
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 747–754,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Adding Syntax to Dynamic Programming for Aligning Comparable Texts
for the Generation of Paraphrases

Siwei Shen1, Dragomir R. Radev1;2, Agam Patel1, Güneş Erkan1
Department of Electrical Engineering and Computer Science

School of Information
University of Michigan
Ann Arbor, MI 48109fshens, radev, agamrp, gerkang@umich.edu

Abstract

Multiple sequence alignment techniques
have recently gained popularity in the Nat-
ural Language community, especially for
tasks such as machine translation, text
generation, and paraphrase identification.
Prior work falls into two categories, de-
pending on the type of input used: (a)
parallel corpora (e.g., multiple translations
of the same text) or (b) comparable texts
(non-parallel but on the same topic). So
far, only techniques based on parallel texts
have successfully used syntactic informa-
tion to guide alignments. In this paper,
we describe an algorithm for incorporat-
ing syntactic features in the alignment pro-
cess for non-parallel texts with the goal of
generating novel paraphrases of existing
texts. Our method uses dynamic program-
ming with alignment decision based on
the local syntactic similarity between two
sentences. Our results show that syntac-
tic alignment outrivals syntax-free meth-
ods by 20% in both grammaticality and fi-
delity when computed over the novel sen-
tences generated by alignment-induced fi-
nite state automata.

1 Introduction

In real life, we often encounter comparable texts
such as news on the same events reported by dif-
ferent sources and papers on the same topic au-
thored by different people. It is useful to recog-
nize if one text cites another in cases like news
sharing among media agencies or citations in aca-
demic work. Applications of such recognition in-
clude machine translation, text generation, para-
phrase identification, and question answering, all
of which have recently drawn the attention of a
number of researchers in natural language pro-
cessing community.

Multiple sequence alignment (MSA) is the ba-
sis for accomplishing these tasks. Previous work
aligns a group of sentences into a compact word
lattice (Barzilay and Lee, 2003), a finite state au-
tomaton representation that can be used to iden-
tify commonality or variability among compara-
ble texts and generate paraphrases. Nevertheless,
this approach has a drawback of over-generating
ungrammatical sentences due to its “almost-free”
alignment. Pang et al. provide a remedy to this
problem by performing alignment on the Charniak
parse trees of the clustered sentences (Pang et al.,
2003). Although it is so far the most similar work
to ours, Pang’s solution assumes the input sen-
tences to be semantically equivalent. Two other
important references for string-based alignments
algorithms, mostly with applications in Biology,
are (Gusfield, 1997) and (Durbin et al., 1998).

In our approach, we work on comparable texts
(not necessarily equivalent in their semantic mean-
ings) as Barzilay and Lee did. However, we use lo-
cal syntactic similarity (as opposed to lexical simi-
larity) in doing the alignment on the raw sentences
instead of on their parse trees. Because of the se-
mantic discrepancies among the inputs, applying
syntactic features in the alignment has a larger im-
pact on the grammaticality and fidelity of the gen-
erated unseen sentences. While previous work po-
sitions the primary focus on the quality of para-
phrases and/or translations, we are more interested
in the relation between the use of syntactic fea-
tures and the correctness of the sentences being
generated, including those that are not paraphrases
of the original input. Figure 1 illustrates the dif-
ference between alignment based solely on lexi-
cal similarity and alignment with consideration of
syntactic features.

Ignoring syntax, the word “Milan” in both sen-
tences is aligned. But it would unfortunately gen-
erate an ungrammatical sentence “I went to Mi-
lan is beautiful”. Aligning according to syntac-

747



Start

II

Milan
Milan

wentwent
isis

AcceptAccept

to
to

Milan

beautifulbeautiful Accept

Start

II

Milan

Milan

wentwent

is
is

to
to

Milan
Milan

Accept

Accept

beautiful
beautiful

Accept

Figure 1: Alignment on lexical similarity and alignment with syntactic features of the sentences “Milan
is beautiful” and “I went to Milan”.

tic features, on the other hand, would avoid this
improper alignment by detecting that the syntactic
feature values of the two “Milan” differ too much.
We shall explain syntactic features and their us-
ages later. In this small example, our syntax-based
alignment will align nothing (the bottom FSA in
Figure 1) since “Milan” is the only lexically com-
mon word in both sentences. For much larger
clusters in our experiments, we are able to pro-
duce a significant number of novel sentences from
our alignment with such tightened syntactic con-
ditions. Figure 2 shows one of the actual clusters
used in our work that has 18 unique sentences.
Two of the many automatically generated gram-
matical sentences are also shown.

Another piece of related work, (Quirk et al.,
2004), starts off with parallel inputs and uses
monolingual Statistical Machine Translation tech-
niques to align them and generate novel sentences.
In our work, the input text does not need to be
nearly as parallel.

The main contribution of this paper is a syntax-
based alignment technique for generating novel
paraphrases of sentences that describe a par-
ticular fact. Such techniques can be poten-
tially useful in multi-document summarizers such
as Newsblaster (http://newsblaster.cs.
columbia.edu ) and NewsInEssence (http:
//www.newsinessence.com ). Such sys-
tems are notorious for mostly reusing text from
existing news stories. We believe that allowing
them to use novel formulations of known facts will
make these systems much more successful.

2 Related work

Our work is closest in spirit to the two papers that
inspired us (Barzilay and Lee, 2003) and (Pang
et al., 2003). Both of these papers describe how
multiple sequence alignment can be used for ex-
tracting paraphrases from clustered texts. Pang et
al. use as their input the multiple human English
translations of Chinese documents provided by the
LDC as part of the NIST machine translation eval-
uation. Their approach is to merge multiple parse
trees into a single finite state automaton in which
identical input subconstituents are merged while
alternatives are converted to parallel paths in the
output FSA. Barzilay and Lee, on the other hand,
make use of classic techniques in biological se-
quence analysis to identify paraphrases from com-
parable texts (news from different sources on the
same event).

In summary, Pang et al. use syntactic align-
ment of parallel texts while Barzilay and Lee
use comparable (not parallel) input but ignore
syntax. Our work differs from the two in that
we apply syntactic information on aligning com-
parable texts and that the syntactic clues we
use are drawn from Chunklinkilk.uvt.nl/
˜sabine/homepage/software.html out-
put, which is further analysis from the syntactic
parse trees.

Another related paper using multiple sequence
alignment for text generation was (Barzilay and
Lee, 2002). In that work, the authors were able
to automatically acquire different lexicalizations
of the same concept from “multiple-parallel cor-
pora”. We also draw some ideas from the Fitch-
Margoliash method for building evolutionary trees

748



1. A police official said it was a Piper tourist plane and that the crash had set the top floors on fire.
2. According to ABCNEWS aviation expert John Nance, Piper planes have no history of mechanical troubles or

other problems that would lead a pilot to lose control.
3. April 18, 2002 8212; A small Piper aircraft crashes into the 417-foot-tall Pirelli skyscraper in Milan,

setting the top floors of the 32-story building on fire.
4. Authorities said the pilot of a small Piper plane called in a problem with the landing gear to the Milan’s

Linate airport at 5:54 p.m., the smaller airport that has a landing strip for private planes.
5. Initial reports described the plane as a Piper, but did not note the specific model.
6. Italian rescue officials reported that at least two people were killed after the Piper aircraft struck the

32-story Pirelli building, which is in the heart of the city s financial district.
7. MILAN, Italy AP A small piper plane with only the pilot on board crashed Thursday into a 30-story landmark

skyscraper, killing at least two people and injuring at least 30.
8. Police officer Celerissimo De Simone said the pilot of the Piper Air Commander plane had sent out a

distress call at 5:50 p.m. just before the crash near Milan’s main train station.
9. Police officer Celerissimo De Simone said the pilot of the Piper aircraft had sent out a distress call at

5:50 p.m. 11:50 a.m.
10. Police officer Celerissimo De Simone said the pilot of the Piper aircraft had sent out a distress

call at 5:50 p.m. just before the crash near Milan’s main train station.
11. Police officer Celerissimo De Simone said the pilot of the Piper aircraft sent out a distress call at

5:50 p.m. just before the crash near Milan’s main train station.
12. Police officer Celerissimo De Simone told The AP the pilot of the Piper aircraft had sent out a distress

call at 5:50 p.m. just before crashing.
13. Police say the aircraft was a Piper tourism plane with only the pilot on board.
14. Police say the plane was an Air Commando 8212; a small plane similar to a Piper.
15. Rescue officials said that at least three people were killed, including the pilot, while dozens were

injured after the Piper aircraft struck the Pirelli high-rise in the heart of the city s financial
district.

16. The crash by the Piper tourist plane into the 26th floor occurred at 5:50 p.m. 1450 GMT on Thursday, said
journalist Desideria Cavina.

17. The pilot of the Piper aircraft, en route from Switzerland, sent out a distress call at 5:54 p.m. just
before the crash, said police officer Celerissimo De Simone.

18. There were conflicting reports as to whether it was a terrorist attack or an accident after the pilot of
the Piper tourist plane reported that he had lost control.

1. Police officer Celerissimo De Simone said the pilot of the Piper aircraft, en route from Switzerland, sent
out a distress call at 5:54 p.m. just before the crash near Milan’s main train station.

2. Italian rescue officials reported that at least three people were killed, including the pilot, while
dozens were injured after the Piper aircraft struck the 32-story Pirelli building, which is in the heart
of the city s financial district.

Figure 2: A comparable cluster of size 18 and 2 novel sentences produced by syntax-based alignment.

described in (Fitch and Margoliash, 1967). That
method and related techniques in Bioinformatics
such as (Felsenstein, 1995) also make use of a sim-
ilarity matrix for aligning a number of sequences.

3 Alignment Algorithms

Our alignment algorithm can be described as mod-
ifying Levenshtein Edit Distance by assigning dif-
ferent scores to lexically matched words according
to their syntactic similarity. And the decision of
whether to align a pair of words is based on such
syntax scores.

3.1 Modified Levenshtein Edit Distance

The Levenshtein Edit Distance (LED) is a mea-
sure of similarity between two strings named after
the Russian scientist Vladimir Levenshtein, who
devised the algorithm in 1965. It is the num-
ber of substitutions, deletions or insertions (hence
“edits”) needed to transform one string into the
other. We extend LED to sentence level by count-
ing the substitutions, deletions and insertions of
words necessary to transform a sentence into the
other. We abbreviate this sentence-level edit dis-
tance as MLED. Similar to LED, MLED compu-
tation produces an M+1 by N+1 distance matrix,
D, given two input sentences of length M and N
respectively. This matrix is constructed through

dynamic programming as shown in Figure 3.D[i][j] =8>><>>: 0 if j = 00 if i = 0
max

 D[i� 1][j � 1] + match;D[i� 1][j] + gap;D[i][j � 1] + gap !
otherwise

Figure 3: Dynamic programming in computing
MLED of two sentences of length M and N.

“match” is 2 if theith word in Sentence 1 and
the jth word in Sentence 2 syntactically match,
and is -1 otherwise. “gap” represents the score
for inserting a gap rather than aligning, and is set
to -1. The matching conditions of two words are
far more complicated than lexical equality. Rather,
we judge whether two lexically equal words match
based on a predefined set of syntactic features.

The output matrix is used to guide the align-
ment. Starting from the bottom right entry of the
matrix, we go to the matrix entry from which the
value of the current cell is derived in the recursion
of the dynamic programming. Call the current en-
try D[i][j]. If it gets its value fromD[i�1][j�1],
theith word in Sentence 1 and thejth word in Sen-
tence 2 are either aligned or both aligned to a gap
depending on whether they syntactically match; if
the value ofD[i][j] is derived fromD[i][j � 1] +

749



“gap”, the ith word in Sentence 1 is aligned to a
gap inserted into Sentence 2 (thejth word in Sen-
tence 2 is not consumed); otherwise, thejth word
in Sentence 2 is aligned to a gap inserted into Sen-
tence 1.

Now that we know how to align two sentences,
aligning a cluster of sentences is done progres-
sively. We start with the overall most similar pair
and then respect the initial ordering of the cluster,
aligning remaining sentences sequentially. Each
sentence is aligned against its best match in the
pool of already-aligned ones. This approach is
a hybrid of the Feng-Doolittle’s Algorithm (Feng
and Doolittle, 1987) and a variant described in
(Fitch and Margoliash, 1967).

3.2 Syntax-based Alignment

As remarked earlier, our alignment scheme judges
whether two words match according to their
syntactic similarity on top of lexical equality.
The syntactic features are obtained from run-
ning Chunklink (Buchholz, 2000) on the Charniak
parses of the clustered sentences.

3.2.1 Syntactic Features

Among all the information Chunklink provides,
we use in particular the part-of-speech tags, the
Chunk tags, and the syntactic dependence traces.
The Chunk tag shows the constituent of a word
and its relative position in that constituent. It can
take one of the three values,� “O” meaning that the word is outside of any

chunk;� “I-XP” meaning that this word is inside an
XP chunk where X = N, V, P, ADV, ...;� “B-XP” meaning that the word is at the be-
ginning of an XP chunk.

From now on, we shall refer to the Chunk
tag of a word as its IOB value (IOB was named
by Tjong Kim Sang and Jorn Veeenstra (Tjong
Kim Sang and Veenstra, 1999) after Ratnaparkhi
(Ratnaparkhi, 1998)). For example, in the sen-
tence “I visited Milan Theater”, the IOB value for
“I” is B-NP since it marks the beginning of a noun-
phrase (NP). On the other hand, “Theater” has an
IOB value of I-NP because it is inside a noun-
phrase (Milan Theater) and is not at the beginning
of that constituent. Finally, the syntactic depen-
dence trace of a word is the path of IOB values

from the root of the tree to the word itself. The
last element in the trace is hence the IOB of the
word itself.

3.2.2 The Algorithm

Lexically matched words but with different
POS are considered not syntactically matched
(e.g., race VB vs. race NN). Hence, our focus
is really on pairs of lexically matched words with
the same POS. We first compare their IOB values.
Two IOB values are exactly matched only if they
are identical (same constituent and same position);
they are partially matched if they share a common
constituent but have different position (e.g., B-PP
vs. I-PP); and they are unmatched otherwise. For
a pair of words with exactly matched IOB values,
we assign 1 as theirIOB-score; for those with par-
tially matched IOB values, 0; and -1 for those with
unmatched IOB values. The numeric values of the
score are from experimental experience.

The next step is to compare syntactic depen-
dence traces of the two words. We start with the
second last element in the traces and go backward
because the last one is already taken care of by the
previous step. We also discard the front element of
both traces since it is “I-S” for all words. The cor-
responding elements in the two traces are checked
by the IOB-comparison described above and the
scores accumulated. The process terminates as
soon as one of the two traces is exhausted. Last,
we adjust down the cumulative score by the length
difference between the two traces. Such final score
is named thetrace-scoreof the two words.

We declare “unmatched” if the sum of the IOB-
score and the trace-score falls below 0. Otherwise,
we perform one last measurement – the relative
position of the two words in their respective sen-
tences. The relative position is defined to be the
word’s absolute position divided by the length of
the sentence it appears in (e.g. the 4th word of a
20-word sentence has a relative position of 0.2).
If the difference between two relative positions
is larger than 0.4 (empirically chosen before run-
ning the experiments), we consider the two words
“unmatched”. Otherwise, they are syntactically
matched.

The pseudo-code of checking syntactic match is
shown in Figure 4.

750



Algorithm Check Syntactic Match of Two Words
For a pair of wordsW1, W2
if W1 6= W2 or pos(W1) 6= pos(W2) then

return “unmatched”
endifscore := 0iob1 := iob(W1)iob2 := iob(W2)score += compare iobs(iob1; iob2)trace1 := trace(W1)trace2 := trace(W2)score += compare traces(trace1; trace2)
if score< 0 then

return “unmatched”
endifrelpos1 := pos(W1)/lengthOf(S1)relpos2 := pos(W2)/lengthOf(S2)
if jrelpos1 � relpos2j � 0:4 then

return “unmatched”
endif
return “matched”

Function compare iobs(iob1; iob2)
if iob1 = iob2 then

return 1
endif
if substring(iob1; 1) = substring(iob2; 1) then

return 0
endif
return �1

Function compare traces(trace1; trace2)
Remove first and last elements from both tracesscore := 0i := lengthOf(trace1)� 1j := lengthOf(trace2)� 1
while i � 0 andj � 0 donext := compare iobs(trace1[i]; trace2[j])score += next � 0:5i��j ��
endwhilescore � = jlengthOf(trace1) �lengthOf(trace2)j � 0:5
return score

Figure 4: Algorithm for checking the syntactic
match between two words.

4 Evaluation

4.1 Experimental Setup

4.1.1 Data

The data we use in our experiment come from
a number of sentence clusters on a variety of top-
ics, but all related to the Milan plane crash event.
This cluster was collected manually from the Web
of five different news agencies (ABC, CNN, Fox,
MSNBC, and USAToday). It concerns the April
2002 crash of a small plane into a building in Mi-
lan, Italy and contains a total of 56 documents
published over a period of 1.5 days. To divide this
corpus into representative smaller clusters, we had
a colleague thoroughly read all 56 documents in
the cluster and then create a list of important facts
surrounding the story. We then picked key terms
related to these facts, such as names (Fasulo - the
pilot) and locations (Locarno - the city from which
the plane had departed). Finally, we automatically
clustered sentences based on the presence of these
key terms, resulting in 21 clusters of topically re-
lated (comparable) sentences. The 21 clusters are
grouped into three categories: 7 in training set, 3
in dev-testing set, and the remaining 11 in testing
set. Table 1 shows the name and size of each clus-
ter.

Cluster Number of Sentences
Training clusters
ambulance 10
belie 14
built 6
malpensa 4
piper 18
president 17
route 11
Dev-test clusters
hospital 17
rescue 12
witness 6
Test clusters
accident 30
cause 18
fasulo 33
floor 79
government 22
injur 43
linate 21
rockwell 9
spokes 18
suicide 22
terror 62

Table 1: Experimental clusters.

751



4.1.2 Different Versions of Alignment

To test the usefulness of our work, we ran 5 dif-
ferent alignments on the clusters. The first three
represent different levels of baseline performance
(without syntax consideration) whereas the last
two fully employ the syntactic features but treat
stop words differently. Table 2 describes the 5 ver-
sions of alignment.

Run Description
V1 Lexical alignment on everything possible
V2 Lexical alignment on everything but commas
V3 Lexical alignment on everything but commas and stop words
V4 Syntactic alignment on everything but commas and stop words
V5 Syntactic alignment on everything but commas

Table 2: Alignment techniques used in the experi-
ments.

Alignment Grammaticality Fidelity
V1 2.89 2.98
V2 3.00 2.95
V3 3.15 3.22
V4 3.68 3.59
V5 3.47 3.30

Table 3: Evaluation results on training and dev-
testing clusters. For the results on the test clusters,
see Table 6

The motivation of trying such variations is as
follows. Stop words often cause invalid alignment
because of their high frequencies, and so do punc-
tuations. Aligning on commas, in particular, is
likely to produce long sentences that contain mul-
tiple sentence segments ungrammatically patched
together.

4.1.3 Training and Testing

In order to get the best possible performance
of the syntactic alignment versions, we use clus-
ters in the training and dev-test sets to tune up
the parameter values in our algorithm for check-
ing syntactic match. The parameters in our algo-
rithm are not independent. We pay special atten-
tion to the threshold of relative position difference,
the discount factor of the trace length difference
penalty, and the scores for exactly matched and
partially matched IOB values. We try different pa-
rameter settings on the training clusters, and apply
the top ranking combinations (according to human
judgments described later) on clusters in the dev-
testing set. The values presented in this paper are
the manually selected ones that yield the best per-
formance on the training and dev-testing sets.

Experimenting on the testing data, we have
two hypotheses to verify: 1) the 2 syntactic ver-

sions outperform the 3 baseline versions by both
grammaticality and fidelity (discussed later) of the
novel sentences produced by alignment; and 2)
disallowing alignment on stop words and commas
enhances the performance.

4.2 Experimental Results

For each cluster, we ran the 5 alignment versions
and produce 5 FSA’s. From each FSA (corre-
sponding to a cluster A and alignment version i),
100 sentences are randomly generated. We re-
moved those that appear in the original cluster.
The remaining ones are hence novel sentences,
among which we randomly chose 10 to test the
performance of alignment version i on cluster A.

In the human evaluation, each sentence received
two scores – grammaticality and fidelity. These
two properties are independent since a sentence
could possibly score high on fidelity even if it is
not fully grammatical. Four different scores are
possible for both criteria: (4) perfect (fully gram-
matical or faithful); (3) good (occasional errors or
quite faithful); (2) bad (many grammar errors or
unfaithful pieces); and (1) nonsense.

4.2.1 Results from the Training Phase

Four judges help our evaluation in the training
phase. They are provided with the original clusters
during the evaluation process, yet they are given
the sentences in shuffled order so that they have
no knowledge about from which alignment ver-
sion each sentence is generated. Table 3 shows
the averages of their evaluation on the 10 clusters
in training and dev-testing set. Each cell corre-
sponds to 400 data points as we presented 10 sen-
tences per cluster per alignment version to each of
the 4 judges (10 x 10 x 4 = 400).

4.2.2 Results from the Testing Phase

After we have optimized the parameter config-
uration for our syntactic alignment in the training
phase, we ask another 6 human judges to evaluate
our work on the testing data. These 6 judges come
from diverse background including Information,
Computer Science, Linguistics, and Bioinformat-
ics. We distribute the 11 testing clusters among
them so that each cluster gets evaluated by at least
3 judges. The workload for each judge is 6 clus-
ters x 5 versions/cluster x 10 sentences/cluster-
version = 300 sentences. Similar to the training
phase, they receive the sentences in shuffled or-
der without knowing the correspondence between

752



sentences and alignment versions. Detailed aver-
age statistics are shown in Table 4 and Table 5 for
grammaticality and fidelity, respectively. Each cell
is the average over 30 - 40 data points, and notice
the last row is not the mean of the other rows since
the number of sentences evaluated for each cluster
varies.

Cluster V1 V2 V3 V4 V5
rockwell 2.27 2.93 3.00 3.60 3.03

cause 2.77 2.83 3.07 3.10 2.93
spokes 2.87 3.07 3.57 3.83 3.50
linate 2.93 3.14 3.26 3.64 3.77

government 2.75 2.83 3.27 3.80 3.20
suicide 2.19 2.51 3.29 3.57 3.11

accident 2.92 3.27 3.54 3.72 3.56
fasulo 2.52 2.52 3.15 3.54 3.32
injur 2.29 2.92 3.03 3.62 3.29

terror 3.04 3.11 3.61 3.23 3.63
floor 2.47 2.77 3.40 3.47 3.27

Overall 2.74 2.75 3.12 3.74 3.29

Table 4: Average grammaticality scores on testing
clusters.

Cluster V1 V2 V3 V4 V5
rockwell 2.25 2.75 3.20 3.80 2.70

cause 2.42 3.04 2.92 3.48 3.17
spokes 2.65 2.50 3.20 3.00 3.05
linate 3.15 3.27 3.15 3.36 3.42

government 2.85 3.24 3.14 3.81 3.20
suicide 2.38 2.69 2.93 3.68 3.23

accident 3.14 3.42 3.56 3.91 3.57
fasulo 2.30 2.48 3.14 3.50 3.48
injur 2.56 2.28 2.29 3.18 3.22

terror 2.65 2.48 3.68 3.47 3.20
floor 2.80 2.90 3.10 3.70 3.30

Overall 2.67 2.69 3.07 3.77 3.23

Table 5: Average fidelity scores on testing clusters.

2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00

ro
ck

well

ca
us

e

sp
ok

es
lin

at
e

go
ve

rn
m
en

t

su
ici

de

ac
cid

en
t

fa
su

lo
in
jur

te
rro

r
flo

or

V 1

V 2

V 3

V 4

V 5

Figure 5: Performance of 5 alignment versions by
grammaticality.

2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00

ro
ck

w
ell

ca
us

e

sp
ok

es
lin

at
e

go
ve

rn
m
en

t

su
ic
ide

ac
cid

en
t

fa
su

lo
in
ju
r

te
rro

r
flo

or

V 1

V 2

V 3

V 4

V 5

Figure 6: Performance of 5 alignment versions by
fidelity.

4.3 Result Analysis

The results support both our hypotheses. For Hy-
pothesis I, we see that the performance of the
two syntactic alignments was higher than the non-
syntactic versions. In particular, Version 4 outper-
forms the the best baseline version by 19.9% on
grammaticality and by 22.8% on fidelity. Our sec-
ond hypothesis is also verified – disallowing align-
ment on stop words and commas yields better re-
sults. This is reflected by the fact that Version 4
beats Version 5, and Version 3 wins over the other
two baseline versions by both criteria.

At the level of individual clusters, the syntactic
versions are also found to outrival the syntax-blind
baselines. Applying at-test on the score sets for
the 5 versions, we can reject the null hypothesis
with 99.5% confidence to ensure that the syntactic
alignment performs better. Similarly, for hypoth-
esis II, the same is true for the versions with and
without stop word alignment. Figures 5 and 6 pro-
vide a graphical view of how each alignment ver-
sion performs on the testing clusters. The clusters
along the x-axis are listed in the order of increas-
ing size.

We have also done an analysis on interjudge
agreement in the evaluation. The judges are in-
structed about the evaluation scheme individually,
and do their work independently. We do not en-
force them to be mutually consistent, as long as
they are self-consistent. However, Table 6 shows
the mean and standard deviation of human judg-
ments (grammaticality and fidelity) on each ver-
sion. The small deviation values indicate a fairly
high agreement.

Finally, because human evaluation is expensive,
we additionally tried to use a language-model ap-

753



Alignment Gr. Mean Gr. StdDev Fi. Mean Fi. StdDev
V1 2.74 0.11 2.67 0.43
V2 2.75 0.08 2.69 0.30
V3 3.12 0.07 3.07 0.27
V4 3.74 0.08 3.77 0.16
V5 3.29 0.16 3.23 0.33

Table 6: Mean and standard deviation of human
judgments.

proach in the training phase for automatic eval-
uation of grammaticality. We have used BLEU
scores(Papineni et al., 2001), but have observed
that they are not consistent with those of human
judges. In particular, BLEU assigns too high
scores to segmented sentences that are otherwise
grammatical. It has been noted in the literature
that metrics like BLEU that are solely based on
N-grams might not be suitable for checking gram-
maticality.

5 Conclusion

In this paper, we presented a paraphrase genera-
tion method based on multiple sequence alignment
which combines traditional dynamic program-
ming techniques with linguistically motivated syn-
tactic information. We apply our work on compa-
rable texts for which syntax has not been success-
fully explored in alignment by previous work. We
showed that using syntactic features improves the
quality of the alignment-induced finite state au-
tomaton when it is used for generating novel sen-
tences. The strongest syntax guided alignment sig-
nificantly outperformed all other versions in both
grammaticality and fidelity of the novel sentences.
In this paper we showed the effectiveness of us-
ing syntax in the alignment of structurally diverse
comparable texts as needed for text generation.

References
Regina Barzilay and Lillian Lee. 2002. Bootstrapping

Lexical Choice via Multiple-Sequence Alignment.
In Proceedings of EMNLP 2002, Philadelphia.

Regina Barzilay and Lillian Lee. 2003. Learning
to Paraphrase: An Unsupervised Approach Using
Multiple-Sequence Alignment. InProceedings of
NAACL-HLT03, Edmonton.

Sabine Buchholz. 2000. Readme
for perl script chunklink.pl.
http://ilk.uvt.nl/ sabine/chunklink/README.html.

Richard Durbin, Sean R. Eddy, Anders Krogh, and
Graeme Mitchison. 1998. Biological Sequence
Analysis. Probabilistic Models of Proteins and Nu-
cleic Acids. Cambridge University Press.

Joseph Felsenstein. 1995. PHYLIP:
Phylogeny Inference Package.
http://evolution.genetics.washington.edu/phylip.html.

DF. Feng and Russell F. Doolittle. 1987. Progres-
sive sequence alignment as a prerequisite to correct
phylogenetic trees.Journal of Molecular Evolution,
25(4).

Walter M. Fitch and Emanuel Margoliash. 1967.
Construction of Phylogenetic Trees. Science,
155(3760):279–284, January.

Dan Gusfield, 1997.Algorithms On Strings: A Dual
View from Computer Science and Computational
Molecular Biology. Cambridge University Press.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based Alignment of Multiple Translations:
Extracting Paraphrases and Generating New Sen-
tences. InProceedings of HLT/NAACL 2003, Ed-
monton, Canada.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: A Method for Automatic
Evaluation of Machine Translation. Research Re-
port RC22176, IBM.

Chris Quirk, Chris Brockett, and William Dolan.
2004. Monolingual machine translation for para-
phrase generation. In Dekang Lin and Dekai Wu,
editors,Proceedings of EMNLP 2004, pages 142–
149, Barcelona, Spain, July. Association for Com-
putational Linguistics.

A Ratnaparkhi. 1998.Maximum Entropy Models for
Natural Language Ambiguity Resolution. Phd. The-
sis, University of Pennsylvania.

Erik F. Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting text chunks. InEACL, pages 173–179.

754


