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Abstract 

This paper presents a discriminative 
pruning method of n-gram language 
model for Chinese word segmentation. 
To reduce the size of the language model 
that is used in a Chinese word segmenta-
tion system, importance of each bigram is 
computed in terms of discriminative 
pruning criterion that is related to the per-
formance loss caused by pruning the bi-
gram. Then we propose a step-by-step 
growing algorithm to build the language 
model of desired size. Experimental re-
sults show that the discriminative pruning 
method leads to a much smaller model 
compared with the model pruned using 
the state-of-the-art method. At the same 
Chinese word segmentation F-measure, 
the number of bigrams in the model can 
be reduced by up to 90%. Correlation be-
tween language model perplexity and 
word segmentation performance is also 
discussed. 

1 Introduction 

Chinese word segmentation is the initial stage of 
many Chinese language processing tasks, and 
has received a lot of attention in the literature 
(Sproat et al., 1996; Sun and Tsou, 2001; Zhang 
et al., 2003; Peng et al., 2004). In Gao et al. 
(2003), an approach based on source-channel 
model for Chinese word segmentation was pro-
posed. Gao et al. (2005) further developed it to a 
linear mixture model. In these statistical models, 
language models are essential for word segmen-
tation disambiguation. However, an uncom-

pressed language model is usually too large for 
practical use since all realistic applications have 
memory constraints. Therefore, language model 
pruning techniques are used to produce smaller 
models. Pruning a language model is to eliminate 
a number of parameters explicitly stored in it, 
according to some pruning criteria. The goal of 
research for language model pruning is to find 
criteria or methods, using which the model size 
could be reduced effectively, while the perform-
ance loss is kept as small as possible. 

A few criteria have been presented for lan-
guage model pruning, including count cut-off 
(Jelinek, 1990), weighted difference factor 
(Seymore and Rosenfeld, 1996), Kullback-
Leibler distance (Stolcke, 1998), rank and en-
tropy (Gao and Zhang, 2002). These criteria are 
general for language model pruning, and are not 
optimized according to the performance of lan-
guage model in specific tasks. 

In recent years, discriminative training has 
been introduced to natural language processing 
applications such as parsing (Collins, 2000), ma-
chine translation (Och and Ney, 2002) and lan-
guage model building (Kuo et al., 2002; Roark et 
al., 2004). To the best of our knowledge, it has 
not been applied to language model pruning. 

In this paper, we propose a discriminative 
pruning method of n-gram language model for 
Chinese word segmentation. It differentiates 
from the previous pruning approaches in two 
respects. First, the pruning criterion is based on 
performance variation of word segmentation. 
Second, the model of desired size is achieved by 
adding valuable bigrams to a base model, instead 
of by pruning bigrams from an unpruned model. 

We define a misclassification function that 
approximately represents the likelihood that a 
sentence will be incorrectly segmented. The 
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variation value of the misclassification function 
caused by adding a parameter to the base model 
is used as the criterion for model pruning. We 
also suggest a step-by-step growing algorithm 
that can generate models of any reasonably de-
sired size. We take the pruning method based on 
Kullback-Leibler distance as the baseline. Ex-
perimental results show that our method outper-
forms the baseline significantly with small model 
size. With the F-Measure of 96.33%, number of 
bigrams decreases by up to 90%. In addition, by 
combining the discriminative pruning method 
with the baseline method, we obtain models that 
achieve better performance for any model size. 
Correlation between language model perplexity 
and system performance is also discussed. 

The remainder of the paper is organized as fol-
lows. Section 2 briefly discusses the related work 
on language model pruning. Section 3 proposes 
our discriminative pruning method for Chinese 
word segmentation. Section 4 describes the ex-
perimental settings and results. Result analysis 
and discussions are also presented in this section. 
We draw the conclusions in section 5. 

2 Related Work 

A simple way to reduce the size of an n-gram 
language model is to exclude those n-grams oc-
curring infrequently in training corpus. It is 
named as count cut-off method (Jelinek, 1990). 
Because counts are always integers, the size of 
the model can only be reduced to discrete values. 

Gao and Lee (2000) proposed a distribution-
based pruning. Instead of pruning n-grams that 
are infrequent in training data, they prune n-
grams that are likely to be infrequent in a new 
document. Experimental results show that it is 
better than traditional count cut-off method. 

Seymore and Rosenfeld (1996) proposed a 
method to measure the difference of the models 
before and after pruning each n-gram, and the 
difference is computed as: 

)]|(log)|([log),( jijiij hwPhwPwhN −′×−  (1)

Where P(wi|hj) denotes the conditional prob-
abilities assigned by the original model, and 
P′(wi|hj) denotes the probabilities in the pruned 
model. N(hj, wi) is the discounted frequency of n-
gram event hjwi. Seymore and Rosenfeld (1996) 
showed that this method is more effective than 
the traditional cut-off method. 

Stolcke (1998) presented a more sound crite-
rion for computing the difference of models be-
fore and after pruning each n-gram, which is 

called relative entropy or Kullback-Leibler dis-
tance. It is computed as: 

∑ −′−
ji hw

jijiji hwPhwPhwP
,

)]|(log)|()[log,(   (2) 

The sum is over all words wi and histories hj. 
This criterion removes some of the approxima-
tions employed in Seymore and Rosenfeld 
(1996). In addition, Stolcke (1998) presented a 
method for efficient computation of the Kull-
back-Leibler distance of each n-gram. 

In Gao and Zhang (2002), three measures are 
studied for the purpose of language model prun-
ing. They are probability, rank, and entropy. 
Among them, probability is very similar to that 
proposed by Seymore and Rosenfeld (1996). Gao 
and Zhang (2002) also presented a method of 
combining two criteria, and showed the combi-
nation of rank and entropy achieved the smallest 
models. 

3 Discriminative Pruning for Chinese 
Word Segmentation 

3.1 Problem Definition 

In this paper, discussions are restricted to bigram 
language model P(wy|wx). In a bigram model, 
three kinds of parameters are involved: bigram 
probability Pm(wy|wx) for seen bigram wxwy in 
training corpus, unigram probability Pm(w) and 
backoff coefficient αm(w) for any word w. For 
any wx and wy in the vocabulary, bigram prob-
ability P(wy|wx) is computed as: 

⎩
⎨
⎧

=×
>

=
0),()()(
0),()|(
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yxymxm

yxxym
xy wwcifwPw

wwcifwwP
wwP

α
 (3) 

As equation (3) shows, the probability of an 
unseen bigram is computed by the product of the 
unigram probability and the corresponding back-
off coefficient. If we remove a seen bigram from 
the model, we can still yield a bigram probability 
for it, by regarding it as an unseen bigram. Thus, 
we can reduce the number of bigram probabili-
ties explicitly stored in the model. By doing this, 
model size decreases. This is the foundation for 
bigram model pruning. 

The research issue is to find an effective crite-
rion to compute "importance" of each bigram. 
Here, "importance" indicates the performance 
loss caused by pruning the bigram. Generally, 
given a target model size, the method for lan-
guage model pruning is described in Figure 1. 

In fact, deciding which bigrams should be ex-
cluded from the model is equivalent to deciding 
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which bigrams should be included in the model. 
Hence, we suggest a growing algorithm through 
which a model of desired size can also be 
achieved. It is illustrated in Figure 2. Here, two 
terms are introduced. Full-bigram model is the 
unpruned model containing all seen bigrams in 
training corpus. And base model is currently the 
unigram model. 

For the discriminative pruning method sug-
gested in this paper, growing algorithm instead 
of pruning algorithm is applied to generate the 
model of desired size. In addition, "importance" 
of each bigram indicates the performance im-
provement caused by adding a bigram into the 
base model. 

 
Figure 1. Language Model Pruning Algorithm 

 
Figure 2. Growing Algorithm for Language 

Model Pruning 

3.2 Discriminative Pruning Criterion 

Given a Chinese character string S, a word seg-
mentation system chooses a sequence of words 
W* as the segmentation result, satisfying: 

))|(log)((logmaxarg* WSPWPW
W

+=  (4)

The sum of the two logarithm probabilities in 
equation (4) is called discriminant function: 

)|(log)(log),;,( WSPWPWSg +=ΓΛ  (5)

Where Г denotes a language model that is 
used to compute P(W), and Λ denotes a genera-
tive model that is used to compute P(S|W). In 
language model pruning, Λ is an invariable. 

The discriminative pruning criterion is in-
spired by the comparison of segmented sentences 
using full-bigram model ГF and using base model 
ГB. Given a sentence S, full-bigram model 
chooses  as the segmentation result, and base 
model chooses  as the segmentation result, 
satisfying: 

B

*
FW

*
BW

),;,(maxarg*
F

W
F WSgW ΓΛ=                        (6) 

1. Given the desired model size, compute 
the number of bigrams that should be 
pruned. The number is denoted as m; 

2. Compute "importance" of each bigram; 
3. Sort all bigrams in the language model, 

according to their "importance"; 
4. Remove m most "unimportant" bigrams 

from the model; 
5. Re-compute backoff coefficients in the 

model. 

),;,(maxarg*
B

W
B WSgW ΓΛ=                       (7) 

Here, given a language model Г, we define a 
misclassification function representing the differ-
ence between discriminant functions of  and 

: 

*
FW

*
BW

),;,(),;,(),;( ** ΓΛ−ΓΛ=ΓΛ FB WSgWSgSd            (8) 

The misclassification function reflects which 
one of  and  is inclined to be chosen as 
the segmentation result. If , we may 
extract some hints from the comparison of them, 
and select a few valuable bigrams. By adding 
these bigrams to base model, we should make the 
model choose the correct answer between  
and . If , no hints can be extracted. 

*
FW *

BW
**
BF WW ≠

*
FW

*
BW **

BF WW =

1. Given the desired model size, compute 
the number of bigrams that should be 
added into the base model. The number 
is denoted as n; 

2. Compute "importance" of each bigram 
included in the full-bigram model but 
excluded from the base model; 

3. Sort the bigrams according to their "im-
portance"; 

4. Add n most "important" bigrams into 
the base model; 

5. Re-compute backoff coefficients in the 
base model. 

Let W0 be the known correct word sequence. 
Under the precondition , we describe 
our method in the following three cases. 

**
BF WW ≠

Case 1:  and  0
* WWF = 0

* WWB ≠
Here, full-bigram model chooses the correct 

answer, while base model does not. Based on 
equation (6), (7) and (8), we know that d(S;Λ,ГB) 
> 0 and d(S;Λ,ГF) < 0. It implies that adding bi-
grams into base model may lead the misclassifi-
cation function from positive to negative. Which 
bigram should be added depends on the variation 
of misclassification function caused by adding it. 
If adding a bigram makes the misclassification 
function become smaller, it should be added with 
higher priority. 

We add each bigram individually to ГB, and 
then compute the variation of the misclassifica-
tion function. Let Г′ denotes the model after add-

B
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ing bigram wxwy into ГBB. According to equation 
(5) and (8), we can write the misclassification 
function using ГB and Г′ separately: B

)|(log)(log

)|(log)(log),;(
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FFB
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Λ

Λ
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     (9) 
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Where PB(.), P′(.), PB

]
]

Λ(.) represent probabilities 
in base model, model Г′ and model Λ separately. 
The variation of the misclassification function is 
computed as: 
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Because the only difference between base 
model and model Г′ is that model Г′ involves the 
bigram probability P′(wy|wx), we have: 
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Where  denotes the number of 

times the bigram w

),( *
yxF wwWn

xwy appears in sequence . 
Note that in equation (12), base model is treated 
as a bigram model instead of a unigram model. 
The reason lies in two respects. First, the uni-
gram model can be regarded as a particular bi-
gram model by setting all backoff coefficients to 
1. Second, the base model is not always a uni-
gram model during the step-by-step growing al-
gorithm, which will be discussed in the next sub-
section. 

*
FW

In fact, bigram probability P′(wy|wx) is ex-
tracted from full-bigram model, so P′(wy|wx) = 
PF(wy|wx). In addition, similar deductions can be 
conducted to the second bracket in equation (11). 
Thus, we have: 

[
[ )(log)(log)|(log

),(),();( **

xByBxyF
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wwPwwP

wwWnwwWnwwSd

α−−×

−=Δ
 (13) 

Note that d(S;Λ,Г) approximately indicates the 
likelihood that S will be incorrectly segmented, 
so Δd(S;wxwy) represents the performance im-

provement caused by adding wxwy. Thus, "impor-
tance" of bigram wxwy on S is computed as: 

);();( yxyx wwSdSwwimp Δ=                     (14) 

Case 2: and  0
* WWF ≠ 0

* WWB =
Here, it is just contrary to case 1. In this way, 

we have: 

);();( yxyx wwSdSwwimp Δ−=                   (15) 

Case 3:  *
0

*
BF WWW ≠≠

In case 1 and 2, bigrams are added so that dis-
criminant function of correct word sequence be-
comes bigger, and that of incorrect word se-
quence becomes smaller. In case 3, both  and 

 are incorrect. Thus, the misclassification 
function in equation (8) does not represent the 
likelihood that S will be incorrectly segmented. 
Therefore, variation of the misclassification 
function in equation (13) can not be used to 
measure the "importance" of a bigram. Here, sen-
tence S is ignored, and the "importance" of all 
bigrams on S are zero. 

*
FW

*
BW

The above three cases are designed for one 
sentence. The "importance" of each bigram on 
the whole training corpus is the sum of its "im-
portance" on each single sentence, as equation 
(16) shows.  

∑=
S

yxyx Swwimpwwimp );()(                      (16) 

To sum up, the "importance" of each bigram is 
computed as Figure 3 shows.  

 

1. For each wxwy, set imp(wxwy) = 0; 
2. For each sentence in training corpus: 

For each wxwy: 
if W  and W : 0

* WF = B ≠

F ≠ B =

0
* W

imp(wxwy) += Δd(S;wxwy); 
else if W and W : 0

* W 0
* W

imp(wxwy) −= Δd(S;wxwy); 

Figure 3. Calculation of "Importance"  
of Bigrams 

We illustrate the process of computing "im-
portance" of bigrams with a simple example. 
Suppose S is "这 (zhe4)样 (yang4)才 (cai2)能
(neng2) 更 (geng4) 方 (fang1) 便 (bian4)". The 
segmented result using full-bigram model is "这
样(zhe4yang4)/才(cai2)/能(neng2)/更(geng4)/方
便(fang1bian4)", which is the correct word se-
quence. The segmented result using base model 
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is " 这 样 (zhe4yang4)/ 才 能 (cai2neng2)/ 更
(geng4)/ 方 便 (fang1bian4)". Obviously, it 
matches case 1. For bigram "这样(zhe4yang4)才
(cai2)", it occurs in  once, and does not occur 
in . According to equation (13), its "impor-
tance" on sentence S is: 

*
FW

*
BW

imp(这样(zhe4yang4)才(cai2);S) 
= logPF(才(cai2)|这样(zhe4yang4)) − 

[logPB(才(cai2)) + logαB BB(这样(zhe4yang4))] 

For bigram " 更 (geng4) 方便 (fang1bian4)", 
since it occurs once both in  and , its 
"importance" on S is zero. 

*
FW *

BW

3.3 Step-by-step Growing 

Given the target model size, we can add exact 
number of bigrams to the base model at one time 
by using the growing algorithm illustrated in 
Figure 2. But it is more suitable to adopt a step-
by-step growing algorithm illustrated in Figure 4. 

As shown in equation (13), the "importance" 
of each bigram depends on the base model. Ini-
tially, the base model is set to the unigram model. 
With bigrams added in, it becomes a growing 
bigram model. Thus,  and *

BW )(log xB wα  will 
change. So, the added bigrams will affect the 
calculation of "importance" of bigrams to be 
added. Generally, adding more bigrams at one 
time will lead to more negative impacts. Thus, it 
is expected that models produced by step-by-step 
growing algorithm may achieve better perform-
ance than growing algorithm, and smaller step 
size will lead to even better performance. 

 
Figure 4. Step-by-step Growing Algorithm 

4 Experiments 

4.1 Experiment Settings 

The training corpus comes from People's daily 
2000, containing about 25 million Chinese char-
acters. It is manually segmented into word se-
quences, according to the word segmentation 
specification of Peking University (Yu et al., 
2003). The testing text that is provided by Peking 
University comes from the second international 
Chinese word segmentation bakeoff organized 
by SIGHAN. The testing text is a part of Peo-
ple's daily 2001, consisting of about 170K Chi-
nese characters. 

The vocabulary is automatically extracted 
from the training corpus, and the words occur-
ring only once are removed. Finally, about 67K 
words are included in the vocabulary. The full-
bigram model and the unigram model are trained 
by CMU language model toolkit (Clarkson and 
Rosenfeld, 1997). Without any count cut-off, the 
full-bigram model contains about 2 million bi-
grams. 

The word segmentation system is developed 
based on a source-channel model similar to that 
described in (Gao et al., 2003). Viterbi algorithm 
is applied to find the best word segmentation 
path. 

4.2 Evaluation Metrics 

The language models built in our experiments 
are evaluated by two metrics. One is F-Measure 
of the word segmentation result; the other is lan-
guage model perplexity. 

For F-Measure evaluation, we firstly segment 
the raw testing text using the model to be evalu-
ated. Then, the segmented result is evaluated by 
comparing with the gold standard set. The 
evaluation tool is also from the word segmenta-
tion bakeoff. F-Measure is calculated as: 

1. Given step size s; 
2. Set the base model to be the unigram 

model; 
3. Segment corpus with full-bigram model; 
4. Segment corpus with base model; 
5. Compute "importance" of each bigram 

included in the full-bigram model but ex-
cluded from the base model; 

6. Sort the bigrams according to their "im-
portance"; 

7. Add s bigrams with the biggest "impor-
tance" to the base model; 

8. Re-compute backoff coefficients in the 
base model; 

9. If the base model is still smaller than the 
desired size, go to step 4; otherwise, stop.

F-Measure
RecallPrecision

RecallPrecision2
+
××

=           (17) 

For perplexity evaluation, the language model 
to be evaluated is used to provide the bigram 
probabilities for each word in the testing text. 
The perplexity is the mean logarithm probability 
as shown in equation (18): 

∑= −−
=

N

i ii wwP
NMPP 1 12 )|(log1

2)(                       (18) 

4.3 Comparison of Pruning Methods 

The Kullback-Leibler Distance (KLD) based 
method is the state-of-the-art method, and is 
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taken as the baseline1. Pruning algorithm illus-
trated in Figure 1 is used for KLD based pruning. 
Growing algorithms illustrated in Figure 2 and 
Figure 4 are used for discriminative pruning 
method. Growing algorithms are not applied to 
KLD based pruning, because the computation of 
KLD is independent of the base model. 

At step 1 for KLD based pruning, m is set to 
produce ten models containing 10K, 20K, …, 
100K bigrams. We apply each of the models to 
the word segmentation system, and evaluate the 
segmented results with the evaluation tool. The 
F-Measures of the ten models are illustrated in 
Figure 5, denoted by "KLD". 

For the discriminative pruning criterion, the 
growing algorithm illustrated in Figure 2 is 
firstly used. Unigram model acts as the base 
model. At step 1, n is set to 10K, 20K, …, 100K 
separately. At step 2, "importance" of each bi-
gram is computed following Figure 3. Ten mod-
els are produced and evaluated. The F-Measures 
are also illustrated in Figure 5, denoted by "Dis-
crim". 

By adding bigrams step by step as illustrated 
in Figure 4, and setting step size to 10K, 5K, and 
2K separately, we obtain other three series of 
models, denoted by "Step-10K", "Step-5K" and 
"Step-2K" in Figure 5. 

We also include in Figure 5 the performance 
of the count cut-off method. Obviously, it is infe-
rior to other methods. 
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Figure 5. Performance Comparison of Different 

Pruning Methods 

First, we compare the performance of "KLD" 
and "Discrim". When the model size is small, 

                                                 
1 Our pilot study shows that the method based on Kullback-
Leibler distance outperforms methods based on other crite-
ria introduced in section 2. 

such as those models containing less than 70K 
bigrams, the performance of "Discrim" is better 
than "KLD". For the models containing more 
than 70K bigrams, "KLD" gets better perform-
ance than "Discrim". The reason is that the added 
bigrams affect the calculation of "importance" of 
bigrams to be added, which has been discussed 
in section 3.3. 

If we add the bigrams step by step, better per-
formance is achieved. From Figure 5, it can be 
seen that all of the models generated by step-by-
step growing algorithm outperform "KLD" and 
"Discrim" consistently. Compared with the base-
line KLD based method, step-by-step growing 
methods result in at least 0.2 percent improve-
ment for each model size. 

Comparing "Step-10K", "Step-5K" and "Step-
2K", they perform differently before the 60K-
bigram point, and perform almost the same after 
that. The reason is that they are approaching their 
saturation states, which will be discussed in sec-
tion 4.5. Before 60K-bigram point, smaller step 
size yields better performance. 

An example of detailed comparison result is 
shown in Table 1, where the F-Measure is 
96.33%. The last column shows the relative 
model sizes with respect to the KLD pruned 
model. It shows that with the F-Measure of 
96.33%, number of bigrams decreases by up to 
90%. 

 # of bigrams % of KLD 
KLD 100,000   100%   
Step-10K 25,000   25%   
Step-5K 15,000   15%   
Step-2K 10,000   10%   

Table 1. Comparison of Number of Bigrams  
at F-Measure 96.33% 

4.4 Correlation between Perplexity and F-
Measure 

Perplexities of the models built above are evalu-
ated over the gold standard set. Figure 6 shows 
how the perplexities vary with the bigram num-
bers in models. Here, we notice that the KLD 
models achieve the lowest perplexities. It is not a 
surprising result, because the goal of KLD based 
pruning is to minimize the Kullback-Leibler dis-
tance that can be interpreted as a relative change 
of perplexity (Stolcke, 1998). 

Now we compare Figure 5 and Figure 6. Per-
plexities of KLD models are much lower than 
that of the other models, but their F-Measures are 
much worse than that of step-by-step growing 
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models. It implies that lower perplexity does not 
always lead to higher F-Measure. 

However, when the comparison is restricted in 
a single pruning method, the case is different. 
For each pruning method, as more bigrams are 
included in the model, the perplexity curve falls, 
and the F-Measure curve rises. It implies there 
are correlations between them. We compute the 
Pearson product-moment correlation coefficient 
for each pruning method, as listed in Table 2. It 
shows that the correlation between perplexity 
and F-Measure is very strong. 

To sum up, the correlation between language 
model perplexity and system performance (here 
represented by F-Measure) depends on whether 
the models come from the same pruning method. 
If so, the correlation is strong. Otherwise, the 
correlation is weak. 
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Figure 6. Perplexity Comparison of Different 

Pruning Methods 

Pruning Method Correlation 
Cut-off -0.990 
KLD -0.991 
Discrim -0.979 
Step-10K -0.985 
Step-5K -0.974 
Step-2K -0.995 

Table 2. Correlation between Perplexity  
and F-Measure 

4.5 Combination of Saturated Model and 
KLD 

The above experimental results show that step-
by-step growing models achieve the best per-
formance when less than 100K bigrams are 
added in. Unfortunately, they can not grow up 
into any desired size. A bigram has no chance to 
be added into the base model, unless it appears in 

the mis-aligned part of the segmented corpus, 
where ≠ . It is likely that not all bigrams 
have the opportunity. As more and more bigrams 
are added into the base model, the segmented 
training corpus using the current base model ap-
proaches to that using the full-bigram model. 
Gradually, none bigram can be added into the 
current base model. At that time, the model stops 
growing, and reaches its saturation state. The 
model that reaches its saturation state is named 
as saturated model. In our experiments, three 
step-by-step growing models reach their satura-
tion states when about 100K bigrams are added 
in. 

*
FW *

BW

By combining with the baseline KLD based 
method, we obtain models that outperform the 
baseline for any model size. We combine them 
as follows. If the desired model size is smaller 
than that of the saturated model, step-by-step 
growing is applied. Otherwise, Kullback-Leibler 
distance is used for further growing over the 
saturated model. For instance, by growing over 
the saturated model of "Step-2K", we obtain 
combined models containing from 100K to 2 
million bigrams. The performance of the com-
bined models and that of the baseline KLD mod-
els are illustrated in Figure 7. It shows that the 
combined model performs consistently better 
than KLD model over all of bigram numbers. 
Finally, the two curves converge at the perform-
ance of the full-bigram model. 
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Figure 7. Performance Comparison of Combined 

Model and KLD Model 

5 Conclusions and Future Work 

A discriminative pruning criterion of n-gram lan-
guage model for Chinese word segmentation was 
proposed in this paper, and a step-by-step grow-
ing algorithm was suggested to generate the 
model of desired size based on a full-bigram 
model and a base model. Experimental results 
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showed that the discriminative pruning method 
achieves significant improvements over the base-
line KLD based method. At the same F-measure, 
the number of bigrams can be reduced by up to 
90%. By combining the saturated model and the 
baseline KLD based method, we achieved better 
performance for any model size. Analysis shows 
that, if the models come from the same pruning 
method, the correlation between perplexity and 
performance is strong. Otherwise, the correlation 
is weak. 

The pruning methods discussed in this paper 
focus on bigram pruning, keeping unigram prob-
abilities unchanged. The future work will attempt 
to prune bigrams and unigrams simultaneously, 
according to a same discriminative pruning crite-
rion. And we will try to improve the efficiency of 
the step-by-step growing algorithm. In addition, 
the method described in this paper can be ex-
tended to other applications, such as IME and 
speech recognition, where language models are 
applied in a similar way. 
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