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Abstract

In this paper, we compare the per-
formance of a state-of-the-art statistical
parser (Bikel, 2004) in parsing written and
spoken language and in generating sub-
categorization cues from written and spo-
ken language. Although Bikel’s parser
achieves a higher accuracy for parsing
written language, it achieves a higher ac-
curacy when extracting subcategorization
cues from spoken language. Additionally,
we explore the utility of punctuation in
helping parsing and extraction of subcat-
egorization cues. Our experiments show
that punctuation is of little help in pars-
ing spoken language and extracting sub-
categorization cues from spoken language.
This indicates that there is no need to add
punctuation in transcribing spoken cor-
pora simply in order to help parsers.

1 Introduction

Robust statistical syntactic parsers, made possi-
ble by new statistical techniques (Collins, 1999;
Charniak, 2000; Bikel, 2004) and by the avail-
ability of large, hand-annotated training corpora
such as WSJ (Marcus et al., 1993) and Switch-
board (Godefrey et al., 1992), have had a major
impact on the field of natural language process-
ing. There are many ways to make use of parsers’
output. One particular form of data that can be ex-
tracted from parses is information about subcate-
gorization. Subcategorization data comes in two
forms: subcategorization frame (SCF) and sub-
categorization cue (SCC). SCFs differ from SCCs
in that SCFs contain only arguments while SCCs
contain both arguments and adjuncts. Both SCFs

and SCCs have been crucial to NLP tasks. For ex-
ample, SCFs have been used for verb disambigua-
tion and classification (Schulte im Walde, 2000;
Merlo and Stevenson, 2001; Lapata and Brew,
2004; Merlo et al., 2005) and SCCs for semantic
role labeling (Xue and Palmer, 2004; Punyakanok
et al., 2005).

Current technology for automatically acquiring
subcategorization data from corpora usually relies
on statistical parsers to generate SCCs. While
great efforts have been made in parsing written
texts and extracting subcategorization data from
written texts, spoken corpora have received little
attention. This is understandable given that spoken
language poses several challenges that are absent
in written texts, including disfluency, uncertainty
about utterance segmentation and lack of punctu-
ation. Roland and Jurafsky (1998) have suggested
that there are substantial subcategorization differ-
ences between written corpora and spoken cor-
pora. For example, while written corpora show a
much higher percentage of passive structures, spo-
ken corpora usually have a higher percentage of
zero-anaphora constructions. We believe that sub-
categorization data derived from spoken language,
if of acceptable quality, would be of more value to
NLP tasks involving a syntactic analysis of spoken
language, but we do not pursue it here.

The goals of this study are as follows:

1. Test the performance of Bikel’s parser in
parsing written and spoken language.

2. Compare the accuracy level of SCCs gen-
erated from parsed written and spoken lan-
guage. We hope that such a comparison will
shed some light on the feasibility of acquiring
SCFs from spoken language using the cur-

79



rent SCF acquisition technology initially de-
signed for written language.

3. Explore the utility of punctuation1 in pars-
ing and extraction of SCCs. It is gen-
erally recognized that punctuation helps in
parsing written texts. For example, Roark
(2001) finds that removing punctuation from
both training and test data (WSJ) decreases
his parser’s accuracy from 86.4%/86.8%
(LR/LP) to 83.4%/84.1%. However, spo-
ken language does not come with punctua-
tion. Even when punctuation is added in the
process of transcription, its utility in help-
ing parsing is slight. Both Roark (2001)
and Engel et al. (2002) report that removing
punctuation from both training and test data
(Switchboard) results in only 1% decrease in
their parser’s accuracy.

2 Experiment Design

Three models will be investigated for parsing and
extracting SCCs from the parser’s output:

1. punc: leaving punctuation in both training
and test data.

2. no-punc: removing punctuation from both
training and test data.

3. punc-no-punc: removing punctuation from
only test data.

Following the convention in the parsing com-
munity, for written language, we selected sections
02-21 of WSJ as training data and section 23 as
test data (Collins, 1999). For spoken language, we
designated section 2 and 3 of Switchboard as train-
ing data and files of sw4004 to sw4135 of section 4
as test data (Roark, 2001). Since we are also inter-
ested in extracting SCCs from the parser’s output,
we eliminated from the two test corpora all sen-
tences that do not contain verbs. Our experiments
proceed in the following three steps:

1. Tag test data using the POS-tagger described
in Ratnaparkhi (1996).

2. Parse the POS-tagged data using Bikel’s
parser.

1We use punctuation to refer to sentence-internal punctu-
ation unless otherwise specified.

label clause type desired SCCs
gerundive (NP)-GERUND

S small clause NP-NP, (NP)-ADJP
control (NP)-INF-to
control (NP)-INF-wh-to

SBAR with a complementizer (NP)-S-wh, (NP)-S-that
without a complementizer (NP)-S-that

Table 1: SCCs for different clauses

3. Extract SCCs from the parser’s output. The
extractor we built first locates each verb in the
parser’s output and then identifies the syntac-
tic categories of all its sisters and combines
them into an SCC. However, there are cases
where the extractor has more work to do.

• Finite and Infinite Clauses: In the Penn
Treebank,S andSBAR are used to label
different types of clauses, obscuring too
much detail about the internal structure
of each clause. Our extractor is designed
to identify the internal structure of dif-
ferent types of clause, as shown in Table
1.

• Passive Structures: As noted above,
Roland and Jurafsky (Roland and Juraf-
sky, 1998) have noticed that written lan-
guage tends to have a much higher per-
centage of passive structures than spo-
ken language. Our extractor is also
designed to identify passive structures
from the parser’s output.

3 Experiment Results

3.1 Parsing and SCCs

We used EVALB measures Labeled Recall (LR)
and Labeled Precision (LP) to compare the pars-
ing performance of different models. To compare
the accuracy of SCCs proposed from the parser’s
output, we calculated SCC Recall (SR) and SCC
Precision (SP). SR and SP are defined as follows:

SR =
number of correct cues from the parser’s output

number of cues from treebank parse
(1)

SP =
number of correct cues from the parser’s output

number of cues from the parser’s output
(2)

SCC Balanced F-measure=
2 ∗ SR ∗ SP

SR + SP
(3)

The results for parsing WSJ and Switchboard
and extracting SCCs are summarized in Table 2.

The LR/LP figures show the following trends:
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WSJ
model LR/LP SR/SP
punc 87.92%/88.29% 76.93%/77.70%

no-punc 86.25%/86.91% 76.96%/76.47%
punc-no-punc 82.31%/83.70% 74.62%/74.88%

Switchboard
model LR/LP SR/SP
punc 83.14%/83.80% 79.04%/78.62%

no-punc 82.42%/83.74% 78.81%/78.37%
punc-no-punc 78.62%/80.68% 75.51%/75.02%

Table 2: Results of parsing and extraction of SCCs

1. Roark (2001) showed LR/LP of
86.4%/86.8% for punctuated written
language, 83.4%/84.1% for unpunctuated
written language. We achieve a higher
accuracy in both punctuated and unpunctu-
ated written language, and the decrease if
punctuation is removed is less

2. For spoken language, Roark (2001) showed
LR/LP of 85.2%/85.6% for punctuated spo-
ken language, 84.0%/84.6% for unpunctu-
ated spoken language. We achieve a lower
accuracy in both punctuated and unpunctu-
ated spoken language, and the decrease if
punctuation is removed is less. The trends in
(1) and (2) may be due to parser differences,
or to the removal of sentences lacking verbs.

3. Unsurprisingly, if the test data is unpunctu-
ated, but the models have been trained on
punctuated language, performance decreases
sharply.

In terms of the accuracy of extraction of SCCs,
the results follow a similar pattern. However, the
utility of punctuation turns out to be even smaller.
Removing punctuation from both training and test
data results in a less than 0.3% drop in the accu-
racy of SCC extraction.

Figure 1 exhibits the relation between the ac-
curacy of parsing and that of extracting SCCs.
If we consider WSJ and Switchboard individu-
ally, there seems to exist a positive correlation
between the accuracy of parsing and that of ex-
tracting SCCs. In other words, higher LR/LP
indicates higher SR/SP. However, Figure 1 also
shows that although the parser achieves a higher
F-measure value for paring WSJ, it achieves a
higher F-measure value when generating SCCs
from Switchboard.

The fact that the parser achieves a higher accu-
racy for extracting SCCs from Switchboard than
WSJ merits further discussion. Intuitively, it

punc no−punc punc−no−punc
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Figure 1: F-measure for parsing and extraction of
SCCs

seems to be true that the shorter an SCC is, the
more likely that the parser is to get it right. This
intuition is confirmed by the data shown in Fig-
ure 2. Figure 2 plots the accuracy level of extract-
ing SCCs by SCC’s length. It is clear from Fig-
ure 2 that as SCCs get longer, the F-measure value
drops progressively for both WSJ and Switch-
board. Again, Roland and Jurafsky (1998) have
suggested that one major subcategorization differ-
ence between written and spoken corpora is that
spoken corpora have a much higher percentage of
the zero-anaphora construction. We then exam-
ined the distribution of SCCs of different length in
WSJ and Switchboard. Figure 3 shows that SCCs
of length 02 account for a much higher percentage
in Switchboard than WSJ, but it is always the other
way around for SCCs of non-zero length. This
observation led us to believe that the better per-
formance that Bikel’s parser achieves in extracting
SCCs from Switchboard may be attributed to the
following two factors:

1. Switchboard has a much higher percentage of
SCCs of length 0.

2. The parser is very accurate in extracting
shorter SCCs.

3.2 Extraction of Dependents

In order to estimate the effects of SCCs of length
0, we examined the parser’s performance in re-
trieving dependents of verbs. Every constituent
(whether an argument or adjunct) in an SCC gen-
erated by the parser is considered a dependent of

2Verbs have a length-0 SCC if they are intransitive and
have no modifiers.
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Figure 2: F-measure for SCCs of different length
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Figure 3: Distribution of SCCs by length

that verb. SCCs of length 0 will be discounted be-
cause verbs that do not take any arguments or ad-
juncts have no dependents3. In addition, this way
of evaluating the extraction of SCCs also matches
the practice in some NLP tasks such as semantic
role labeling (Xue and Palmer, 2004). For the task
of semantic role labeling, the total number of de-
pendents correctly retrieved from the parser’s out-
put affects the accuracy level of the task.

To do this, we calculated the number of depen-
dents shared by between each SCC proposed from
the parser’s output and its corresponding SCC pro-
posed from Penn Treebank. We based our cal-
culation on a modified version of Minimum Edit
Distance Algorithm. Our algorithm works by cre-
ating a shared-dependents matrix with one col-
umn for each constituent in the target sequence
(SCCs proposed from Penn Treebank) and one

3We are aware that subjects are typically also consid-
ered dependents, but we did not include subjects in our
experiments

shared-dependents[i.j] = MAX(
shared-dependents[i-1,j],
shared-dependents[i-1,j-1]+1 if target[i] = source[j],
shared-dependents[i-1,j-1] if target[i] != source[j],
shared-dependents[i,j-1])

Table 3: The algorithm for computing shared de-
pendents

INF #5 1 1 2 3
ADVP #4 1 1 2 2
PP-in #3 1 1 2 2
NP #2 1 1 1 1
NP #1 1 1 1 1

#0 #1 #2 #3 #4
NP S-that PP-in INF

Table 4: An example of computing the number of
shared dependents

row for each constituent in the source sequence
(SCCs proposed from the parser’s output). Each
cell shared-dependent[i,j] contains the number of
constituents shared between the firsti constituents
of the target sequence and the firstj constituents of
the source sequence. Each cell can then be com-
puted as a simple function of the three possible
paths through the matrix that arrive there. The al-
gorithm is illustrated in Table 3.

Table 4 shows an example of how the algo-
rithm works with NP-S-that-PP-in-INF as the tar-
get sequence and NP-NP-PP-in-ADVP-INF as the
source sequence. The algorithm returns 3 as the
number of dependents shared by two SCCs.

We compared the performance of Bikel’s parser
in retrieving dependents from written and spo-
ken language over all three models using De-
pendency Recall (DR) and Dependency Precision
(DP). These metrics are defined as follows:

DR =
number of correct dependents from parser’s output

number of dependents from treebank parse
(4)

DP =
number of correct dependents from parser’s output

number of dependents from parser’s output
(5)

Dependency F-measure=
2 ∗ DR ∗ DP

DR + DP
(6)

The results of Bikel’s parser in retrieving depen-
dents are summarized in Figure 4. Overall, the
parser achieves a better performance for WSJ over
all three models, just the opposite of what have
been observed for SCC extraction. Interestingly,
removing punctuation from both the training and
test data actually slightly improves the F-measure.
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This holds true for both WSJ and Switchboard.
This Dependency F-measure differs in detail from
similar measures in (Xue and Palmer, 2004). For
present purposes all that matters is the relative
value for WSJ and Switchboard.
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Figure 4: F-measure for extracting dependents

4 Conclusions and Future Work

4.1 Use of Parser’s Output

In this paper, we have shown that it is not nec-
essarily true that statistical parsers always per-
form worse when dealing with spoken language.
The conventional accuracy metrics for parsing
(LR/LP) should not be taken as the only metrics
in determining the feasibility of applying statisti-
cal parsers to spoken language. It is necessary to
consider what information we want to extract out
of parsers’ output and make use of.

1. Extraction of SCFs from Corpora: This task
usually proceeds in two stages: (i) Use sta-
tistical parsers to generate SCCs. (ii) Ap-
ply some statistical tests such as the Bino-
mial Hypothesis Test (Brent, 1993) and log-
likelihood ratio score (Dunning, 1993) to
SCCs to filter out false SCCs on the basis of
their reliability and likelihood. Our experi-
ments show that the SCCs generated for spo-
ken language are as accurate as those gen-
erated for written language, which suggests
that it is feasible to apply the current technol-
ogy for automatically extracting SCFs from
corpora to spoken language.

2. Semantic Role Labeling: This task usually
operates on parsers’ output and the number
of dependents of each verb that are correctly
retrieved by the parser clearly affects the ac-
curacy of the task. Our experiments show

that the parser achieves a much lower accu-
racy in retrieving dependents from the spoken
language than written language. This seems
to suggest that a lower accuracy is likely to
be achieved for a semantic role labeling task
performed on spoken language. We are not
aware that this has yet been tried.

4.2 Punctuation and Speech Transcription
Practice

Both our experiments and Roark’s experiments
show that parsing accuracy measured by LR/LP
experiences a sharper decrease for WSJ than
Switchboard after we removed punctuation from
training and test data. In spoken language, com-
mas are largely used to delimit disfluency ele-
ments. As noted in Engel et al. (2002), statis-
tical parsers usually condition the probability of
a constituent on the types of its neighboring con-
stituents. The way that commas are used in speech
transcription seems to have the effect of increasing
the range of neighboring constituents, thus frag-
menting the data and making it less reliable. On
the other hand, in written texts, commas serve as
more reliable cues for parsers to identify phrasal
and clausal boundaries.

In addition, our experiment demonstrates that
punctuation does not help much with extraction of
SCCs from spoken language. Removing punctua-
tion from both the training and test data results in a
less than 0.3% decrease in SR/SP. Furthermore, re-
moving punctuation from both the training and test
data actually slightly improves the performance
of Bikel’s parser in retrieving dependents from
spoken language. All these results seem to sug-
gest that adding punctuation in speech transcrip-
tion is of little help to statistical parsers includ-
ing at least three state-of-the-art statistical parsers
(Collins, 1999; Charniak, 2000; Bikel, 2004). As a
result, there may be other good reasons why some-
one who wants to build a Switchboard-like corpus
should choose to provide punctuation, but there is
no need to do so simply in order to help parsers.

However, segmenting utterances into individual
units is necessary because statistical parsers re-
quire sentence boundaries to be clearly delimited.
Current statistical parsers are unable to handle an
input string consisting of two sentences. For ex-
ample, when presented with an input string as in
(1) and (2), if the two sentences are separated by a
period (1), Bikel’s parser wrongly treats the sec-
ond sentence as a sentential complement of the
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main verblike in the first sentence. As a result, the
extractor generates an SCC NP-S forlike, which is
incorrect. The parser returns the same parse after
we removed the period (2) and let the parser parse
it again.

(1) I like the long hair. It was back in high
school.

(2) I like the long hair It was back in high school.

Hence, while adding punctuation in transcribing
a Switchboard-like corpus is not of much help to
statistical parsers, segmenting utterances into in-
dividual units is crucial for statistical parsers. In
future work, we plan to develop a system capa-
ble of automatically segmenting speech utterances
into individual units.
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