
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 200–207,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

A Grammar-driven Convolution Tree Kernel for Se-
mantic Role Classification

Min ZHANG1 Wanxiang CHE2 Ai Ti AW1 Chew Lim TAN3

Guodong ZHOU1,4 Ting LIU2 Sheng LI2

1Institute for Infocomm Research
{mzhang, aaiti}@i2r.a-star.edu.sg

2Harbin Institute of Technology
{car, tliu}@ir.hit.edu.cn

lisheng@hit.edu.cn
3National University of Singapore
tancl@comp.nus.edu.sg

4 Soochow Univ., China 215006
gdzhou@suda.edu.cn

Abstract

Convolution tree kernel has shown promis-
ing results in semantic role classification.
However, it only carries out hard matching,
which may lead to over-fitting and less ac-
curate similarity measure. To remove the
constraint, this paper proposes a grammar-
driven convolution tree kernel for semantic
role classification by introducing more lin-
guistic knowledge into the standard tree
kernel. The proposed grammar-driven tree
kernel displays two advantages over the pre-
vious one: 1) grammar-driven approximate
substructure matching and 2) grammar-
driven approximate tree node matching. The
two improvements enable the grammar-
driven tree kernel explore more linguistically
motivated structure features than the previ-
ous one. Experiments on the CoNLL-2005
SRL shared task show that the grammar-
driven tree kernel significantly outperforms
the previous non-grammar-driven one in
SRL. Moreover, we present a composite
kernel to integrate feature-based and tree
kernel-based methods. Experimental results
show that the composite kernel outperforms
the previously best-reported methods.

1 Introduction

Given a sentence, the task of Semantic Role Label-
ing (SRL) consists of analyzing the logical forms

expressed by some target verbs or nouns and some
constituents of the sentence. In particular, for each
predicate (target verb or noun) all the constituents in
the sentence which fill semantic arguments (roles)
of the predicate have to be recognized. Typical se-
mantic roles include Agent, Patient, Instrument, etc.
and also adjuncts such as Locative, Temporal,
Manner, and Cause, etc. Generally, semantic role
identification and classification are regarded as two
key steps in semantic role labeling. Semantic role
identification involves classifying each syntactic
element in a sentence into either a semantic argu-
ment or a non-argument while semantic role classi-
fication involves classifying each semantic argument
identified into a specific semantic role. This paper
focuses on semantic role classification task with the
assumption that the semantic arguments have been
identified correctly.

Both feature-based and kernel-based learning
methods have been studied for semantic role classi-
fication (Carreras and Màrquez, 2004; Carreras and
Màrquez, 2005). In feature-based methods, a flat
feature vector is used to represent a predicate-
argument structure while, in kernel-based methods,
a kernel function is used to measure directly the
similarity between two predicate-argument struc-
tures. As we know, kernel methods are more effec-
tive in capturing structured features. Moschitti
(2004) and Che et al. (2006) used a convolution
tree kernel (Collins and Duffy, 2001) for semantic
role classification. The convolution tree kernel
takes sub-tree as its feature and counts the number
of common sub-trees as the similarity between two
predicate-arguments. This kernel has shown very

200

promising results in SRL. However, as a general
learning algorithm, the tree kernel only carries out
hard matching between any two sub-trees without
considering any linguistic knowledge in kernel de-
sign. This makes the kernel fail to handle similar
phrase structures (e.g., “buy a car” vs. “buy a red
car”) and near-synonymic grammar tags (e.g., the
POS variations between “high/JJ degree/NN” 1 and
“higher/JJR degree/NN”) 2. To some degree, it may
lead to over-fitting and compromise performance.

This paper reports our preliminary study in ad-
dressing the above issue by introducing more lin-
guistic knowledge into the convolution tree kernel.
To our knowledge, this is the first attempt in this
research direction. In detail, we propose a gram-
mar-driven convolution tree kernel for semantic
role classification that can carry out more linguisti-
cally motivated substructure matching. Experimental
results show that the proposed method significantly
outperforms the standard convolution tree kernel on
the data set of the CoNLL-2005 SRL shared task.

The remainder of the paper is organized as fol-
lows: Section 2 reviews the previous work and Sec-
tion 3 discusses our grammar-driven convolution
tree kernel. Section 4 shows the experimental re-
sults. We conclude our work in Section 5.

2 Previous Work

Feature-based Methods for SRL: most features
used in prior SRL research are generally extended
from Gildea and Jurafsky (2002), who used a linear
interpolation method and extracted basic flat fea-
tures from a parse tree to identify and classify the
constituents in the FrameNet (Baker et al., 1998).
Here, the basic features include Phrase Type, Parse
Tree Path, and Position. Most of the following work
focused on feature engineering (Xue and Palmer,
2004; Jiang et al., 2005) and machine learning
models (Nielsen and Pradhan, 2004; Pradhan et al.,
2005a). Some other work paid much attention to the
robust SRL (Pradhan et al., 2005b) and post infer-
ence (Punyakanok et al., 2004). These feature-
based methods are considered as the state of the art
methods for SRL. However, as we know, the stan-
dard flat features are less effective in modeling the

1 Please refer to http://www.cis.upenn.edu/~treebank/ for the
detailed definitions of the grammar tags used in the paper.
2 Some rewrite rules in English grammar are generalizations of
others: for example, “NP DET JJ NN” is a specialized ver-
sion of “NP DET NN”. The same applies to POS. The stan-
dard convolution tree kernel is unable to capture the two cases.

syntactic structured information. For example, in
SRL, the Parse Tree Path feature is sensitive to
small changes of the syntactic structures. Thus, a
predicate argument pair will have two different
Path features even if their paths differ only for one
node. This may result in data sparseness and model
generalization problems.
Kernel-based Methods for SRL: as an alternative,
kernel methods are more effective in modeling
structured objects. This is because a kernel can
measure the similarity between two structured ob-
jects using the original representation of the objects
instead of explicitly enumerating their features.
Many kernels have been proposed and applied to
the NLP study. In particular, Haussler (1999) pro-
posed the well-known convolution kernels for a
discrete structure. In the context of it, more and
more kernels for restricted syntaxes or specific do-
mains (Collins and Duffy, 2001; Lodhi et al., 2002;
Zelenko et al., 2003; Zhang et al., 2006) are pro-
posed and explored in the NLP domain.

Of special interest here, Moschitti (2004) proposed
Predicate Argument Feature (PAF) kernel for SRL
under the framework of convolution tree kernel. He
selected portions of syntactic parse trees as predicate-
argument feature spaces, which include salient sub-
structures of predicate-arguments, to define convo-
lution kernels for the task of semantic role classifi-
cation. Under the same framework, Che et al. (2006)
proposed a hybrid convolution tree kernel, which
consists of two individual convolution kernels: a Path
kernel and a Constituent Structure kernel. Che et al.
(2006) showed that their method outperformed PAF
on the CoNLL-2005 SRL dataset.

The above two kernels are special instances of
convolution tree kernel for SRL. As discussed in
Section 1, convolution tree kernel only carries out
hard matching, so it fails to handle similar phrase
structures and near-synonymic grammar tags. This
paper presents a grammar-driven convolution tree
kernel to solve the two problems

3 Grammar-driven Convolution Tree
Kernel

3.1 Convolution Tree Kernel

In convolution tree kernel (Collins and Duffy,
2001), a parse tree T is represented by a vector of
integer counts of each sub-tree type (regardless of
its ancestors): ()Tφ = (…, # subtreei(T), …), where

201

subtreei(T) is the occurrence number of the ith
sub-tree type (subtreei) in T. Since the number of
different sub-trees is exponential with the parse tree
size, it is computationally infeasible to directly use
the feature vector ()Tφ . To solve this computa-
tional issue, Collins and Duffy (2001) proposed the
following parse tree kernel to calculate the dot
product between the above high dimensional vec-
tors implicitly.

1 1 2 2

1 1 2 2

1 2 1 2

1 2

1 2

(,) (), ()

 () ()

 (,)

(() ())
i isubtree subtreei n N n N

n N n N

K T T T T

I n I n

n n

φ φ

∈ ∈

∈ ∈

=< >

=

= ∆

⋅∑ ∑ ∑
∑ ∑

where N1 and N2 are the sets of nodes in trees T1 and
T2, respectively, and ()

isubtreeI n is a function that is
1 iff the subtreei occurs with root at node n and zero
otherwise, and 1 2(,)n n∆ is the number of the com-
mon subtrees rooted at n1 and n2, i.e.,

1 2 1 2(,) () ()
i isubtree subtreei

n n I n I n∆ = ⋅∑

1 2(,)n n∆ can be further computed efficiently by the
following recursive rules:
Rule 1: if the productions (CFG rules) at 1n and

2n are different, 1 2(,) 0n n∆ = ;
Rule 2: else if both 1n and 2n are pre-terminals

(POS tags), 1 2(,) 1n n λ∆ = × ;
Rule 3: else,

1()
1 2 1 21

(,) (1 ((,), (,)))nc n

j
n n ch n j ch n jλ

=
∆ = + ∆∏ ,

where 1()nc n is the child number of 1n , ch(n,j) is
the jth child of node n and λ (0< λ <1) is the decay
factor in order to make the kernel value less vari-
able with respect to the subtree sizes. In addition,
the recursive Rule 3 holds because given two
nodes with the same children, one can construct
common sub-trees using these children and com-
mon sub-trees of further offspring. The time com-
plexity for computing this kernel is 1 2(| | | |)O N N⋅ .

3.2 Grammar-driven Convolution Tree
Kernel

This Subsection introduces the two improvements
and defines our grammar-driven tree kernel.

Improvement 1: Grammar-driven approximate
matching between substructures. The conven-

tional tree kernel requires exact matching between
two contiguous phrase structures. This constraint
may be too strict. For example, the two phrase
structures “NP DT JJ NN” (NP a red car) and
“NP DT NN” (NP->a car) are not identical, thus
they contribute nothing to the conventional kernel
although they should share the same semantic role
given a predicate. In this paper, we propose a
grammar-driven approximate matching mechanism
to capture the similarity between such kinds of
quasi-structures for SRL.

First, we construct reduced rule set by defining
optional nodes, for example, “NP->DT [JJ] NP” or
“VP-> VB [ADVP] PP”, where [*] denotes op-
tional nodes. For convenience, we call “NP-> DT
JJ NP” the original rule and “NP->DT [JJ] NP” the
reduced rule. Here, we define two grammar-driven
criteria to select optional nodes:

1) The reduced rules must be grammatical. It
means that the reduced rule should be a valid rule
in the original rule set. For example, “NP->DT [JJ]
NP” is valid only when “NP->DT NP” is a valid
rule in the original rule set while “NP->DT [JJ
NP]” may not be valid since “NP->DT” is not a
valid rule in the original rule set.

2) A valid reduced rule must keep the head
child of its corresponding original rule and has at
least two children. This can make the reduced rules
retain the underlying semantic meaning of their
corresponding original rules.

Given the reduced rule set, we can then formu-
late the approximate substructure matching mecha-
nism as follows:

11 2 1 2,
(,) ((,))

a bi ji j
T r ri j

M r r I T T λ
+

= ×∑ (1)

where 1r is a production rule, representing a sub-tree

of depth one3, and 1
i

rT is the ith variation of the sub-
tree 1r by removing one ore more optional nodes4,

and likewise for 2r and 2
j

rT . (,)TI • • is a function
that is 1 iff the two sub-trees are identical and zero
otherwise. 1λ (0≤ 1λ ≤1) is a small penalty to penal-

3 Eq.(1) is defined over sub-structure of depth one. The ap-
proximate matching between structures of depth more than one
can be achieved easily through the matching of sub-structures
of depth one in the recursively-defined convolution kernel. We
will discuss this issue when defining our kernel.
4 To make sure that the new kernel is a proper kernel, we have
to consider all the possible variations of the original sub-trees.
Training program converges only when using a proper kernel.

202

ize optional nodes and the two parameters ia and

jb stand for the numbers of occurrence of removed

optional nodes in subtrees 1
i

rT and 2
j

rT , respectively.

1 2(,)M r r returns the similarity (ie., the kernel
value) between the two sub-trees 1r and 2r by sum-
ming up the similarities between all possible varia-
tions of the sub-trees 1r and 2r .

Under the new approximate matching mecha-
nism, two structures are matchable (but with a small
penalty 1λ) if the two structures are identical after
removing one or more optional nodes. In this case,
the above example phrase structures “NP->a red
car” and “NP->a car” are matchable with a pen-
alty 1λ in our new kernel. It means that one co-
occurrence of the two structures contributes 1λ to
our proposed kernel while it contributes zero to the
traditional one. Therefore, by this improvement, our
method would be able to explore more linguistically
appropriate features than the previous one (which is
formulated as 1 2(,)TI r r).
Improvement 2: Grammar-driven tree nodes ap-
proximate matching. The conventional tree kernel
needs an exact matching between two (termi-
nal/non-terminal) nodes. But, some similar POSs
may represent similar roles, such as NN (dog) and
NNS (dogs). In order to capture this phenomenon,
we allow approximate matching between node fea-
tures. The following illustrates some equivalent
node feature sets:

• JJ, JJR, JJS
• VB, VBD, VBG, VBN, VBP, VBZ
• ……

where POSs in the same line can match each other
with a small penalty 0≤ 2λ ≤1. We call this case
node feature mutation. This improvement further
generalizes the conventional tree kernel to get bet-
ter coverage. The approximate node matching can
be formulated as:

21 2 1 2,
(,) ((,))

a bi ji j
fi j

M f f I f f λ
+

= ×∑ (2)

where 1f is a node feature, 1
if is the ith mutation

of 1f and ia is 0 iff 1
if and 1f are identical and 1 oth-

erwise, and likewise for 2f . (,)fI • • is a function
that is 1 iff the two features are identical and zero
otherwise. Eq. (2) sums over all combinations of

feature mutations as the node feature similarity.
The same as Eq. (1), the reason for taking all the
possibilities into account in Eq. (2) is to make sure
that the new kernel is a proper kernel.

The above two improvements are grammar-
driven, i.e., the two improvements retain the under-
lying linguistic grammar constraints and keep se-
mantic meanings of original rules.

The Grammar-driven Kernel Definition: Given
the two improvements discussed above, we can de-
fine the new kernel by beginning with the feature
vector representation of a parse tree T as follows:

()Tφ =′ (# subtree1(T), …, # subtreen(T))
where # subtreei(T) is the occurrence number of the
ith sub-tree type (subtreei) in T. Please note that,
different from the previous tree kernel, here we
loosen the condition for the occurrence of a subtree
by allowing both original and reduced rules (Im-
provement 1) and node feature mutations (Im-
provement 2). In other words, we modify the crite-
ria by which a subtree is said to occur. For example,
one occurrence of the rule “NP->DT JJ NP” shall
contribute 1 times to the feature “NP->DT JJ NP”
and 1λ times to the feature “NP->DT NP” in the
new kernel while it only contributes 1 times to the
feature “NP->DT JJ NP” in the previous one. Now
we can define the new grammar-driven kernel

1 2(,)GK T T as follows:

1 1 2 2

1 1 2 2

1 2 1 2

1 2

1 2

(,) (), ()

() ()

 (,)

(() ())
i i

G

subtree subtreei n N n N

n N n N

K T T T T

I n I n

n n

φ φ

∈ ∈

∈ ∈

′ ′=< >

′ ′=

′= ∆

⋅∑ ∑ ∑
∑ ∑

 (3)

where N1 and N2 are the sets of nodes in trees T1 and
T2, respectively. ()

isubtreeI n′ is a function that is

1 2
a bλ λ• iff the subtreei occurs with root at node n

and zero otherwise, where a and b are the numbers
of removed optional nodes and mutated node fea-
tures, respectively. 1 2(,)n n′∆ is the number of the
common subtrees rooted at n1 and n2, i.e. ,

1 2 1 2(,) () ()
i isubtree subtreei

n n I n I n′ ′ ′∆ = ⋅∑ (4)

Please note that the value of 1 2(,)n n′∆ is no longer
an integer as that in the conventional one since op-
tional nodes and node feature mutations are consid-
ered in the new kernel. 1 2(,)n n′∆ can be further
computed by the following recursive rules:

203

==

Rule A: if 1n and 2n are pre-terminals, then:

1 2 1 2(,) (,)n n M f fλ′∆ = × (5)
where 1f and 2f are features of nodes 1n and 2n re-
spectively, and 1 2(,)M f f is defined at Eq. (2).
Rule B: else if both 1n and 2n are the same non-
terminals, then generate all variations of the subtrees
of depth one rooted by 1n and 2n (denoted by 1nT
and 2nT respectively) by removing different optional
nodes, then:

1

1

1 2 1 2,

(,)
1 21

(,) ((,)

 (1 ((, ,), (, ,)))

a bi ji j
T n ni j

nc n i

k

n n I T T

ch n i k ch n j k

λ λ
+

=

′∆ = × ×

′× + ∆

∑
∏

(6)

where
• 1

i
nT and 2

j
nT stand for the ith and jth variations in

sub-tree set 1nT and 2nT , respectively.
• (,)TI • • is a function that is 1 iff the two sub-

trees are identical and zero otherwise.
• ia and jb stand for the number of removed op-

tional nodes in subtrees 1
i

nT and 2
j

nT , respectively.
• 1(,)nc n i returns the child number of 1n in its ith

subtree variation 1
i

nT .
• 1(, ,)ch n i k is the kth child of node 1n in its ith

variation subtree 1
i

nT , and likewise for 2(, ,)ch n j k .
• Finally, the same as the previous tree kernel,

λ (0< λ <1) is the decay factor (see the discussion
in Subsection 3.1).

Rule C: else 1 2(,) 0n n′∆ =

==

Rule A accounts for Improvement 2 while Rule
B accounts for Improvement 1. In Rule B, Eq. (6)
is able to carry out multi-layer sub-tree approxi-
mate matching due to the introduction of the recur-
sive part while Eq. (1) is only effective for sub-
trees of depth one. Moreover, we note that Eq. (4)
is a convolution kernel according to the definition
and the proof given in Haussler (1999), and Eqs (5)
and (6) reformulate Eq. (4) so that it can be com-
puted efficiently, in this way, our kernel defined by
Eq (3) is also a valid convolution kernel. Finally,
let us study the computational issue of the new
convolution tree kernel. Clearly, computing Eq. (6)

requires exponential time in its worst case. How-
ever, in practice, it may only need 1 2(| | | |)O N N⋅ .
This is because there are only 9.9% rules (647 out
of the total 6,534 rules in the parse trees) have op-
tional nodes and most of them have only one op-
tional node. In fact, the actual running time is even
much less and is close to linear in the size of the
trees since 1 2(,) 0n n′∆ = holds for many node
pairs (Collins and Duffy, 2001). In theory, we can
also design an efficient algorithm to compute Eq.
(6) using a dynamic programming algorithm (Mo-
schitti, 2006). We just leave it for our future work.

3.3 Comparison with previous work

In above discussion, we show that the conventional
convolution tree kernel is a special case of the
grammar-driven tree kernel. From kernel function
viewpoint, our kernel can carry out not only exact
matching (as previous one described by Rules 2
and 3 in Subsection 3.1) but also approximate
matching (Eqs. (5) and (6) in Subsection 3.2). From
feature exploration viewpoint, although they ex-
plore the same sub-structure feature space (defined
recursively by the phrase parse rules), their feature
values are different since our kernel captures the
structure features in a more linguistically appropri-
ate way by considering more linguistic knowledge
in our kernel design.

Moschitti (2006) proposes a partial tree (PT)
kernel which can carry out partial matching be-
tween sub-trees. The PT kernel generates a much
larger feature space than both the conventional and
the grammar-driven kernels. In this point, one can
say that the grammar-driven tree kernel is a spe-
cialization of the PT kernel. However, the impor-
tant difference between them is that the PT kernel
is not grammar-driven, thus many non-
linguistically motivated structures are matched in
the PT kernel. This may potentially compromise
the performance since some of the over-generated
features may possibly be noisy due to the lack of
linguistic interpretation and constraint.

Kashima and Koyanagi (2003) proposed a con-
volution kernel over labeled order trees by general-
izing the standard convolution tree kernel. The la-
beled order tree kernel is much more flexible than
the PT kernel and can explore much larger sub-tree
features than the PT kernel. However, the same as
the PT kernel, the labeled order tree kernel is not
grammar-driven. Thus, it may face the same issues

204

(such as over-generated features) as the PT kernel
when used in NLP applications.

 Shen el al. (2003) proposed a lexicalized tree
kernel to utilize LTAG-based features in parse
reranking. Their methods need to obtain a LTAG
derivation tree for each parse tree before kernel
calculation. In contrast, we use the notion of op-
tional arguments to define our grammar-driven tree
kernel and use the empirical set of CFG rules to de-
termine which arguments are optional.

4 Experiments

4.1 Experimental Setting

Data: We use the CoNLL-2005 SRL shared task
data (Carreras and Màrquez, 2005) as our experi-
mental corpus. The data consists of sections of the
Wall Street Journal part of the Penn TreeBank
(Marcus et al., 1993), with information on predi-
cate-argument structures extracted from the Prop-
Bank corpus (Palmer et al., 2005). As defined by
the shared task, we use sections 02-21 for training,
section 24 for development and section 23 for test.
There are 35 roles in the data including 7 Core
(A0–A5, AA), 14 Adjunct (AM-) and 14 Reference
(R-) arguments. Table 1 lists counts of sentences
and arguments in the three data sets.

 Training Development Test
Sentences 39,832 1,346 2,416
Arguments 239,858 8,346 14,077

Table 1: Counts on the data set

We assume that the semantic role identification
has been done correctly. In this way, we can focus
on the classification task and evaluate it more accu-
rately. We evaluate the performance with Accu-
racy. SVM (Vapnik, 1998) is selected as our classi-
fier and the one vs. others strategy is adopted and
the one with the largest margin is selected as the
final answer. In our implementation, we use the bi-
nary SVMLight (Joachims, 1998) and modify the
Tree Kernel Tools (Moschitti, 2004) to a grammar-
driven one.

Kernel Setup: We use the Constituent, Predicate,
and Predicate-Constituent related features, which
are reported to get the best-reported performance
(Pradhan et al., 2005a), as the baseline features. We
use Che et al. (2006)’s hybrid convolution tree ker-

nel (the best-reported method for kernel-based
SRL) as our baseline kernel. It is defined as

(1) (0 1)hybrid path csK K Kθ θ θ= + − ≤ ≤ (for the de-

tailed definitions of pathK and csK , please refer to
Che et al. (2006)). Here, we use our grammar-
driven tree kernel to compute pathK and csK , and we
call it grammar-driven hybrid tree kernel while Che
et al. (2006)’s is non-grammar-driven hybrid convo-
lution tree kernel.

We use a greedy strategy to fine-tune parameters.
Evaluation on the development set shows that our
kernel yields the best performance when λ (decay
factor of tree kernel), 1λ and 2λ (two penalty factors
for the grammar-driven kernel), θ (hybrid kernel
parameter) and c (a SVM training parameter to
balance training error and margin) are set to 0.4,
0.6, 0.3, 0.6 and 2.4, respectively. For other parame-
ters, we use default setting. In the CoNLL 2005
benchmark data, we get 647 rules with optional
nodes out of the total 6,534 grammar rules and de-
fine three equivalent node feature sets as below:

• JJ, JJR, JJS
• RB, RBR, RBS
• NN, NNS, NNP, NNPS, NAC, NX

Here, the verb feature set “VB, VBD, VBG, VBN,
VBP, VBZ” is removed since the voice information
is very indicative to the arguments of ARG0
(Agent, operator) and ARG1 (Thing operated).

Methods Accuracy (%)

 Baseline: Non-grammar-driven 85.21
 +Approximate Node Matching 86.27
 +Approximate Substructure

Matching
87.12

 Ours: Grammar-driven Substruc-
ture and Node Matching

87.96

Feature-based method with poly-
nomial kernel (d = 2)

89.92

Table 2: Performance comparison

4.2 Experimental Results

Table 2 compares the performances of different
methods on the test set. First, we can see that the
new grammar-driven hybrid convolution tree kernel
significantly outperforms (2χ test with p=0.05) the

205

non-grammar one with an absolute improvement of
2.75 (87.96-85.21) percentage, representing a rela-
tive error rate reduction of 18.6% (2.75/(100-85.21))
. It suggests that 1) the linguistically motivated
structure features are very useful for semantic role
classification and 2) the grammar-driven kernel is
much more effective in capturing such kinds of fea-
tures due to the consideration of linguistic knowl-
edge. Moreover, Table 2 shows that 1) both the
grammar-driven approximate node matching and the
grammar-driven approximate substructure matching
are very useful in modeling syntactic tree structures
for SRL since they contribute relative error rate re-
duction of 7.2% ((86.27-85.21)/(100-85.21)) and
12.9% ((87.12-85.21)/(100-85.21)), respectively; 2)
the grammar-driven approximate substructure
matching is more effective than the grammar-driven
approximate node matching. However, we find that
the performance of the grammar-driven kernel is
still a bit lower than the feature-based method. This
is not surprising since tree kernel methods only fo-
cus on modeling tree structure information. In this
paper, it captures the syntactic parse tree structure
features only while the features used in the feature-
based methods cover more knowledge sources.

In order to make full use of the syntactic structure
information and the other useful diverse flat fea-
tures, we present a composite kernel to combine the
grammar-driven hybrid kernel and feature-based
method with polynomial kernel:

(1) (0 1)comp hybrid polyK K Kγ γ γ= + − ≤ ≤
Evaluation on the development set shows that the
composite kernel yields the best performance when
γ is set to 0.3. Using the same setting, the system
achieves the performance of 91.02% in Accuracy
in the same test set. It shows statistically significant
improvement (χ2 test with p= 0.10) over using the
standard features with the polynomial kernel (γ = 0,
Accuracy = 89.92%) and using the grammar-driven
hybrid convolution tree kernel (γ = 1, Accuracy =
87.96%). The main reason is that the tree kernel
can capture effectively more structure features
while the standard flat features can cover some
other useful features, such as Voice, SubCat, which
are hard to be covered by the tree kernel. The ex-
perimental results suggest that these two kinds of
methods are complementary to each other.

In order to further compare with other methods,
we also do experiments on the dataset of English
PropBank I (LDC2004T14). The training, develop-

ment and test sets follow the conventional split of
Sections 02-21, 00 and 23. Table 3 compares our
method with other previously best-reported methods
with the same setting as discussed previously. It
shows that our method outperforms the previous
best-reported one with a relative error rate reduction
of 10.8% (0.97/(100-91)). This further verifies the
effectiveness of the grammar-driven kernel method
for semantic role classification.

Method Accuracy (%)
Ours (Composite Kernel) 91.97
Moschitti (2006): PAF kernel only 87.7
Jiang et al. (2005): feature based 90.50
Pradhan et al. (2005a): feature based 91.0

Table 3: Performance comparison between our
method and previous work

Training Time Method
 4 Sections 19 Sections

Ours: grammar-
driven tree kernel

~8.1 hours ~7.9 days

Moschitti (2006):
non-grammar-driven
tree kernel

~7.9 hours ~7.1 days

Table 4: Training time comparison

Table 4 reports the training times of the two ker-
nels. We can see that 1) the two kinds of convolu-
tion tree kernels have similar computing time. Al-
though computing the grammar-driven one requires
exponential time in its worst case, however, in
practice, it may only need 1 2(| | | |)O N N⋅ or lin-
ear and 2) it is very time-consuming to train a SVM
classifier in a large dataset.

5 Conclusion and Future Work

In this paper, we propose a novel grammar-driven
convolution tree kernel for semantic role classifica-
tion. More linguistic knowledge is considered in
the new kernel design. The experimental results
verify that the grammar-driven kernel is more ef-
fective in capturing syntactic structure features than
the previous convolution tree kernel because it al-
lows grammar-driven approximate matching of
substructures and node features. We also discuss
the criteria to determine the optional nodes in a

206

CFG rule in defining our grammar-driven convolu-
tion tree kernel.

The extension of our work is to improve the per-
formance of the entire semantic role labeling system
using the grammar-driven tree kernel, including all
four stages: pruning, semantic role identification,
classification and post inference. In addition, a
more interesting research topic is to study how to
integrate linguistic knowledge and tree kernel
methods to do feature selection for tree kernel-
based NLP applications (Suzuki et al., 2004). In
detail, a linguistics and statistics-based theory that
can suggest the effectiveness of different substruc-
ture features and whether they should be generated
or not by the tree kernels would be worked out.

References
C. F. Baker, C. J. Fillmore, and J. B. Lowe. 1998. The

Berkeley FrameNet Project. COLING-ACL-1998

Xavier Carreras and Lluıs Màrquez. 2004. Introduction to
the CoNLL-2004 shared task: Semantic role labeling.
CoNLL-2004

Xavier Carreras and Lluıs Màrquez. 2005. Introduction to
the CoNLL-2005 shared task: Semantic role labeling.
CoNLL-2005

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings ofNAACL-2000

Wanxiang Che, Min Zhang, Ting Liu and Sheng Li.
2006. A hybrid convolution tree kernel for semantic
role labeling. COLING-ACL-2006(poster)

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. NIPS-2001

 Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics,
28(3):245–288

David Haussler. 1999. Convolution kernels on discrete
structures. Technical Report UCSC-CRL-99-10

Zheng Ping Jiang, Jia Li and Hwee Tou Ng. 2005. Se-
mantic argument classification exploiting argument
interdependence. IJCAI-2005

T. Joachims. 1998. Text Categorization with Support
Vecor Machine: learning with many relevant fea-
tures. ECML-1998

Kashima H. and Koyanagi T. 2003. Kernels for Semi-
Structured Data. ICML-2003

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello
Cristianini and Chris Watkins. 2002. Text classifica-

tion using string kernels. Journal of Machine Learn-
ing Research, 2:419–444

Mitchell P. Marcus, Mary Ann Marcinkiewicz and Bea-
trice Santorini. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330

Alessandro Moschitti. 2004. A study on convolution ker-
nels for shallow statistic parsing. ACL-2004

Alessandro Moschitti. 2006. Syntactic kernels for natu-
ral language learning: the semantic role labeling
case. HLT-NAACL-2006 (short paper)

Rodney D. Nielsen and Sameer Pradhan. 2004. Mixing
weak learners in semantic parsing. EMNLP-2004

Martha Palmer, Dan Gildea and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of seman-
tic roles. Computational Linguistics, 31(1)

Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne
Ward, James H. Martin and Daniel Jurafsky. 2005a.
Support vector learning for semantic argument classi-
fication. Journal of Machine Learning

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James
Martin and Daniel Jurafsky. 2005b. Semantic role la-
beling using different syntactic views. ACL-2005

Vasin Punyakanok, Dan Roth, Wen-tau Yih and Dav Zi-
mak. 2004. Semantic role labeling via integer linear
programming inference. COLING-2004

Vasin Punyakanok, Dan Roth and Wen Tau Yih. 2005.
The necessity of syntactic parsing for semantic role
labeling. IJCAI-2005

Libin Shen, Anoop Sarkar and A. K. Joshi. 2003. Using
LTAG based features in parse reranking. EMNLP-03

Jun Suzuki, Hideki Isozaki and Eisaku Maede. 2004.
Convolution kernels with feature selection for Natu-
ral Language processing tasks. ACL-2004

Vladimir N. Vapnik. 1998. Statistical Learning Theory.
Wiley

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for semantic role labeling. EMNLP-2004

Dmitry Zelenko, Chinatsu Aone, and Anthony Rich-
ardella. 2003. Kernel methods for relation extraction.
Machine Learning Research, 3:1083–1106

Min Zhang, Jie Zhang, Jian Su and Guodong Zhou.
2006. A Composite Kernel to Extract Relations be-
tween Entities with both Flat and Structured Fea-
tures. COLING-ACL-2006

207

