and the dark shaded region represents high-
probability solutions according to later stages. If
some constraints are then extracted from these high-
probability solutions, defining a subset of solutions
(S) that rule out some of A, the early stage will be
forced to produce a different set (B). Constraints
derived from later stages of the pipeline focus the
search in an area believed to contain high-quality
candidates.

Another scenario is to use a different model al-
together to constrain the pipeline. In this scenario,
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Figure 1: Two Venn diagrams, representing (i) constraints
derived from later stages of an iterated pipelined system; and
(ii) constraints derived from a different model.
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represented in Fig. 1(ii), the other model constrains
the early stage to be consistent with some subset of
solutions (S), which may be largely or completely
disjoint from the original set A. Again, a different set
(B) results, which may include better results than A.
Whereas when iterating we are guaranteed that the
new subset S will overlap at least partially with the
original subset A, that is not the case when making
use of constraints from a separately trained model.

In this paper, we investigate pipeline iteration
within the context of the Charniak and Johnson
(2005) parsing pipeline, by constraining parses to
be consistent with a base-phrase tree. We derive
these base-phrase constraints from three sources: the
reranking stage of the parsing pipeline; a finite-state
shallow parser (Hollingshead et al., 2005); and a
combination of the output from these two sources.
We compare the relative performance of these three
sources and find the best performance improvements
using constraints derived from a weighted combina-
tion of shallow parser output and reranker output.

The Charniak parsing pipeline has been exten-
sively studied over the past decade, with a num-
ber of papers focused on improving early stages of
the pipeline (Charniak et al., 1998; Caraballo and
Charniak, 1998; Blaheta and Charniak, 1999; Hall
and Johnson, 2004; Charniak et al., 2006) as well
as many focused on optimizing final parse accuracy
(Charniak, 2000; Charniak and Johnson, 2005; Mc-
Closky et al., 2006). This focus on optimization has
made system improvements very difficult to achieve;
yet our relatively simple architecture yields statisti-
cally significant improvements, making pipeline it-
eration a promising approach for other tasks.

2 Approach
Our approach uses the Charniak state-of-the-art
parsing pipeline. The well-known Charniak (2000)
coarse-to-fine parser is a two-stage parsing pipeline,
in which the first stage uses a vanilla PCFG to pop-
ulate a chart of parse constituents. The second
stage, constrained to only those items in the first-
stage chart, uses a refined grammar to generate an
n-best list of parse candidates. Charniak and John-
son (2005) extended this pipeline with a discrimina-
tive maximum entropy model to rerank the n-best
parse candidates, deriving a significant benefit from
the richer model employed by the reranker.

For our experiments, we modified the parser1 to
1ftp://ftp.cs.brown.edu/pub/nlparser/

Base Shallow
Parser Phrases Phrases
Charniak parser-best 91.9 94.4

reranker-best 92.8 94.8
Finite-state shallow parser 91.7 94.3

Table 1: F-scores on WSJ section 24 of output from two
parsers on the similar tasks of base-phrase parsing and shallow-
phrase parsing. For evaluation, base and shallow phrases are
extracted from the Charniak/Johnson full-parse output.

allow us to optionally provide base-phrase trees to
constrain the first stage of parsing.

2.1 Base Phrases
Following Ratnaparkhi (1999), we define a base
phrase as any parse node with only preterminal chil-
dren. Unlike the shallow phrases defined for the
CoNLL-2000 Shared Task (Tjong Kim Sang and
Buchholz, 2000), base phrases correspond directly
to constituents that appear in full parses, and hence
can provide a straightforward constraint on edges
within a chart parser. In contrast, shallow phrases
collapse certain non-constituents—such as auxiliary
chains—into a single phrase, and hence are not di-
rectly applicable as constraints on a chart parser.

We have two methods for deriving base-phrase
annotations for a string. First, we trained a finite-
state shallow parser on base phrases extracted from
the Penn Wall St. Journal (WSJ) Treebank (Marcus
et al., 1993). The treebank trees are pre-processed
identically to the procedure for training the Charniak
parser, e.g., empty nodes and function tags are re-
moved. The shallow parser is trained using the per-
ceptron algorithm, with a feature set nearly identical
to that from Sha and Pereira (2003), and achieves
comparable performance to that paper. See Holling-
shead et al. (2005) for more details. Second, base
phrases can be extracted from the full-parse output
of the Charniak and Johnson (2005) reranker, via a
simple script to extract nodes with only preterminal
children.

Table 1 shows these systems’ bracketing accu-
racy on both the base-phrase and shallow parsing
tasks for WSJ section 24; each system was trained
on WSJ sections 02-21. From this table we can
see that base phrases are substantially more difficult
than shallow phrases to annotate. Output from the
finite-state shallow parser is roughly as accurate as
output extracted from the Charniak parser-best trees,
though a fair amount below output extracted from
the reranker-best trees.

In addition to using base phrase constraints from
these two sources independently, we also looked at
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combining the predictions of both to obtain more re-
liable constraints. We next present a method of com-
bining output from multiple parsers based on com-
bined precision and recall optimization.

2.2 Combining Parser n-best Lists

In order to select high-likelihood constraints for the
pipeline, we may want to extract annotations with
high levels of agreement (“consensus hypotheses”)
between candidates. In addition, we may want to
favor precision over recall to avoid erroneous con-
straints within the pipeline as much as possible.
Here we discuss how a technique presented in Good-
man’s thesis (1998) can be applied to do this.

We will first present this within a general chart
parsing approach, then move to how we use it for n-
best lists. Let T be the set of trees for a particular
input, and let a parse T ∈ T be considered as a set
of labeled spans. Then, for all labeled spans X ∈ T ,
we can calculate the posterior probability γ(X) as
follows:

γ(X) =
∑
T∈T

P(T )JX ∈ T K∑
T ′∈T P(T ′)

(1)

where JX ∈ T K =
{

1 if X ∈ T
0 otherwise.

Goodman (1996; 1998) presents a method for us-
ing the posterior probability of constituents to maxi-
mize the expected labeled recall of binary branching
trees, as follows:

T̂ = argmax
T∈T

∑
X∈T

γ(X) (2)

Essentially, find the tree with the maximum sum of
the posterior probabilities of its constituents. This
is done by computing the posterior probabilities
of constituents in a chart, typically via the Inside-
Outside algorithm (Baker, 1979; Lari and Young,
1990), followed by a final CYK-like pass to find the
tree maximizing the sum.

For non-binary branching trees, where precision
and recall may differ, Goodman (1998, Ch.3) pro-
poses the following combined metric for balancing
precision and recall:

T̂ = argmax
T∈T

∑
X∈T

(γ(X)− λ) (3)

where λ ranges from 0 to 1. Setting λ=0 is equiv-
alent to Eq. 2 and thus optimizes recall, and setting
λ=1 optimizes precision; Appendix 5 at the end of

this paper presents brief derivations of these met-
rics.2 Thus, λ functions as a mixing factor to balance
recall and precision.

This approach also gives us a straightforward way
to combine n-best outputs of multiple systems. To
do this, we construct a chart of the constituents in the
trees from the n-best lists, and allow any combina-
tion of constituents that results in a tree – even one
with no internal structure. In such a way, we can
produce trees that only include a small number of
high-certainty constituents, and leave the remainder
of the string unconstrained, even if such trees were
not candidates in the original n-best lists.

For simplicity, we will here discuss the combina-
tion of two n-best lists, though it generalizes in the
obvious way to an arbitrary number of lists. Let T
be the union of the two n-best lists. For all trees
T ∈ T , let P1(T ) be the probability of T in the first
n-best list, and P2(T ) the probability of T in the sec-
ond n-best list. Then, we define P(T ) as follows:

P(T ) = α
P1(T )∑

T ′∈T P1(T ′)
+

P2(T )∑
T ′∈T P2(T ′)

(4)

where the parameter α dictates the relative weight of
P1 versus P2 in the combination.3

For this paper, we combined two n-best lists of
base-phrase trees. Although there is no hierarchi-
cal structure in base-phrase annotations, they can be
represented as flat trees, as shown in Fig. 2(a). We
constructed a chart from the two lists being com-
bined, using Eq. 4 to define P(T ) in Eq. 1. We wish
to consider every possible combination of the base
phrases, so for the final CYK-like pass to find the
argmax tree, we included rules for attaching each
preterminal directly to the root of the tree, in addi-
tion to rules permitting any combination of hypoth-
esized base phrases.

Consider the trees in Fig. 2. Figure 2(a) is a
shallow parse with three NP base phrases; Figure
2(b) is the same parse where the ROOT produc-
tion has been binarized for the final CYK-like pass,
which requires binary productions. If we include
productions of the form ‘ROOT → X ROOT’ and
‘ROOT → X Y’ for all non-terminals X and Y (in-
cluding POS tags), then any tree-structured com-
bination of base phrases hypothesized in either n-

2Our notation differs slightly from that in Goodman (1998),
though the approaches are formally equivalent.

3Note that P1 and P2 are normalized in eq. 4, and thus are
not required to be true probabilities. In turn, P is normalized
when used in eq. 1, such that the posterior probability γ is a
true probability. Hence P need not be normalized in eq. 4.
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Figure 2: Base-phrase trees (a) as produced for an n-best list and (b) after root-binarization for n-best list combination. Full-parse
tree (c) consistent with constraining base-phrase tree (a).
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Figure 3: The tradeoff between recall and precision using a
range of λ values (Eq. 3) to select high-probability annotations
from an n-best list. Results are shown on 50-best lists of base-
phrase parses from two parsers, and on the combination of the
two lists.
best list is allowed, including the one with no base
phrases at all. Note that, for the purpose of finding
the argmax tree in Eq. 3, we only sum the posterior
probabilities of base-phrase constituents, and not the
ROOT symbol or POS tags.

Figure 3 shows the results of performing this com-
bined precision/recall optimization on three separate
n-best lists: the 50-best list of base-phrase trees ex-
tracted from the full-parse output of the Charniak
and Johnson (2005) reranker; the 50-best list output
by the Hollingshead et al. (2005) finite-state shallow
parser; and the weighted combination of the two lists
at various values of λ in Eq. 3. For the combination,
we set α=2 in Eq. 4, with the Charniak and Johnson
(2005) reranker providing P1, effectively giving the
reranker twice the weight of the shallow parser in
determining the posteriors. The shallow parser has
perceptron scores as weights, and the distribution of
these scores after a softmax normalization was too
peaked to be of utility, so we used the normalized
reciprocal rank of each candidate as P2 in Eq. 4.

We point out several details in these results.
First, using this method does not result in an F-
measure improvement over the Viterbi-best base-
phrase parses (shown as solid symbols in the graph)

for either the reranker or shallow parser. Also, us-
ing this model effects a greater improvement in pre-
cision than in recall, which is unsurprising with
these non-hierarchical annotations; unlike full pars-
ing (where long sequences of unary productions can
improve recall arbitrarily), in base-phrase parsing,
any given span can have only one non-terminal. Fi-
nally, we see that the combination of the two n-best
lists improves over either list in isolation.

3 Experimental Setup
For our experiments we constructed a simple parsing
pipeline, shown in Fig. 4. At the core of the pipeline
is the Charniak and Johnson (2005) coarse-to-fine
parser and MaxEnt reranker, described in Sec. 2.
The parser constitutes the first and second stages of
our pipeline, and the reranker the final stage. Fol-
lowing Charniak and Johnson (2005), we set the
parser to output 50-best parses for all experiments
described here. We constrain only the first stage of
the parser: during chart construction, we disallow
any constituents that conflict with the constraints, as
described in detail in the next section.
3.1 Parser Constraints
We use base phrases, as defined in Sec. 2.1, to con-
strain the first stage of our parsing pipeline. Under
these constraints, full parses must be consistent with
the base-phrase tree provided as input to the parser,
i.e., any valid parse must contain all of the base-
phrase constituents in the constraining tree. The
full-parse tree in Fig. 2(c), for example, is consis-
tent with the base-phrase tree in Fig. 2(a).

Implementing these constraints in a parser is
straightforward, one of the advantages of using base
phrases as constraints. Since the internal structure
of base phrases is, by definition, limited to preter-
minal children, we can constrain the entire parse by
constraining the parents of the appropriate pretermi-
nal nodes. For any preterminal that occurs within
the span of a constraining base phrase, the only
valid parent is a node matching both the span (start
and end points) and the label of the provided base
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Figure 4: The iterated parsing pipeline. In the first iteration,
the coarse parser may be either unconstrained, or constrained
by base phrases from the shallow parser (A1). In the second
iteration, base phrase constraints may be extracted either from
reranker output (A2) or from a weighted combination of shal-
low parser output and reranker output (A3). Multiple sets of
n-best parses, as output by the coarse-to-fine parser under dif-
ferent constraint conditions, may be joined in a set union (C).

phrase. All other proposed parent-nodes are re-
jected. In such a way, for any parse to cover the
entire string, it would have to be consistent with the
constraining base-phrase tree.

Words that fall outside of any base-phrase con-
straint are unconstrained in how they attach within
the parse; hence, a base-phrase tree with few words
covered by base-phrase constraints will result in a
larger search space than one with many words cov-
ered by base phrases. We also put no restrictions on
the preterminal labels, even within the base phrases.
We normalized for punctuation. If the parser fails to
find a valid parse with the constraints, then we lift
the constraints and allow any parse constituent orig-
inally proposed by the first-stage parser.

3.2 Experimental Conditions
Our experiments will demonstrate the effects of con-
straining the Charniak parser under several differ-
ent conditions. The baseline system places no con-
straints on the parser. The remaining experimen-
tal conditions each consider one of three possible
sources of the base phrase constraints: (1) the base
phrases output by the finite-state shallow parser;
(2) the base phrases extracted from output of the
reranker; and (3) a combination of the output from
the shallow parser and the reranker, which is pro-
duced using the techniques outlined in Sec. 2.2.
Constraints are enforced as described in Sec. 3.1.

Unconstrained For our baseline system, we
run the Charniak and Johnson (2005) parser and
reranker with default parameters. The parser is pro-
vided with treebank-tokenized text and, as men-
tioned previously, outputs 50-best parse candidates
to the reranker.

FS-constrained The FS-constrained condition
provides a comparison point of non-iterated con-
straints. Under this condition, the one-best base-

System LR LP F
Finite-state shallow parser 91.3 92.0 91.7
Charniak reranker-best 92.2 93.3 92.8
Combination (λ=0.5) 92.2 94.1 93.2
Combination (λ=0.9) 81.0 97.4 88.4

Table 2: Labeled recall (LR), precision (LP), and F-scores
on WSJ section 24 of base-phrase trees produced by the three
possible sources of constraints.

phrase tree output by the finite-state shallow parser
is input as a constraint to the Charniak parser. We
run the parser and reranker as before, under con-
straints from the shallow parser. The accuracy of
the constraints used under this condition is shown in
the first row of Table 2. Note that this condition is
not an instance of pipeline iteration, but is included
to show the performance levels that can be achieved
without iteration.

Reranker-constrained We will use the
reranker-constrained condition to examine the ef-
fects of pipeline iteration, with no input from other
models outside the pipeline. We take the reranker-
best full-parse output under the condition of uncon-
strained search, and extract the corresponding base-
phrase tree. We run the parser and reranker as be-
fore, now with constraints from the reranker. The
accuracy of the constraints used under this condition
is shown in the second row of Table 2.

Combo-constrained The combo-constrained
conditions are designed to compare the effects of
generating constraints with different combination
parameterizations, i.e., different λ parameters in Eq.
3. For this experimental condition, we extract base-
phrase trees from the n-best full-parse trees output
by the reranker. We combine this list with the n-best
list output by the finite-state shallow parser, exactly
as described in Sec. 2.2, again with the reranker pro-
viding P1 and α=2 in Eq. 4. We examined a range
of operating points from λ=0.4 to λ=0.9, and re-
port two points here (λ=0.5 and λ=0.9), which rep-
resent the highest overall accuracy and the highest
precision, respectively, as shown in Table 2.

Constrained and Unconstrained Union When
iterating this pipeline, the original n-best list of full
parses output from the unconstrained parser is avail-
able at no additional cost, and our final set of ex-
perimental conditions investigate taking the union
of constrained and unconstrained n-best lists. The
imposed constraints can result in candidate sets that
are largely (or completely) disjoint from the uncon-
strained sets, and it may be that the unconstrained
set is in many cases superior to the constrained set.
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Constraints Parser-best Reranker-best Oracle-best # Candidates
Baseline (Unconstrained, 50-best) 88.92 90.24 95.95 47.9
FS-constrained 88.44 89.50 94.10 46.2
Reranker-constrained 89.60 90.46 95.07 46.9

Combo-constrained (λ=0.5) 89.81 90.74 95.41 46.3
Combo-constrained (λ=0.9) 89.34 90.43 95.91 47.5

Table 3: Full-parse F-scores on WSJ section 24. The unconstrained search (first row) provides a baseline comparison for the
effects of constraining the search space. The last four rows demonstrate the effect of various constraint conditions.

Even our high-precision constraints did not reach
100% precision, attesting to the fact that there was
some error in all constrained conditions. By con-
structing the union of the two n-best lists, we can
take advantage of the new constrained candidate set
without running the risk that the constraints have re-
sulted in a worse n-best list. Note that the parser
probabilities are produced from the same model in
both passes, and are hence directly comparable.

The output of the second pass of the pipeline
could be used to constrain a third pass, for multiple
pipeline iterations. However, we found that further
iterations provided no additional improvements.
3.3 Data
Unless stated otherwise, all reported results will be
F-scores on WSJ section 24 of the Penn WSJ Tree-
bank, which was our development set. Training data
was WSJ sections 02-21, with section 00 as held-
out data. Crossfold validation (20-fold with 2,000
sentences per fold) was used to train the reranker
for every condition. Evaluation was performed us-
ing evalb under standard parameterizations. WSJ
section 23 was used only for final testing.

4 Results & Discussion
We evaluate the one-best parse candidates before
and after reranking (parser-best and reranker-best,
respectively). We additionally provide the best-
possible F-score in the n-best list (oracle-best) and
the number of unique candidates in the list.

Table 3 presents trials showing the effect of con-
straining the parser under various conditions. Con-
straining the parser to the base phrases produced
by the finite-state shallow parser (FS-constrained)
hurts performance by half a point. Constraining the
parser to the base phrases produced by the reranker,
however, provides a 0.7 percent improvement in the
parser-best accuracy, and a 0.2 percent improvement
after reranking. Combining the two base-phrase n-
best lists to derive the constraints provides further
improvements when λ=0.5, to a total improvement
of 0.9 and 0.5 percent over parser-best and reranker-
best accuracy, respectively. Performance degrades

at λ=0.9 relative to λ=0.5, indicating that, even at
a lower precision, more constraints are beneficial.

The oracle rate decreases under all of the con-
strained conditions as compared to the baseline,
demonstrating that the parser was prevented from
finding some of the best solutions that were orig-
inally found. However, the improvement in F-
score shows that the constraints assisted the parser
in achieving high-quality solutions despite this de-
graded oracle accuracy of the lists.

Table 4 shows the results when taking the union
of the constrained and unconstrained lists prior to
reranking. Several interesting points can be noted
in this table. First, despite the fact that the FS-
constrained condition hurts performance in Table
3, the union provides a 0.5 percent improvement
over the baseline in the parser-best performance.
This indicates that, in some cases, the Charniak
parser is scoring parses in the constrained set higher
than in the unconstrained set, which is evidence of
search errors in the unconstrained condition. One
can see from the number of candidates that the FS-
constrained condition provides the set of candidates
most disjoint from the original unconstrained parser,
leading to the largest number of candidates in the
union. Surprisingly, even though this set provided
the highest parser-best F-score of all of the union
sets, it did not lead to significant overall improve-
ments after reranking.

In all other conditions, taking the union de-
creases the parser-best accuracy when compared to
the corresponding constrained output, but improves
the reranker-best accuracy in all but the combo-
constrained λ=0.9 condition. One explanation for
the lower performance at λ=0.9 versus λ=0.5 is
seen in the number of candidates, about 7.5 fewer
than in the λ=0.5 condition. There are fewer con-
straints in the high-precision condition, so the re-
sulting n-best lists do not diverge as much from the
original lists, leading to less diversity in their union.

The gains in performance should not be attributed
to increasing the number of candidates nor to allow-
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Constraints Parser-best Reranker-best Oracle-best # Candidates
Baseline (Unconstrained, 50-best) 88.92 90.24 95.95 47.9
Unconstrained ∪ FS-constrained 89.39 90.27 96.61 74.9
Unconstrained ∪ Reranker-constrained 89.23 90.59 96.48 70.3

Unconstrained ∪ Combo (λ=0.5) 89.28 90.78 96.53 69.7
Unconstrained ∪ Combo (λ=0.9) 89.03 90.44 96.40 62.1

Unconstrained (100-best) 88.82 90.13 96.38 95.2
Unconstrained (50-best, beam×2) 89.01 90.45 96.13 48.1

Table 4: Full-parse F-scores on WSJ section 24 after taking the set union of unconstrained and constrained parser output under
the 4 different constraint conditions. Also, F-score for 100-best parses, and 50-best parses with an increased beam threshold, output
by the Charniak parser under the unconstrained condition.

Constraints F-score
Baseline (Unconstrained, 50-best) 91.06
Unconstrained ∪ Combo (λ=0.5) 91.48

Table 5: Full-parse F-scores on WSJ section 23 for our best-
performing system on WSJ section 24. The 0.4 percent F-score
improvement is significant at p < 0.001.
ing the parser more time to generate the parses. The
penultimate row in Table 4 shows the results with
100-best lists output in the unconstrained condition,
which does not improve upon the 50-best perfor-
mance, despite an improved oracle F-score. Since
the second iteration through the parsing pipeline
clearly increases the overall processing time by a
factor of two, we also compare against output ob-
tained by doubling the coarse-parser’s beam thresh-
old. The last row in Table 4 shows that the increased
threshold yields an insignificant improvement over
the baseline, despite a very large processing burden.

We applied our best-performing model (Uncon-
strained ∪ Combo, λ=0.5) to the test set, WSJ sec-
tion 23, for comparison against the baseline system.
Table 5 shows a 0.4 percent F-score improvement
over the baseline for that section, which is statisti-
cally significant at p < 0.001, using the stratified
shuffling test (Yeh, 2000).

5 Conclusion & Future Work
In summary, we have demonstrated that pipeline it-
eration can be useful in improving system perfor-
mance, by constraining early stages of the pipeline
with output derived from later stages. While the
current work made use of a particular kind of
constraint—base phrases—many others could be ex-
tracted as well. Preliminary results extending the
work presented in this paper show parser accuracy
improvements from pipeline iteration when using
constraints based on an unlabeled partial bracketing
of the string. Higher-level phrase segmentations or
fully specified trees over portions of the string might
also prove to be effective constraints. The tech-
niques shown here are by no means limited to pars-

ing pipelines, and could easily be applied to other
tasks making use of pipeline architectures.
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Appendix A Combined Precision/Recall
Decoding
Recall that T is the set of trees for a particular input,
and each T ∈ T is considered as a set of labeled
spans. For all labeled spans X ∈ T , we can calcu-
late the posterior probability γ(X) as follows:

γ(X) =
∑
T∈T

P(T )JX ∈ T K∑
T ′∈T P(T ′)

where JX ∈ T K =
{

1 if X ∈ T
0 otherwise.

If τ is the reference tree, the labeled precision
(LP) and labeled recall (LR) of a T relative to τ are
defined as

LP =
|T ∩ τ |
|T |

LR =
|T ∩ τ |
|τ |

where |T | denotes the size of the set T .
A metric very close to LR is |T ∩ τ |, the number

of nodes in common between the tree and the ref-
erence tree. To maximize the expected value (E) of

this metric, we want to find the tree T̂ as follows:

T̂ = argmax
T∈T

E
[
|T

⋂
τ |

]
= argmax

T∈T

∑
T ′∈T

P(T ′)
[
|T

⋂
T ′|

]∑
T ′′∈T P(T ′′)

= argmax
T∈T

∑
T ′∈T

P(T ′)
∑

X∈T
JX ∈ T ′K∑

T ′′∈T P(T ′′)

= argmax
T∈T

∑
X∈T

∑
T ′∈T

P(T ′)JX ∈ T ′K∑
T ′′∈T P(T ′′)

= argmax
T∈T

∑
X∈T

γ(X) (5)

This exactly maximizes the expected LR in the
case of binary branching trees, and is closely re-
lated to LR for non-binary branching trees. Simi-
lar to maximizing the expected number of match-
ing nodes, we can minimize the expected number of
non-matching nodes, for a metric related to LP:

T̂ = argmin
T∈T

E
[
|T | − |T

⋂
τ |

]
= argmax

T∈T
E

[
|T

⋂
τ | − |T |

]
= argmax

T∈T

∑
T ′∈T

P(T ′)
[
|T

⋂
T ′| − |T |

]∑
T ′′∈T P(T ′′)

= argmax
T∈T

∑
T ′∈T

P(T ′)
∑

X∈T
(JX ∈ T ′K− 1)∑

T ′′∈T P(T ′′)

= argmax
T∈T

∑
X∈T

∑
T ′∈T

P(T ′)(JX ∈ T ′K− 1)∑
T ′′∈T P(T ′′)

= argmax
T∈T

∑
X∈T

(γ(X)− 1) (6)

Finally, we can combine these two metrics in a
linear combination. Let λ be a mixing factor from 0
to 1. Then we can optimize the weighted sum:

T̂ = argmax
T∈T

E
[
(1− λ)|T

⋂
τ |+ λ(|T

⋂
τ | − |T |)

]
= argmax

T∈T
(1− λ)E

[
|T

⋂
τ |

]
+ λE

[
|T

⋂
τ | − |T |

]
= argmax

T∈T

[
(1− λ)

∑
X∈T

γ(X)

]
+

[
λ

∑
X∈T

(γ(X)− 1)

]
= argmax

T∈T

∑
X∈T

(γ(X)− λ) (7)

The result is a combined metric for balancing preci-
sion and recall. Note that, if λ=0, Eq. 7 is the same
as Eq. 5 and thus maximizes the LR metric; and if
λ=1, Eq. 7 is the same as Eq. 6 and thus maximizes
the LP metric.

959


