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Abstract

We show that the problems of parsing and sur-
face realization for grammar formalisms with
“context-free” derivations, coupled with Mon-
tague semantics (under a certain restriction) can
be reduced in a uniform way to Datalog query
evaluation. As well as giving a polynomial-
time algorithm for computing all derivation trees
(in the form of a shared forest) from an in-
put string or input logical form, this reduction
has the following complexity-theoretic conse-
quences for all such formalisms: (i) the de-
cision problem of recognizing grammaticality
(surface realizability) of an input string (logical
form) is in LOGCFL; and (ii) the search prob-
lem of finding one logical form (surface string)
from an input string (logical form) is in func-
tional LOGCFL. Moreover, the generalized sup-
plementary magic-sets rewriting of the Datalog
program resulting from the reduction yields ef-
ficient Earley-style algorithms for both parsing
and generation.

1 Introduction

The representation of context-free grammars (aug-
mented with features) in terms of definite clause pro-
grams is well-known. In the case of a bare-bone
CFG, the corresponding program is in the function-
free subset of logic programming, known as Dat-
alog. For example, determining whether a string
John found a unicorn belongs to the language of the
CFG in Figure 1 is equivalent to deciding whether
the Datalog program in Figure 2 together with the
database in (1) can derive the query “?−S(0, 4).”

(1) John(0, 1). found(1, 2). a(2, 3). unicorn(3, 4).

S → NP VP
VP → V NP
V → V Conj V
NP → Det N
NP → John

V → found
V → caught
Conj → and
Det → a
N → unicorn

Figure 1: A CFG.

S(i, j) :− NP(i, k),VP(k, j).
VP(i, j) :− V(i, k),NP(k, j).
V(i, j) :− V(i, k),Conj(k, l),V(l, j).
NP(i, j) :− Det(i, k),N(k, j).
NP(i, j) :− John(i, j).

V(i, j) :− found(i, j).
V(i, j) :− caught(i, j).
Conj(i, j) :− and(i, j).
Det(i, j) :− a(i, j).
N(i, j) :− unicorn(i, j).

Figure 2: The Datalog representation of a CFG.

By naive (or seminaive) bottom-up evaluation
(see, e.g., Ullman, 1988), the answer to such a query
can be computed in polynomial time in the size of
the database for any Datalog program. By recording
rule instances rather than derived facts, a packed rep-
resentation of the complete set of Datalog derivation
trees for a given query can also be obtained in poly-
nomial time by the same technique. Since a Data-
log derivation tree uniquely determines a grammar
derivation tree, this gives a reduction of context-free
recognition and parsing to query evaluation in Data-
log.

In this paper, we show that a similar reduction
to Datalog is possible for more powerful grammar
formalisms with “context-free” derivations, such as
(multi-component) tree-adjoining grammars (Joshi
and Schabes, 1997; Weir, 1988), IO macro gram-
mars (Fisher, 1968), and (parallel) multiple context-
free grammars (Seki et al., 1991). For instance, the
TAG in Figure 3 is represented by the Datalog pro-
gram in Figure 4. Moreover, the method of reduc-
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Figure 3: A TAG with one initial tree (left) and one
auxiliary tree (right)

S(p1, p3) :− A(p1, p3, p2, p2).
A(p1, p8, p4, p5) :− A(p2, p7, p3, p6), a(p1, p2), b(p3, p4),

c(p5, p6), d(p7, p8).
A(p1, p2, p1, p2).

Figure 4: The Datalog representation of a TAG.

tion extends to the problem of tactical generation
(surface realization) for these grammar formalisms
coupled with Montague semantics (under a certain
restriction). Our method essentially relies on the en-
coding of different formalisms in terms of abstract
categorial grammars (de Groote, 2001).
The reduction to Datalog makes it possible to ap-

ply to parsing and generation sophisticated evalu-
ation techniques for Datalog queries; in particular,
an application of generalized supplementary magic-
sets rewriting (Beeri and Ramakrishnan, 1991) au-
tomatically yields Earley-style algorithms for both
parsing and generation. The reduction can also
be used to obtain a tight upper bound, namely
LOGCFL, on the computational complexity of the
problem of recognition, both for grammaticality of
input strings and for surface realizability of input
logical forms.
With regard to parsing and recognition of in-

put strings, polynomial-time algorithms and the
LOGCFL upper bound on the computational com-
plexity are already known for the grammar for-
malisms covered by our results (Engelfriet, 1986);
nevertheless, we believe that our reduction to Data-
log offers valuable insights. Concerning generation,
our results seem to be entirely new.1

2 Context-free grammars on λ-terms

Consider an augmentation of the grammar in Fig-
ure 1 with Montague semantics, where the left-hand

1We only consider exact generation, not taking into account
the problem of logical form equivalence, which will most likely
render the problem of generation computationally intractable
(Moore, 2002).

S(X1X2) → NP(X1) VP(X2)
VP(λx.X2(λy.X1yx)) → V(X1) NP(X2)
V(λyx.X2(X1yx)(X3yx)) → V(X1) Conj(X2) V(X3)
NP(X1X2) → Det(X1) N(X2)
NP(λu.u Johne) → John
V(finde→e→t) → found
V(catche→e→t) → caught
Conj(∧t→t→t) → and
Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))) → a
N(unicorne→t) → unicorn

Figure 5: A context-free grammar with Montague
semantics.
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Figure 6: A derivation tree.

side of each rule is annotated with a λ-term that tells
how the meaning of the left-hand side is composed
from the meanings of the right-hand side nontermi-
nals, represented by upper-case variables X1, X2, . . .
(Figure 5).2

The meaning of a sentence is computed from its
derivation tree. For example, John found a unicorn
has the derivation tree in Figure 6, and the grammar
rules assign its root node the λ-term

(λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)),

which β-reduces to the λ-term

(2) ∃(λy.∧(unicorn y)(find y John))

encoding the first-order logic formula representing
the meaning of the sentence (i.e., its logical form).
Thus, computing the logical form(s) of a sentence

involves parsing and λ-term normalization. To find a
sentence expressing a given logical form, it suffices

2We follow standard notational conventions in typed λ-
calculus. Thus, an application M1M2M3 (written without paren-
theses) associates to the left, λx.λy.M is abbreviated to λxy.M,
and α→ β→ γ stands for α→ (β→ γ). We refer the reader
to Hindley, 1997 or Sørensen and Urzyczyn, 2006 for standard
notions used in simply typed λ-calculus.
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S(X1X2) :− NP(X1),VP(X2).
VP(λx.X2(λy.X1yx)) :− V(X1),NP(X2).
V(λyx.X2(X1yx)(X3yx)) :− V(X1),Conj(X2),V(X3).
NP(X1X2) :− Det(X1),N(X2).
NP(λu.u Johne).
V(finde→e→t).
V(catche→e→t).
Conj(∧t→t→t).
Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(unicorne→t).

Figure 7: A CFLG.

to find a derivation tree whose root node is associ-
ated with a λ-term that β-reduces to the given log-
ical form; the desired sentence can simply be read
off from the derivation tree. At the heart of both
tasks is the computation of the derivation tree(s) that
yield the input. In the case of generation, this may be
viewed as parsing the input λ-term with a “context-
free” grammar that generates a set of λ-terms (in
normal form) (Figure 7), which is obtained from the
original CFG with Montague semantics by stripping
off terminal symbols. Determining whether a given
logical form is surface realizable with the original
grammar is equivalent to recognition with the result-
ing context-free λ-term grammar (CFLG).
In a CFLG such as in Figure 7, constants appear-

ing in the λ-terms have preassigned types indicated
by superscripts. There is a mapping σ from nonter-
minals to their types (σ = {S �→ t,NP �→ (e→ t)→
t,VP �→ e→t,V �→ e→e→t,Conj �→ t→t→t,Det �→
(e→t)→(e→t)→t,N �→ e→t}). A rule that has A on
the left-hand side and B1, . . . , Bn as right-hand side
nonterminals has its left-hand side annotated with a
well-formed λ-term M that has type σ(A) under the
type environment X1 :σ(B1), . . . , Xn :σ(Bn) (in sym-
bols, X1 : σ(B1), . . . , Xn : σ(Bn) � M : σ(A)).
What we have called a context-free λ-term gram-

mar is nothing but an alternative notation for an ab-
stract categorial grammar (de Groote, 2001) whose
abstract vocabulary is second-order, with the restric-
tion to linear λ-terms removed.3 In the linear case,
Salvati (2005) has shown the recognition/parsing
complexity to be PTIME, and exhibited an algorithm
similar to Earley parsing for TAGs. Second-order

3A λ-term is a λI-term if each occurrence of λ binds at least
one occurrence of a variable. A λI-term is linear if no subterm
contains more than one free occurrence of the same variable.

S(λy.X1(λz.z)y) :− A(X1).
A(λxy.ao→o(X1(λz.bo→o(x(co→oz)))(do→oy))) :− A(X1).
A(λxy.xy).

Figure 8: The CFLG encoding a TAG.

linear ACGs are known to be expressive enough to
encode well-known mildly context-sensitive gram-
mar formalisms in a straightforward way, includ-
ing TAGs and multiple context-free grammars (de
Groote, 2002; de Groote and Pogodalla, 2004).
For example, the linear CFLG in Figure 8 is an

encoding of the TAG in Figure 3, whereσ(S) = o→o
and σ(A) = (o→ o)→ o→ o (see de Groote, 2002
for details of this encoding). In encoding a string-
generating grammar, a CFLG uses o as the type of
string position and o→ o as the type of string. Each
terminal symbol is represented by a constant of type
o→o, and a string a1 . . . an is encoded by the λ-term
λz.ao→o

1 (. . . (ao→o
n z) . . . ), which has type o→ o.

A string-generating grammar coupled with Mon-
tague semantics may be represented by a syn-
chronous CFLG, a pair of CFLGs with matching
rule sets (de Groote 2001). The transduction be-
tween strings and logical forms in either direction
consists of parsing the input λ-term with the source-
side grammar and normalizing the λ-term(s) con-
structed in accordance with the target-side grammar
from the derivation tree(s) output by parsing.

3 Reduction to Datalog

We show that under a weaker condition than linear-
ity, a CFLG can be represented by a Datalog pro-
gram, obtaining a tight upper bound (LOGCFL) on
the recognition complexity. Due to space limitation,
our presentation here is kept at an informal level;
formal definitions and rigorous proof of correctness
will appear elsewhere.
We use the grammar in Figure 7 as an example,

which is represented by the Datalog program in Fig-
ure 9. Note that all λ-terms in this grammar are al-
most linear in the sense that they are λI-terms where
any variable occurring free more than once in any
subterm must have an atomic type. Our construction
is guaranteed to be correct only when this condition
is met.
Each Datalog rule is obtained from the corre-

sponding grammar rule in the following way. Let
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S(p1) :− NP(p1, p2, p3),VP(p2, p3).
VP(p1, p4) :− V(p2, p4, p3),NP(p1, p2, p3).
V(p1, p4, p3) :−

V(p2, p4, p3),Conj(p1, p5, p2),V(p5, p4, p3).
NP(p1, p4, p5) :− Det(p1, p4, p5, p2, p3),N(p2, p3).
NP(p1, p1, p2) :− John(p2).
V(p1, p3, p2) :− find(p1, p3, p2).
V(p1, p3, p2) :− catch(p1, p3, p2).
Conj(p1, p3, p2) :− ∧(p1, p3, p2).
Det(p1, p5, p4, p3, p4) :− ∃(p1, p2, p4),∧(p2, p5, p3).
N(p1, p2) :− unicorn(p1, p2).

Figure 9: The Datalog representation of a CFLG.

M be the λ-term annotating the left-hand side of the
grammar rule. We first obtain a principal (i.e., most
general) typing of M.4 In the case of the second rule,
this is

X1 : p3→ p4→ p2, X2 : (p3→ p2)→ p1 �
λx.X2(λy.X1yx) : p4→ p1.

We then remove → and parentheses from the types
in the principal typing and write the resulting se-
quences of atomic types in reverse.5 We obtain the
Datalog rule by replacing Xi and M in the grammar
rule with the sequence coming from the type paired
with Xi and M, respectively. Note that atomic types
in the principal typing become variables in the Data-
log rule. When there are constants in the λ-term M,
they are treated like free variables. In the case of the
second-to-last rule, the principal typing is

∃ : (p4→ p2)→ p1, ∧ : p3→ p5→ p2 �
λuv.∃(λy.∧(uy)(vy)) : (p4→ p3)→ (p4→ p5)→ p1.

If the same constant occurs more than once, distinct
occurrences are treated as distinct free variables.
The construction of the database representing the

input λ-term is similar, but slightly more complex.
A simple case is the λ-term (2), where each constant
occurs just once. We compute its principal typing,
treating constants as free variables.6

∃ : (4→ 2)→ 1, ∧ : 3→ 5→ 2,
unicorn : 4→ 3, find : 4→ 6→ 5 , John : 6

� ∃(λy.∧(unicorn y)(find y John)) : 1.
4To be precise, we must first convert M to its η-long form

relative to the type assigned to it by the grammar. For example,
X1X2 in the first rule is converted to X1(λx.X2x).

5The reason for reversing the sequences of atomic types is
to reconcile the λ-term encoding of strings with the convention
of listing string positions from left to right in databases like (1).

6We assume that the input λ-term is in η-long normal form.

We then obtain the corresponding database (3) and
query (4) from the antecedent and succedent of this
judgment, respectively. Note that here we are using
1, 2, 3, . . . as atomic types, which become database
constants.

∃(1, 2, 4). ∧(2, 5, 3). unicorn(3, 4).
find(5, 6, 4). John(6).

(3)

?−S(1).(4)

When the input λ-term contains more than one oc-
currence of the same constant, it is not always cor-
rect to simply treat them as distinct free variables,
unlike in the case of λ-terms annotating grammar
rules. Consider the λ-term (5) (John found and
caught a unicorn):

(5) ∃(λy.∧(unicorn y)(∧(find y John)(catch y John))).

Here, the two occurrences of John must be treated
as the same variable. The principal typing is (6) and
the resulting database is (7).

∃ : (4→ 2)→ 1, ∧1 : 3→ 5→ 2,
unicorn : 4→ 3, ∧2 : 6→ 8→ 5,
find : 4→ 7→ 6, John : 7, catch : 4→ 7→ 8
� ∃(λy.∧1(unicorn y)

(∧2(find y John)(catch y John))) : 1.

(6)

∃(1, 2, 4). ∧(2, 5, 3). ∧(5, 8, 6). unicron(3, 4).
find(6, 7, 4). John(7). catch(8, 7, 4).

(7)

It is not correct to identify the two occurrences of
∧ in this example. The rule is to identify distinct
occurrences of the same constant just in case they
occur in the same position within α-equivalent sub-
terms of an atomic type. This is a necessary con-
dition for those occurrences to originate as one and
the same occurrence in the non-normal λ-term at the
root of the derivation tree. (As a preprocessing step,
it is also necessary to check that distinct occurrences
of a bound variable satisfy the same condition, so
that the given λ-term is β-equal to some almost lin-
ear λ-term.7)

7Note that the way we obtain a database from an input
λ-term generalizes the standard database representation of a
string: from the λ-term encoding λz.ao→o

1 (. . . (ao→o
n z) . . . ) of a

string a1 . . . an, we obtain the database {a1(0, 1), . . . , an(n−1, n)}.
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4 Correctness of the reduction

We sketch some key points in the proof of cor-
rectness of our reduction. The λ-term N obtained
from the input λ-term by replacing occurrences of
constants by free variables in the manner described
above is the normal form of some almost linear λ-
term N′. The leftmost reduction from an almost lin-
ear λ-term to its normal form must be non-deleting
and almost non-duplicating in the sense that when
a β-redex (λx.P)Q is contracted, Q is not deleted,
and moreover it is not duplicated unless the type
of x is atomic. We can show that the Subject Ex-
pansion Theorem holds for such β-reduction, so the
principal typing of N is also the principal typing of
N′. By a slight generalization of a result by Aoto
(1999), this typing Γ � N′ : α must be negatively
non-duplicated in the sense that each atomic type
has at most one negative occurrence in it. By Aoto
and Ono’s (1994) generalization of the Coherence
Theorem (see Mints, 2000), it follows that every λ-
term P such that Γ′ � P : α for some Γ′ ⊆ Γ must be
βη-equal to N′ (and consequently to N).
Given the one-one correspondence between the

grammar rules and the Datalog rules, a Data-
log derivation tree uniquely determines a grammar
derivation tree (see Figure 10 as an example). This
relation is not one-one, because a Datalog deriva-
tion tree contains database constants from the input
database. This extra information determines a typ-
ing of the λ-term P at the root of the grammar deriva-
tion tree (with occurrences of constants in the λ-term
corresponding to distinct facts in the database re-
garded as distinct free variables):

John : 6, find : 4→ 6→ 5, ∃ : (4→ 2)→ 1,
∧ : 3→ 5→ 2, unicorn : 4→ 3 �
(λu.u John)
(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)) : 1.

The antecedent of this typing must be a subset of the
antecedent of the principal typing of the λ-term N
from which the input database was obtained. By the
property mentioned at the end of the preceding para-
graph, it follows that the grammar derivation tree is
a derivation tree for the input λ-term.
Conversely, consider the λ-term P (with distinct

occurrences of constants regarded as distinct free
variables) at the root of a grammar derivation tree

for the input λ-term. We can show that there is a
substitution θ which maps the free variables of P
to the free variables of the λ-term N used to build
the input database such that θ sends the normal form
of P to N. Since P is an almost linear λ-term, the
leftmost reduction from Pθ to N is non-deleting and
almost non-duplicating. By the Subject Expansion
Theorem, the principal typing of N is also the prin-
cipal typing of Pθ, and this together with the gram-
mar derivation tree determines a Datalog derivation
tree.

5 Complexity-theoretic consequences

Let us call a rule A(M) :− B1(X1), . . . , Bn(Xn) in a
CFLG an ε-rule if n = 0 and M does not contain any
constants. We can eliminate ε-rules from an almost
linear CFLG by the same method that Kanazawa and
Yoshinaka (2005) used for linear grammars, noting
that for any Γ and α, there are only finitely many
almost linear λ-terms M such that Γ � M : α. If a
grammar has no ε-rule, any derivation tree for the
input λ-term N that has a λ-term P at its root node
corresponds to a Datalog derivation tree whose num-
ber of leaves is equal to the number of occurrences
of constants in P, which cannot exceed the number
of occurrences of constants in N.
A Datalog program P is said to have the poly-

nomial fringe property relative to a class D of
databases if there is a polynomial p(n) such that for
every database D in D of n facts and every query q
such that P∪D derives q, there is a derivation tree for
q whose fringe (i.e., sequence of leaves) is of length
at most p(n). For such P and D, it is known that
{ (D, q) | D ∈ D,P ∪ D derives q } is in the complex-
ity class LOGCFL (Ullman and Van Gelder, 1988;
Kanellakis, 1988).
We state without proof that the database-query

pair (D, q) representing an input λ-term N can be
computed in logspace. By padding Dwith extra use-
less facts so that the size of D becomes equal to the
number of occurrences of constants in N, we obtain
a logspace reduction from the set of λ-terms gener-
ated by an almost linear CFLG to a set of the form
{ (D, q) | D ∈ D,P ∪ D � q }, where P has the poly-
nomial fringe property relative to D. This shows
that the problem of recognition for an almost linear
CFLG is in LOGCFL.
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S(1)

NP(1, 1, 6)

John(6)

VP(1, 6)

V(5, 6, 4)

find(5, 6, 4)

NP(1, 5, 4)

Det(1, 5, 4, 3, 4)

∃(1, 2, 4) ∧(2, 5, 3)

N(3, 4)

unicorn(3, 4)

S((λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)))

NP(λu.u John) VP(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)))

V(find) NP((λuv.∃(λy.∧(uy)(vy))) unicorn)

Det(λuv.∃(λy.∧(uy)(vy))) N(unicorn)

Figure 10: A Datalog derivation tree (left) and the corresponding grammar derivation tree (right)

By the main result of Gottlob et al. (2002), the re-
lated search problem of finding one derivation tree
for the input λ-term is in functional LOGCFL, i.e.,
the class of functions that can be computed by a
logspace-bounded Turing machine with a LOGCFL
oracle. In the case of a synchronous almost linear
CFLG, the derivation tree found from the source λ-
term can be used to compute a target λ-term. Thus,
to the extent that transduction back and forth be-
tween strings and logical forms can be expressed by
a synchronous almost linear CFLG, the search prob-
lem of finding one logical form of an input sentence
and that of finding one surface realization of an input
logical form are both in functional LOGCFL.8 As a
consequence, there are efficient parallel algorithms
for these problems.

6 Regular sets of trees as input

Almost linear CFLGs can represent a substan-
tial fragment of a Montague semantics for En-
glish and such “linear” grammar formalisms as
(multi-component) tree-adjoining grammars (both
as string grammars and as tree grammars) and mul-
tiple context-free grammars. However, IO macro
grammars and parallel multiple context-free gram-
mars cannot be directly represented because repre-
senting string copying requires multiple occurrences
of a variable of type o → o. This problem can be
solved by switching from strings to trees. We con-
vert the input string into the regular set of binary
trees whose yield equals the input string (using c

8If the target-side grammar is not linear, the normal form of
the target λ-term cannot be explicitly computed because its size
may be exponential in the size of the source λ-term. Neverthe-
less, a typing that serves to uniquely identify the target λ-term
can be computed from the derivation tree in logspace. Also, if
the target-side grammar is linear and string-generating, the tar-
get string can be explicitly computed from the derivation tree in
logspace (Salvati, 2007).

as the sole symbol of rank 2), and turn the gram-
mar into a tree grammar, replacing all instances of
string concatenation in the grammar with the tree
operation t1, t2 �→ c(t1, t2). This way, a string gram-
mar is turned into a tree grammar that generates a
set of trees whose image under the yield function is
the language of the string grammar. (In the case of
an IO macro grammar, the result is an IO context-
free tree grammar (Engelfriet, 1977).) String copy-
ing becomes tree copying, and the resulting gram-
mar can be represented by an almost linear CFLG
and hence by a Datalog program. The regular set
of all binary trees that yield the input string is repre-
sented by a database that is constructed from a deter-
ministic bottom-up finite tree automaton recogniz-
ing it. Determinism is important for ensuring cor-
rectness of this reduction. Since the database can
be computed from the input string in logspace, the
complexity-theoretic consequences of the last sec-
tion carry over here.

7 Magic sets and Earley-style algorithms

Magic-sets rewriting of a Datalog program allows
bottom-up evaluation to avoid deriving useless facts
by mimicking top-down evaluation of the original
program. The result of the generalized supplemen-
tary magic-sets rewriting of Beeri and Ramakrish-
nan (1991) applied to the Datalog program repre-
senting a CFG essentially coincides with the deduc-
tion system (Shieber et al., 1995) or uninstantiated
parsing system (Sikkel, 1997) for Earley parsing.
By applying the same rewriting method to Datalog
programs representing almost linear CFLGs, we can
obtain efficient parsing and generation algorithms
for various grammar formalisms with context-free
derivations.
We illustrate this approach with the program

in Figure 4, following the presentation of Ullman
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(1989a; 1989b). We assume the query to take the
form “?− S(0, x).”, so that the input database can be
processed incrementally. The program is first made
safe by eliminating the possibility of deriving non-
ground atoms:

S(p1, p3) :− A(p1, p3, p2, p2).
A(p1, p8, p4, p5) :− A(p2, p7, p3, p6), a(p1, p2), b(p3, p4), c(p5, p6), d(p7, p8).
A(p1, p8, p4, p5) :− a(p1, p2), b(p2, p4), c(p5, p6), d(p6, p8).

The subgoal rectification removes duplicate argu-
ments from subgoals, creating new predicates as
needed:

S(p1, p3) :− B(p1, p3, p2).
A(p1, p8, p4, p5) :− A(p2, p7, p3, p6), a(p1, p2), b(p3, p4), c(p5, p6), d(p7, p8).
A(p1, p8, p4, p5) :− a(p1, p2), b(p2, p4), c(p5, p6), d(p6, p8).
B(p1, p8, p4) :− A(p2, p7, p3, p6), a(p1, p2), b(p3, p4), c(p4, p6), d(p7, p8).
B(p1, p8, p4) :− a(p1, p2), b(p2, p4), c(p4, p6), d(p6, p8).

We then attach to predicates adornments indicating
the free/bound status of arguments in top-down eval-
uation, reordering subgoals so that as many argu-
ments as possible are marked as bound:

Sbf(p1, p3) :− Bbff(p1, p3, p2).
Bbff(p1, p8, p4) :− abf(p1, p2), Abfff(p2, p7, p3, p6), bbf(p3, p4), cbb(p4, p6),

dbf(p7, p8).
Bbff(p1, p8, p4) :− abf(p1, p2), bbf(p2, p4), cbf(p4, p6), dbf(p6, p8).
Abfff(p1, p8, p4, p5) :− abf(p1, p2), Abfff(p2, p7, p3, p6), bbf(p3, p4), cbb(p5, p6),

dbf(p7, p8).
Abfff(p1, p8, p4, p5) :− abf(p1, p2), bbf(p2, p4), cff(p5, p6), dbf(p6, p8).

The generalized supplementary magic-sets rewriting
finally gives the following rule set:

r1 : m B(p1) :− m S(p1).
r2 : S(p1, p3) :− m B(p1), B(p1, p3, p2).
r3 : sup2.1(p1, p2) :− m B(p1), a(p1, p2).
r4 : sup2.2(p1, p7, p3, p6) :− sup2.1(p1, p2), A(p2, p7, p3, p6).
r5 : sup2.3(p1, p7, p6, p4) :− sup2.2(p1, p7, p3, p6), b(p3, p4).
r6 : sup2.4(p1, p7, p4) :− sup2.3(p1, p7, p6, p4), c(p4, p6).
r7 : B(p1, p8, p4) :− sup2.4(p1, p7, p4), d(p7, p8).
r8 : sup3.1(p1, p2) :− m B(p1), a(p1, p2).
r9 : sup3.2(p1, p4) :− sup3.1(p1, p2), b(p2, p4).

r10 : sup3.3(p1, p4, p6) :− sup3.2(p1, p4), c(p4, p6).
r11 : B(p1, p8, p4) :− sup3.3(p1, p4, p6), d(p6, p8).
r12 : m A(p2) :− sup2.1(p1, p2).
r13 : m A(p2) :− sup4.1(p1, p2).
r14 : sup4.1(p1, p2) :− m A(p1), a(p1, p2).
r15 : sup4.2(p1, p7, p3, p6) :− sup4.1(p1, p2), A(p2, p7, p3, p6).
r16 : sup4.3(p1, p7, p6, p4) :− sup4.2(p1, p7, p3, p6), b(p3, p4).
r17 : sup4.4(p1, p7, p4, p5) :− sup4.3(p1, p7, p6, p4), c(p5, p6).
r18 : A(p1, p8, p4, p5) :− sup4.4(p1, p7, p4, p5), d(p7, p8).
r19 : sup5.1(p1, p2) :− m A(p1), a(p1, p2).
r20 : sup5.2(p1, p4) :− sup5.1(p1, p2), b(p2, p4).
r21 : sup5.3(p1, p4, p5, p6) :− sup5.2(p1, p4), c(p5, p6).
r22 : A(p1, p8, p4, p5) :− sup5.3(p1, p4, p5, p6), d(p6, p8).

The following version of chart parsing adds con-
trol structure to this deduction system:

1. () Initialize the chart to the empty set, the
agenda to the singleton {m S(0)}, and n to 0.

2. Repeat the following steps:

(a) Repeat the following steps until the
agenda is exhausted:

i. Remove a fact from the agenda, called
the trigger.

ii. Add the trigger to the chart.
iii. Generate all facts that are immediate

consequences of the trigger together
with all facts in the chart, and add to
the agenda those generated facts that
are neither already in the chart nor in
the agenda.

(b) () Remove the next fact from the in-
put database and add it to the agenda, in-
crementing n. If there is no more fact in
the input database, go to step 3.

3. If S(0, n) is in the chart, accept; otherwise re-
ject.

The following is the trace of the algorithm on in-
put string aabbccdd:

1. m S(0) 

2. m B(0) r1, 1
3. a(0, 1) 

4. sup2.1(0, 1) r3, 2, 3
5. sup3.1(0, 1) r8, 2, 3
6. m A(1) r12, 4
7. a(1, 2) 

8. sup4.1(1, 2) r14, 6, 7
9. sup5.1(1, 2) r19, 6, 7
10. m A(2) r13, 8
11. b(2, 3) 

12. sup5.2(1, 3) r20, 9, 11
13. b(3, 4) 

14. c(4, 5) 

15. sup5.3(1, 3, 4, 5) r21, 12, 14
16. c(6, 5) 

17. sup5.3(1, 3, 5, 6) r21, 12, 16
18. d(6, 7) 

19. A(1, 7, 3, 5) r22, 17, 18
20. sup2.2(0, 7, 3, 5) r4, 4, 19
21. sup2.3(0, 7, 5, 4) r5, 13, 20
22. sup2.4(0, 7, 4) r6, 14, 21
23. d(7, 8) 

24. B(0, 8, 4) r7, 22, 23
25. S(0, 8) r2, 2, 24

Note that unlike existing Earley-style parsing al-
gorithms for TAGs, the present algorithm is an in-
stantiation of a general schema that applies to pars-
ing with more powerful grammar formalisms as well
as to generation with Montague semantics.

8 Conclusion

Our reduction to Datalog brings sophisticated tech-
niques for Datalog query evaluation to the problems
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of parsing and generation, and establishes a tight
bound on the computational complexity of recogni-
tion for a wide range of grammars. In particular, it
shows that the use of higher-order λ-terms for se-
mantic representation need not be avoided for the
purpose of achieving computational tractability.
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