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Abstract

This paper presents a speech understand-
ing component for enabling robust situated
human-robot communication. The aim is
to gain semantic interpretations of utter-
ances that serve as a basis for multi-modal
dialog management also in cases where
the recognized word-stream is not gram-
matically correct. For the understand-
ing process, we designed semantic pro-
cessable units, which are adapted to the
domain of situated communication. Our
framework supports the specific character-
istics of spontaneous speech used in com-
bination with gestures in a real world sce-
nario. It also provides information about
the dialog acts. Finally, we present a pro-
cessing mechanism using these concept
structures to generate the most likely se-
mantic interpretation of the utterances and
to evaluate the interpretation with respect
to semantic coherence.

1 Introduction

Over the past years interest in mobile robot ap-
plications has increased. One aim is to allow for
intuitive interaction with a personal robot which is
based on the idea that people want to communi-
cate in a natural way (Breazeal et al., 2004)(Daut-
enhahn, 2004). Although often people use speech
as the main modality, they tend to revert to addi-
tional modalities such as gestures and mimics in
face-to-face situations. Also, they refer to objects

1This work has been supported by the European Union
within the ’Cognitive Robot Companion’ (COGNIRON)
project (FP6-IST-002020) and by the German Research
Foundation within the Graduate Program ’Task Oriented
Communication’.

in the physical environment. Furthermore, speech,
gestures and information of the environment are
used in combination in instructions for the robot.
When participants perceive a shared environment
and act in it we call this communication “situated”
(Milde et al., 1997). In addition to these features
that are characteristic for situated communication,
situated dialog systems have to deal with several
problems caused by spontaneous speech phenom-
ena like ellipses, indirect speech acts or incom-
plete sentences. Large pauses or breaks occur in-
side an utterance and people tend to correct them-
selves. Utterances often do not follow a standard
grammar as written text.

Service robots have not only to be able to cope
with this special kind of communication but they
also have to cope with noise that is produced by
their own actuators or the environment. Speech
recognition in such scenarios is a complex and dif-
ficult task, leading to severe degradations of the
recognition performance. The goal of this paper
is to present a framework for human-robot inter-
action (HRI) that enables robust interpretation of
utterances under the specific conditions in HRI.

2 Related Work

Some of the most explored speech processing
systems are telephone-based information systems.
Their design rather differs from that of situated
HRI. They are uni-modal so that every information
has to be gathered from speech. However, speech
input is different as users utter longer phrases
which are generally grammatically correct. These
systems are often based on a large corpus and can
therefore be well trained to perform satisfactory
speech recognition results. A prominent example
for this is the telephone based weather forecast in-
formation service JUPITER (Zue et al., 2000).
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Over the past years interest increased in mo-
bile robot applications where the challenges are
even more complex. While many of these prob-
lems (person tracking, attention, path finding) are
already in the focus of research, robust speech un-
derstanding has not yet been extensively explored
in the context of HRI. Moreover, interpretation
of situated dialogs in combination with additional
knowledge sources is rarely considered. Recent
projects with related scope are the mobile robots
CARL (Lopes et al., 2005) and ALBERT (Ro-
galla et al., 2002), and the robotic chandelier Elvis
(Juster and Roy, 2004). The main task of the robot
CARL is robust language understanding in con-
text of knowledge acquisition and management.
It combines deep and shallow parsing to achieve
robustness. ALBERT is designed to understand
speech commands in combination with gestures
and object detection with the task to handle dishes.
The home lighting robot Elvis gets instructions
about lighting preferences of a user via speech and
gestural input. The robot itself has a fixed position
but the user may walk around in the entire room.
It uses keyword spotting to analyze the semantic
content of speech. As speech recognition in such
robot scenarios is a complex and difficult task, in
these systems the speech understanding analysis
is constrained to a small set of commands and not
oriented towards spontaneous speech. However,
deep speech understanding is necessary for more
complex human robot interaction.

There is only little research in semantic speech
analysis of spontaneous speech. A widely used ap-
proach of interpreting sentences is the idea of case
grammar (Bruce, 1975). Each verb has a set of
named slots, that can be filled by other slots, typ-
ically nouns. Syntactic case information of words
inside a sentence marks the semantic roles and
thus, the corresponding slots can be filled. An-
other approach of processing spontaneous speech
by using semantic information for the Air Travel
Information Service (ATIS) task is implemented
in the Phoenix system (Ward, 1994). Slots in
frames represent the basic semantic entities known
to the system. A parser using semantic gram-
mars maps input onto these frame representations.
The idea of our approach is similar to that of the
Phoenix system, in that we also use semantic en-
tities for extracting information. Much effort has
been made in the field of parsing strategies com-
bined with semantic information. These systems

support preferably task oriented dialog systems,
e.g., the ATIS task as in (Popescu et al., 2004)
and (Milward, 2000), or virtual world scenarios
(Gorniak and Roy, 2005), which do not have to
deal with uncertain visual input. The aim of the
FrameNet project (Fillmore and Baker, 2001) is to
create a lexicon resource for English, where every
entry receives a semantic frame description.

In contrast to other presented approaches we fo-
cus on deep semantic analysis of situated sponta-
neous speech.Written language applications have
the advantage to be trainable on large corpora,
which is not the case for situated speech based ap-
plications. And furthermore, interpretation of sit-
uated speech depends on environmental informa-
tion. Utterances in this context are normally less
complex, still our approach is based on a lexicon
that allows a broad variety of utterances. It also
takes speech recognition problems into account
by ignoring non-consistent word hypotheses and
scoring interpretations according to their semantic
completeness. By adding pragmatic information,
natural dialog processing is facilitated.

3 Situated Dialog Corpus

With our robot BIRON we want to improve so-
cial and functional behavior by enabling the sys-
tem to carry out a more sophisticated dialog for
handling instructions. One scenario is a home-tour
where a user is supposed to show the robot around
the home. Another scenario is a plant-watering
task, where the robot is instructed to water differ-
ent plants. There is only little research on multi-
modal HRI with speech-based robots. A study
how users interact with mobile office robots is re-
ported in (Hüttenrauch et al., 2003). However, in
this evaluation, the integration of different modal-
ities was not analyzed explicitly. But even though
the subjects were not allowed to use speech and
gestures in combination, the results support that
people tended to communicate in a multi-modal
way, nevertheless.

To receive more detailed information about the
instructions that users are likely to give to an as-
sistant in home or office we simulated this sce-
nario and recorded 14 dialogs from German native
speakers. Their task was to instruct the robot to
water plants. Since our focus in this stage of the
development of our system lies on the situatedness
of the conversation, the robot was simply replaced
by a human pretending to be a robot. The subjects
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were asked to act as if it would be a robot. As pro-
posed in (Lauriar et al., 2001), a preliminary user
study is necessary to reduce the number of repair
dialogs between user and system, such as queries.
The corpus provides data necessary for the design
of the dialog components for multi-modal interac-
tion. We also determined the lexicon and obtained
the SSUs that describe the scene and tasks for the
robot.

The recorded dialogs feature the specific na-
ture of dialog situations in multi-modal commu-
nication situations. The analysis of the corpus is
presented in more detail in (Hüwel and Kummert,
2004). It confirms that spontaneously spoken ut-
terances seldom respect the standard grammar and
structure of written sentences. People tend to use
short phrases or single words. Large pauses of-
ten occur during an utterance or the utterance is
incomplete. More interestingly, the multi-modal
data shows that 13 out of 14 persons used pointing
gestures in the dialogs to refer to objects. Such ut-
terances cannot be interpreted without additional
information of the scene. For example, an utter-
ance such as “this one” is used with a pointing
gesture to an object in the environment. We re-
alize, of course, that for more realistic behavior
towards a robot a real experiment has to be per-
formed. However this time- and resource-efficient
procedure allowed us to build a system capable of
facilitating situated communication with a robot.
The implemented system has been evaluated with
a real robot (see section 7). In the prior version we
used German as language, now the dialog system
has adapted to English.

4 The Robot Assistant BIRON

The aim of our project is to enable intuitive inter-
action between a human and a mobile robot. The
basis for this project is the robot system BIRON
(et. al, 2004). The robot is able to visually track
persons and to detect and localize sound sources.
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Figure 1: Overview of the BIRON dialog system
architecture

The robot expresses its focus of attention by turn-
ing the camera into the direction of the person
currently speaking. From the orientation of the
person’s head it is deduced whether the speaker
addresses the robot or not. The main modality
of the robot system is speech but the system can
also detect gestures and objects. Figure 1 gives
an overview of the architecture of BIRON’s multi-
modal interaction system. For the communica-
tion between these modules we use an XML based
communication framework (Fritsch et al., 2005).
In the following we will briefly outline the inter-
acting modules of the entire dialog system with
the speech understanding component.

Speech recognition: If the user addresses
BIRON by looking in its direction and starting to
speak, the speech recognition system starts to an-
alyze the speech data. This means that once the
attention system has detected that the user is prob-
ably addressing the robot it will route the speech
signal to the speech recognizer. The end of the
utterance is detected by a voice activation detec-
tor. Since both components can produce errors the
speech signal sent to the recognizer may contain
wrong or truncated parts of speech. The speech
recognition itself is performed with an incremen-
tal speaker-independent system (Wachsmuth et al.,
1998), based on Hidden Markov Models. It com-
bines statistical and declarative language models
to compute the most likely word chain.

Dialog manager: The dialog management
serves as the interface between speech analysis
and the robot control system. It also generates an-
swers for the user. Thus, the speech analysis sys-
tem transforms utterances with respect to gestural
and scene information, such as pointing gestures
or objects in the environment, into instructions for
the robot. The dialog manager in our application is
agent-based and enables a multi-modal, mixed ini-
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tiative interaction style (Li et al., 2005). It is based
on semantic entities which reflect the information
the user uttered as well as discourse information
based on speech-acts. The dialog system classifies
this input into different categories as e.g., instruc-
tion, query or social interaction. For this purpose
we use discourse segments proposed by Grosz and
Sidner (Grosz and Sidner, 1986) to describe the
kind of utterances during the interaction. Then the
dialog manager can react appropriately if it knows
whether the user asked a question or instructed
the robot. As gesture and object detection in our
scenario is not very reliable and time-consuming,
the system needs verbal hints of scene information
such as pointing gestures or object descriptions to
gather information of the gesture detection and ob-
ject attention system.

5 Situated Concept Representations

Based on the situated conversational data, we de-
signed “situated semantic units” (SSUs) which are
suitable for fast and automatic speech understand-
ing. These SSUs basically establish a network of
strong (mandatory) and weak (optional) relations
of sematic concepts which represent world and
discourse knowledge. They also provide ontolog-
ical information and additional structures for the
integration of other modalities. Our structures are
inspired by the idea of frames which provide se-
mantic relations between parts of sentences (Fill-
more, 1976).

Till now, about 1300 lexical entries are stored
in our database that are related to 150 SSUs. Both
types are represented in form of XML structures.
The lexicon and the concept database are based on
our experimental data of situated communication
(see section 3) and also on data of a home-tour
scenario with a real robot. This data has been an-
notated by hand with the aim to provide an ap-
propriate foundation for human-robot interaction.
It is also planned to integrate more tasks for the
robot as, e.g., courier service. This can be done by
only adding new lexical entries and correspond-
ing SSUs without spending much time in reorga-
nization. Each lexical entry in our database con-
tains a semantic association to the related SSUs.
Therefore, equivalent lexical entries are provided
for homonyms as they are associated to different
concepts.

In figure 2 the SSU Showing has an open link
to the SSUs Actor and Object. Missing links to

Instruction

Object
   Actor

top   

opt−frames   
   Time

mand−frames

   Person_involved

SSU  Showing

Figure 2: Schematic SSU “Showing” for utter-
ances like “I show you my poster tomorrow”.

strongly connected SSUs are interpreted as miss-
ing information and are thus indicators for the di-
alog management system to initiate a clarification
question or to look for information already stored
in the scene model (see fig. 1). The SSUs also
have connections to optional arguments, but they
are less important for the entire understanding pro-
cess.

The SSUs also include ontological information,
so that the relations between SSUs can be de-
scribed as general as possible. For example, the
SSU Building subpart is a sub-category of Object.
In our scenario this is important as for example the
unit Building subpart related to the concept“wall”
has a fixed position and can be used as navigation-
support in contrast to other objects. The top-
category is stored in the entry top, a special item
of the SSU. By the use of ontological information,
SSUs also differentiate between task and commu-
nication related information and thereby support
the strategy of the dialog manager to decouple task
from communication structure. This is important
in order to make the dialog system independent
of the task and enable scalable interaction capa-
bilities. For example the SSU Showing belongs to
the discourse type Instruction. Other types impor-
tant for our domain are Socialization, Description,
Confirmation, Negation, Correction, and Query.
Further types may be included, if necessary.

In our domain, missing information in an utter-
ance can often be acquired from the scene. For
example the utterance “look at this” and a point-
ing gesture to a table will be merged to the mean-
ing “look at the table”. To resolve this meaning,
we use hints of co-verbal gestures in the utter-
ance. Words as “this one” or “here” are linked
to the SSU Potential gesture, indicating a relation
between speech and gesture. The timestamp of the
utterance enables temporal alignment of speech
and gesture. Since gesture recognition is expen-
sive in computing time and often not well-defined,
such linguistic hints can reduce these costs dra-
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matically.
The utterance “that” can also represent an

anaphora, and is analyzed in both ways, as
anaphora and as gesture hint. Only if there is no
gesture, the dialog manager will decide that the
word probably was used in an anaphoric manner.

Since we focus on spontaneous speech, we can-
not rely on the grammar, and therefore the se-
mantic units serve as the connections between the
words in an utterance. If there are open connec-
tions interpretable as missing information, it can
be inferred what is missing and be integrated by
the contextual knowledge. This structure makes
it easy to merge the constituents of an utterance
solely by semantic relations without additional
knowledge of the syntactic properties. By this,
we lose information that might be necessary in
several cases for disambiguation of complex ut-
terances. However, spontaneous speech is hard
to parse especially since speech recognition errors
often occur on syntactically relevant morphemes.
We therefore neglect the cases which tend to occur
very rarely in HRI scenarios.

6 Semantic Processing

In order to generate a semantic interpretation of
an utterance, we use a special mechanism, which
unifies words of an utterance into a single struc-
ture. The system also considers the ontological in-
formation of the SSUs to generate the most likely
interpretation of the utterance. For this purpose,
the mechanism first associates lexical entries of
all words in the utterance with the corresponding
SSUs. Then the system tries to link all SSUs to-
gether into one connected uniform. Some SSUs
provide open links to other SSUs, which can be
filled by semantic related SSUs. The SSU Be-
side for example provides an open link to Object.
This SSU can be linked to all Object entities and
to all subtypes of Object. Thus, an utterance as
”next to the door” can be linked together to form
a single structure (see fig. 3). The SSUs which
possess open links are central for this mechanism,
they represent roots for parts of utterances. How-
ever, these units can be connected by other roots,
likewise to generate a tree representing semantic
relations inside an utterance.

The fusion mechanism computes in its best case
in linear time and in worst case in square time.
A scoring function underlies the mechanism: the
more words can be combined, the better is the rat-

ontological link
strong reference

lexical mapping

Building_subpart

"next to   the door" 

Beside

Object

Figure 3: Simplified parse tree example .

ing. The system finally chooses the structure with
the highest score. Thus, it is possible to handle se-
mantic variations of an utterance in parallel, such
as homonyms. Additionally, the rating is help-
ful to decide whether the speech recognition result
is reliable or not. In this case, the dialog man-
ager can ask the user for clarification. In the next
version we will use a more elaborate evaluation
technique to yield better results such as rating the
amount of concept-relations and missing relations,
distinguish between important and optional rela-
tions, and prefer relations to words nearby.

A converter forwards the result of the mech-
anism as an XML-structure to the dialog man-
ager. A segment of the result for the dialog man-
ager is presented in Figure 4. With the category-
descriptions the dialog-module can react fast on
the user’s utterance without any further calcula-
tion. It uses them to create inquiries to the user
or to send a command to the robot control system,
such as “look for a gesture”, “look for a blue ob-
ject”, or “follow person”. If the interpreted utter-
ance does not fit to any category it gets the value
fragment. These utterances are currently inter-
preted in the same way as partial understandings
and the dialog manager asks the user to provide
more meaningful information.

Figure 1 illustrates the entire architecture of the
speech understanding system and its interfaces to
other modules. The SSUs and the lexicon are
stored in an external XML-databases. As the
speech understanding module starts, it first reads
these databases and converts them into internal
data-structures stored in a fast accessible hash ta-
ble. As soon as the module receives results from
speech recognition, it starts to merge. The mech-
anism also uses a history, where former parts of
utterances are stored and which are also integrated
in the fusing mechanism. The speech understand-
ing system then converts the best scored result into
a semantic XML-structure (see Figure 4) for the
dialog manager.

395



<metaInfo>
<time>1125573609635</time>
<status>full</status>
</metaInfo>
<semanticInfo>
<u>what can you do</u>
<category>query</category>
<content>

<unit = Question_action>
<name>what</name>
<unit = Action>

<name>do</name>
<unit = Ability>

<name>can</name>
<unit = Proxy>

<name>you</name>
...

<u>this is a green cup</u>
<category>description</category>
<content>

<unit = Existence>
<name>is</name>
<unit = Object_kitchen>

<name>cup</name>
<unit = Potential_gesture>

<name>this</name>
</unit>
<unit = Color>

<name>green</name>
</unit>

...

Figure 4: Two segments of the speech understand-
ing results for the utterances “what can you do”
and “this is a green cup”.

6.1 Situated Speech Processing

Our approach has various advantages dealing with
spontaneous speech. Double uttered words as in
the utterance “look - look here” are ignored in our
approach. The system still can interprete the ut-
terance, then only one word is linked to the other
words. Corrections inside an utterance as “the left
em right cube” are handled similar. The system
generates two interpretations of the utterance, the
one containing left the other right. The system
chooses the last one, since we assume that cor-
rections occur later in time and therefore more
to the right. The system deals with pauses in-
side utterances by integrating former parts of ut-
terances stored in the history. The mechanism also
processes incomplete or syntactic incorrect utter-
ances. To prevent sending wrong interpretations to
the dialog-manager the scoring function rates the
quality of the interpretation as described above. In
our system we also use scene information to eval-
uate the entire correctness so that we do not only
have to rely on the speech input. In case of doubt
the dialog-manager requests to the user.

For future work it is planned to integrate addi-
tional information sources, e.g., inquiries of the
dialog manager to the user. The module will also

User1: Robot look - do you see?
This - is a cow. Funny.
Do you like it? ...

User2: Look here robot - a cup.
Look here a - a keyboard.
Let’s try that one. ...

User3: Can you walk in this room?
Sorry, can you repeat your answer?
How fast can you move? ...

Figure 5: Excerptions of the utterances during the
experiment setting.

store these information in the history which will be
used for anaphora resolution and can also be used
to verify the output of the speech recognition.

7 Evaluation

For the evaluation of the entire robot system
BIRON we recruited 14 naive user between 12
and 37 years with the goal to test the intuitive-
ness and the robustness of all system modules as
well as its performance. Therefore, in the first of
two runs the users were asked to familiarize them-
selves with the robot without any further informa-
tion of the system. In the second run the users
were given more information about technical de-
tails of BIRON (such as its limited vocabulary).
We observed similar effects as described in section
2. In average, one utterance contained 3.23 words
indicating that the users are more likely to utter
short phrases. They also tend to pause in the mid-
dle of an utterance and they often uttered so called
meta-comments such as “that”s fine”. In figure 5
some excerptions of the dialogs during the experi-
ment settings are presented.

Thus, not surprisingly the speech recognition
error rate in the first run was 60% which decreased
in the second run to 42%, with an average of 52%.
High error rate seems to be a general problem in
settings with spontaneous speech as other systems
also observed this problem (see also (Gorniak and
Roy, 2005)). But even in such a restricted exper-
iment setting, speech understanding will have to
deal with speech recognition error which can never
be avoided.

In order to address the two questions of (1)
how well our approach of automatic speech un-
derstanding (ASU) can deal with automatic speech
recognition (ASR) errors and (2) how its perfor-
mance compares to syntactic analysis, we per-
formed two analyses. In order to answer ques-
tion (1) we compared the results from the semantic
analysis based on the real speech recognition re-
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sults with an accuracy of 52% with those based on
the really uttered words as transcribed manually,
thus simulating a recognition rate of 100%. In to-
tal, the semantic speech processing received 1642
utterances from the speech recognition system.
From these utterances 418 utterances were ran-
domly chosen for manual transcription and syntac-
tic analysis. All 1642 utterances were processed
and performed on a standard PC with an average
processing time of 20ms, which fully fulfills the
requirements of real-time applications. As shown
in Table 1 39% of the results were rated as com-
plete or partial misunderstandings and 61% as cor-
rect utterances with full semantic meaning. Only
4% of the utterances which were correctly recog-
nized were misinterpreted or refused by the speech
understanding system. Most errors occurred due
to missing words in the lexicon.

Thus, the performance of the speech under-
standing system (ASU) decreases to the same
degree as that of the speech recognition system
(ASR): with a 50% ASR recognition rate the num-
ber of non-interpretable utterances is doubled in-
dicating a linear relationship between ASR and
ASU.

For the second question we performed a manual
classification of the utterances into syntactically
correct (and thus parseable by a standard pars-
ing algorithm) and not-correct. Utterances fol-
lowing the English standard grammar (e.g. im-
perative, descriptive, interrogative) or containing
a single word or an NP, as to be expected in an-
swers, were classified as correct. Incomplete ut-
terances or utterances with a non-standard struc-
ture (as occurred often in the baby-talk style ut-
terances) were rated as not-correct. In detail, 58
utterances were either truncated at the end or be-
ginning due to errors of the attention system, re-
sulting in utterances such as “where is”, “can you
find”, or “is a cube”. These utterances also include
instances where users interrupted themselves. In
51 utterances we found words missing in our lex-
icon database. 314 utterances where syntactically
correct, whereas in 28 of these utterances a lexicon
entry is missing in the system and therefore would

ASR=100% ASR=52%
ASU not or part. interpret. 15% 39%

ASU fully interpretable 84% 61%

Table 1: Semantic Processing results based on dif-
ferent word recognition accuracies.

lead to a failure of the parsing mechanism. 104 ut-
terances have been classified as syntactically not-
correct.

In contrast, the result from our mechanism per-
formed significantly better. Our system was able
to interprete 352 utterances and generate a full se-
mantic interpretation, whereas 66 utterances could
only be partially interpreted or were marked as
not interpretable. 21 interpretations of the utter-
ances were semantically incorrect (labeled from
the system wrongly as correct) or were not as-
signed to the correct speech act, e.g., “okay” was
assigned to no speech act (fragment) instead to
confirmation. Missing lexicon entries often lead
to partial interpretations (20 times) or sometimes
to complete misinterpretations (8 times). But still
in many cases the system was able to interprete the
utterance correctly (23 times). For example “can
you go for a walk with me” was interpreted as “can
you go with me” only ignoring the unknown “for
a walk”.The utterance “can you come closer” was
interpreted as a partial understanding “can you
come” (ignoring the unknown word “closer”). The
results are summarized in Table 2.

As can be seen the semantic error rate with 15%
non-interpretable utterances is just half of the syn-
tactic correctness with 31%. This indicates that
the semantic analysis can recover about half of the
information that would not be recoverable from
syntactic analysis.

ASU Synt. cor.
not or part. interpret. 15% not-correct 31%

fully interpret. 84% correct 68%

Table 2: Comparison of semantic processing result
with syntactic correctness based on a 100% word
recognition rate.

8 Conclusion and Outlook

In this paper we have presented a new approach
of robust speech understanding for mobile robot
assistants. It takes into account the special char-
acteristics of situated communication and also the
difficulty for the speech recognition to process ut-
terances correctly. We use special concept struc-
tures for situated communication combined with
an automatic fusion mechanism to generate se-
mantic structures which are necessary for the di-
alog manager of the robot system in order to re-
spond adequately.

This mechanism combined with the use of our
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SSUs has several benefits. First, speech is in-
terpreted even if speech recognition does not al-
ways guarantee correct results and speech input is
not always grammatically correct. Secondly, the
speech understanding component incorporates in-
formation about gestures and references to the en-
vironment. Furthermore, the mechanism itself is
domain-independent. Both, concepts and lexicon
can be exchanged in context of a different domain.

This semantic analysis already produces elab-
orated interpretations of utterances in a fast way
and furthermore, helps to improve robustness of
the entire speech processing system. Nevertheless,
we can improve the system. In our next phase we
will use a more elaborate scoring function tech-
nique and use the correlations of mandatory and
optional links to other concepts to perform a better
evaluation and also to help the dialog manager to
find clues for missing information both in speech
and scene. We will also use the evaluation results
to improve the SSUs to get better results for the
semantic interpretation.
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