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Abstract 

This work presents a model for learning 
inference procedures for story 
comprehension through inductive 
generalization and reinforcement 
learning, based on classified examples.  
The learned inference procedures (or 
strategies) are represented as of sequences 
of transformation rules.  The approach is 
compared to three prior systems, and 
experimental results are presented 
demonstrating the efficacy of the model.  

1  Introduction 
This paper presents an approach to automatically 
learning strategies for natural language question 
answering from examples composed of textual 
sources, questions, and answers.  Our approach is 
focused on one specific type of text-based question 
answering known as story comprehension.  Most 
TREC-style QA systems are designed to extract an 
answer from a document contained in a fairly large 
general collection (Voorhees, 2003).   They tend to 
follow a generic architecture, such as the one 
suggested by (Hirschman and Gaizauskas, 2001), 
that includes components for document pre-
processing and analysis, candidate passage 
selection, answer extraction, and response 
generation.  Story comprehension requires a 
similar approach, but involves answering questions 
from a single narrative document.  An important 
challenge in text-based question answering in 
general is posed by the syntactic and semantic 
variability of question and answer forms, which 
makes it difficult to establish a match between the 
question and answer candidate.  This problem is 
particularly acute in the case of story 
comprehension due to the rarity of information 
restatement in the single document. 

Several recent systems have specifically 
addressed the task of story comprehension.  The 

Deep Read reading comprehension system 
(Hirschman et al., 1999) uses a statistical bag-of-
words approach, matching the question with the 
lexically most similar sentence in the story.  Quarc 
(Riloff and Thelen, 2000) utilizes manually 
generated rules that selects a sentence deemed to 
contain the answer based on a combination of 
syntactic similarity and semantic correspondence 
(i.e., semantic categories of nouns).  The Brown 
University statistical language processing class 
project systems (Charniak et al., 2000) combine 
the use of manually generated rules with statistical 
techniques such as bag-of-words and bag-of-verb 
matching, as well as deeper semantic analysis of 
nouns.  As a rule, these three systems are effective 
at identifying the sentence containing the correct 
answer as long as the answer is explicit and 
contained entirely in that sentence.  They find it 
difficult, however, to deal with semantic 
alternations of even moderate complexity.  They 
also do not address situations where answers are 
split across multiple sentences, or those requiring 
complex inference. 

Our framework, called QABLe (Question-
Answering Behavior Learner), draws on prior 
work in learning action and problem-solving 
strategies (Tadepalli and Natarajan, 1996; 
Khardon, 1999).  We represent textual sources as 
sets of features in a sparse domain, and treat the 
QA task as behavior in a stochastic, partially 
observable world.  QA strategies are learned as 
sequences of transformation rules capable of 
deriving certain types of answers from particular 
text-question combinations.  The transformation 
rules are generated by instantiating primitive 
domain operators in specific feature contexts.  A 
process of reinforcement learning (Kaebling et al., 
1996) is used to select and promote effective 
transformation rules.  We rely on recent work in 
attribute-efficient relational learning (Khardon et 
al., 1999; Cumby and Roth, 2000; Even-Zohar and 
Roth, 2000) to acquire natural representations of 
the underlying domain features.  These 
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representations are learned in the course of 
interacting with the domain, and encode the 
features at the levels of abstraction that are found 
to be conducive to successful behavior.  This 
selection effect is achieved through a combination 
of inductive generalization and reinforcement 
learning elements.  

The rest of this paper is organized as follows.  
Section 2 presents the details of the QABLe 
framework.  In section 3 we describe preliminary 
experimental results which indicate promise for 
our approach.  In section 4 we summarize and 
draw conclusions.    

2  QABLe – Learning to Answer Questions 

2.1  Overview 

Figure 1 shows a diagram of the QABLe 
framework.  The bottom-most layer is the natural 
language textual domain.  It represents raw textual 
sources, questions, and answers.  The intermediate 
layer consists of processing modules that translate 
between the raw textual domain and the top-most 
layer, an abstract representation used to reason and 
learn. 

This framework is used both for learning to 
answer questions and for the actual QA task.  
While learning, the system is provided with a set of 
training instances, each consisting of a textual 
narrative, a question, and a corresponding answer.  

During the performance phase, only the narrative 
and question are given. 

At the lexical level, an answer to a question is 
generated by applying a series of transformation 
rules to the text of the narrative.  These 
transformation rules augment the original text with 
one or more additional sentences, such that one of 
these explicitly contains the answer, and matches 
the form of the question. 

On the abstract level, this is essentially a 
process of searching for a path through problem 
space that transforms the world state, as described 
by the textual source and question, into a world 
state containing an appropriate answer.  This 
process is made efficient by learning answer-
generation strategies.  These strategies store 
procedural knowledge regarding the way in which 
answers are derived from text, and suggest 
appropriate transformation rules at each step in the 
answer-generation process.  Strategies (and the 
procedural knowledge stored therein) are acquired 
by explaining (or deducing) correct answers from 
training examples.  The framework’s ability to 
answer questions is tested only with respect to the 
kinds of documents it has seen during training, the 
kinds of questions it has practiced answering, and 
its interface to the world (domain sensors and 
operators). 

In the next two sections we discuss lexical pre-
processing, and the representation of features and 
relations over them in the QABLe framework.  In 
section 2.4 we look at the structure of 
transformation rules and describe how they are 
instantiated.  In section 2.5, we build on this 
information and describe details of how strategies 
are learned and utilized to generate answers.  In 
section 2.6 we explain how candidate answers are 
matched to the question, and extracted. 

2.2  Lexical Pre-Processing 

Several levels of syntactic and semantic processing 
are required in order to generate structures that 
facilitate higher order analysis.  We currently use 
MontyTagger 1.2, an off-the-shelf POS tagger 
based on (Brill, 1995) for POS tagging.  At the 
next tier, we utilize a Named Entity (NE) tagger 
for proper nouns a semantic category classifier for 
nouns and noun phrases, and a co-reference 
resolver (that is limited to pronominal anaphora).  
Our taxonomy of semantic categories is derived 
from the list of unique beginners for WordNet 
nouns (Fellbaum, 1998).  We also have a parallel 
stage that identifies phrase types.  Table 1 gives a 
list of phrase types currently in use, together with 
the categories of questions each phrase type can 
answer.  In the near future, we plan to utilize a link 
parser to boost phrase-type tagging accuracy.  For 
questions, we have a classifier that identifies the 
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Figure 1.  The QABLe architecture for question 
answering. 
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semantic category of information requested by the 
question.  Currently, this taxonomy is identical to 
that of semantic categories.  However, in the 
future, it may be expanded to accommodate a 
wider range of queries.  A separate module 
reformulates questions into statement form for later 
matching with answer-containing phrases. 

2.3  Representing the QA Domain 

In this section we explain how features are 
extracted from raw textual input and tags which are 
generated by pre-processing modules. 

A sentence is represented as a sequence of 
words  〈w1, w2,…, wn〉, where word(wi, word) binds 
a particular word to its position in the sentence.  
The kth sentence in a passage is given a unique 
designation sk.  Several simple functions capture 
the syntax of the sentence.  The sentence Main 
(e.g., main verb) is the controlling element of the 
sentence, and is recognized by main(wm, sk).  Parts 
of speech are recognized by the function pos, as in 
pos(wi, NN) and pos(wi, VBD).  The relative 
syntactic ordering of words is captured by the 
function wj=before(wi).  It can be applied 
recursively, as wk = before(wj) = before(before(wi)) 
to generate the entire sentence starting with an 
arbitrary word, usually the sentence Main.  
before() may also be applied as a predicate, such as 
before(wi, wj).  Thus for each word wi  in the 
sentence, inSentence(wi, si) ⇒ main(wm, sk) ∧ 
(before(wi, wm) ∨ before(wm, wi)).  A consecutive 
sequence of words is a phrase entity or simply 
entity.  It is given the designation ex  and declared 
by a binding function, such as entity(ex, NE) for a 
named entity, and entity(ex, NP) for a syntactic 
group of type noun phrase.  Each phrase entity is 
identified by its head, as head(wh, ex), and we say 
that the phrase head controls the entity.  A phrase 
entity is defined as head(wh, ex) ∧ inPhrase(wi, ex) 
∧ … ∧ inPhrase(wj, ex). 

We also wish to represent higher-order relations 
such as functional roles and semantic categories.  
Functional dependency between pairs of words is 
encoded as, for example, subj(wi, wj) and aux(wj, 
wk).  Functional groups are represented just like 
phrase entities.  Each is assigned a designation rx, 
declared for example, as func_role(rx, SUBJ), and 
defined in terms of its head and members (which 
may be individual words or composite entities).  
Semantic categories are similarly defined over the 
set of words and syntactic phrase entities – for 
example, sem_cat(cx, PERSON) ∧  head(wh, cx) ∧ 
pos(wi, NNP) ∧ word(wh, “John”). 

 Semantically, sentences are treated as events 
defined by their verbs.  A multi-sentential passage 
is represented by tying the member sentences 
together with relations over their verbs.  We 
declare two such relations – seq and cause.  The 

seq relation between two sentences, seq(si, sj) ⇒ 
prior(main(si), main(sj)), is defined as the 
sequential ordering in time of the corresponding 
events.  The cause relation cause(si, sj) ⇒ 
cdep(main(si), main(sj)) is defined such that the 
second event is causally dependent on the first.   

2.4  Primitive Operators and Transformation 
Rules 

The system, in general, starts out with no 
procedural knowledge of the domain (i.e., no 
transformation rules).  However, it is equipped 
with 9 primitive operators that define basic actions 
in the domain.  Primitive operators are existentially 
quantified.  They have no activation condition, but 
only an existence condition – the minimal binding 
condition for the operator to be applicable in a 
given state.  A primitive operator has the form 

AC E ˆ→ , where EC  is the existence condition and 
Â  is an action implemented in the domain.  An 
example primitive operator is  

primitive-op-1 :     ∃ wx, wy →  add-word-after-
word(wy, wx) 

Other primitive operators delete words or 
manipulate entire phrases.  Note that primitive 
operators act directly on the syntax of the domain.  
In particular, they manipulate words and phrases.  
A primitive operator bound to a state in the domain 
constitutes a transformation rule.  The procedure 

Phrase Type Comments 

SUBJ  “Who” and nominal 
“What” questions 

VERB event “What” questions 

DIR-OBJ  “Who” and nominal 
“What” questions 

INDIR-OBJ  “Who” and nominal 
“What” questions 

ELAB-SUBJ descriptive “What” 
questions (eg. what kind) 

ELAB-VERB-TIME  
ELAB-VERB-PLACE  
ELAB-VERB-MANNER  
ELAB-VERB-CAUSE  “Why” question 

ELAB-VERB-INTENTION   “Why” as well as “What 
for” question 

ELAB-VERB-OTHER 
smooth handling of 
undefined verb phrase 
types 

ELAB-DIR-OBJ descriptive “What” 
questions (eg. what kind) 

ELAB-INDIR-OBJ descriptive “What” 
questions (eg. what kind) 

VERB-COMPL 
WHERE/WHEN/HOW 
questions concerning state 
or status 

Table 1. Phrase types used by QABLe framework.
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for instantiating transformation rules using 
primitive operators is given in Figure 2.  The result 
of this procedure is a universally quantified rule 
having the form AGC R →∧ .  A  may represent 
either the name of an action in the world or an 
internal predicate.  C represents the necessary 
condition for rule activation in the form of a 
conjunction over the relevant attributes of the 
world state.  RG  represents the expected effect of 
the action.  For example, turn_on_x2→∧∧ 221 gxx   
indicates that when 1x  is on and 2x  is off, this 
operator is expected to turn 2x  on.    

An instantiated rule is assigned a rank 
composed of: 

• priority rating 
• level of experience with rule 
• confidence in current parameter bindings 

The first component, priority rating, is an 
inductively acquired measure of the rule’s 
performance on previous instances.  The second 
component modulates the priority rating with 
respects to a frequency of use measure.  The third 
component captures any uncertainty inherent in the 
underlying features serving as parameters to the 
rule. 

Each time a new rule is added to the rule base, 
an attempt is made to combine it with similar 
existing rules to produce more general rules having 
a wider relevance and applicability. 

Given a rule 
1Aggcc R

y
R
xba →∧∧∧ covering a set 

of example instances 1E  and another rule 

2Aggcc R
z

R
ycb →∧∧∧ covering a set of examples 

2E , we add a more general rule 3Agc R
yb →∧  to the 

strategy.  The new rule 3A  is consistent with 1E and 

2E .  In addition it will bind to any state where the 
literal bc  is active.  Therefore the hypothesis 
represented by the triggering condition is likely an 
overgeneralization of the target concept.  This 
means that rule 3A  may bind in some states 
erroneously.  However, since all rules that can bind 
in a state compete to fire in that state, if there is a 
better rule, then 3A  will be preempted and will not 
fire. 

2.5  Generating Answers 

Returning to Figure 1, we note that at the abstract 
level the process of answer generation begins with 
the extraction of features active in the current state.  

These features represent low-level textual 
attributes and the relations over them described in 
section 2.3. 

Immediately upon reading the current state, the 
system checks to see if this is a goal state.   A goal 
state is a state who’s corresponding textual domain 
representation contains an explicit answer in the 
right form to match the questions.  In the abstract 
representation, we say that in this state all of the 
goal constraints are satisfied.  

If the current state is indeed a goal state, no 
further inference is required.  The inference 
process terminates and the actual answer is 
identified by the matching technique described in 
section 2.6 and extracted.   

If the current state is not a goal state and more 
processing time is available, QABLe passes the 
state to the Inference Engine (IE).  This module 
stores strategies in the form of decision lists of 
rules.  For a given state, each strategy may 
recommend at most one rule to execute.  For each 
strategy this is the first rule in its decision list to 
fire.  The IE selects the rule among these with the 
highest relative rank, and recommends it as the 
next transformation rule to be applied to the 
current state.  

If a valid rule exists it is executed in the 
domain.  This modifies the concrete textual layer.  
At this point, the pre-processing and feature 
extraction stages are invoked, a new current state is 
produced, and the inference cycle begins anew. 

If a valid rule cannot be recommend by the IE, 
QABLe passes the current state to the Search 
Engine (SE).  The SE uses the current state and its 
set of primitive operators to instantiate a new rule, 
as described in section 2.4. This rule is then 
executed in the domain, and another iteration of 
the process begins.   

If no more primitive operators remain to be 
applied to the current state, the SE cannot 
instantiate a new rule.  At this point, search for the 
goal state cannot proceed, processing terminates, 
and QABLe returns failure. 

Instantiate Rule 
Given:  
• set of primitive operators 
• current state specification 
• goal specification 
 

1. select primitive operator to instantiate 
2. bind active state variables & goal spec to existentially 

quantified condition variables   
3. execute action in domain 
4. update expected effect of new rule according to change 

in state variable values 
 
Figure 2.  Procedure for instantiating transformation 
rules using primitive operators. 
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When the system is in the training phase and 
the SE instantiates a new rule, that rule is 
generalized against the existing rule base.  This 
procedure attempts to create more general rules 
that can be applied to unseen example instances.   

Once the inference/search process terminates 
(successfully or not), a reinforcement learning 
algorithm is applied to the entire rule search-
inference tree.  Specifically, rules on the solution 
path receive positive reward, and rules that fired, 
but are not on the solution path receive negative 
reinforcement.   

2.6  Candidate Answer Matching and 
Extraction 

As discussed in the previous section, when a goal 
state is generated in the abstract representation, this 
corresponds to a textual domain representation that 
contains an explicit answer in the right form to 
match the questions.  Such a candidate answer may 
be present in the original text, or may be generated 
by the inference/search process.  In either case, the 
answer-containing sentence must be found, and the 
actual answer extracted.  This is accomplished by 
the Answer Matching and Extraction procedure. 

The first step in this procedure is to reformulate 
the question into a statement form.  This results in 
a sentence containing an empty slot for the 
information being queried.  Recall further that 
QABLe’s pre-processing stage analyzes text with 
respect to various syntactic and semantic types.  In 
addition to supporting abstract feature generation, 
these tags can be used to analyze text on a lexical 
level.  The goal now is to find a sentence whose 
syntactic and semantic analysis matches that of the 
reformulated question’s as closely as possible.   

3  Experimental Evaluation 

3.1  Experimental Setup 

We evaluate our approach to open-domain natural 
language question answering on the Remedia 

corpus.  This is a collection of 115 children’s 
stories provided by Remedia Publications for 
reading comprehension.  The comprehension of 
each story is tested by answering five who, what, 
where, and why questions.   

The Remedia Corpus was initially used to 
evaluate the Deep Read reading comprehension 
system, and later also other systems, including 
Quarc and the Brown University statistical 
language processing class project.   

The corpus includes two answer keys.  The first 
answer key contains annotations indicating the 
story sentence that is lexically closest to the answer 
found in the published answer key (AutSent).  The 
second answer key contains sentences that a 
human judged to best answer each question 
(HumSent).  Examination of the two keys shows 
the latter to be more reliable.  We trained and 
tested using the HumSent answers.  We also 
compare our results to the HumSent results of prior 
systems.  In the Remedia corpus, approximately 
10% of the questions lack an answer.  Following 
prior work, only questions with annotated answers 
were considered.     

We divided the Remedia corpus into a set of 55 
tests used for development, and 60 tests used to 
evaluate our model, employing the same partition 
scheme as followed by the prior work mentioned 
above.  With five questions being supplied with 
each test, this breakdown provided 275 example 
instances for training, and 300 example instances 
to test with.  However, due to the heavy reliance of 
our model on learning, many more training 
examples were necessary.  We widened the 
training set by adding story-question-answer sets 
obtained from several online sources.  With the 
extended corpus, QABLe was trained on 262 
stories with 3-5 questions each, corresponding to 
1000 example instances.   

System who what when where why Overall 
Deep Read 48% 38% 37% 39% 21% 36% 
Quarc 41% 28% 55% 47% 28% 40% 
Brown 57% 32% 32% 50% 22% 41% 
QABLe-N/L 48% 35% 52% 43% 28% 41% 
QABLe-L 56% 41% 56% 45% 35% 47% 
QABLe-L+ 59% 43% 56% 46% 36% 48% 

Table 2.  Comparison of QA accuracy by question type. 
 
 

System # rules learned # rules on solution path average # rules per correct answer 
QABLe-L 3,463 426 3.02 
QABLe-L+ 16,681 411 2.85 

Table 3.  Analysis of transformation rule learning and use. 
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3.2  Discussion of Results 

Table 2 compares the performance of different 
versions of QABLe with those reported by the 
three systems described above.  We wish to discern 
the particular contribution of transformation rule 
learning in the QABLe model, as well as the value 
of expanding the training set.  Thus, the QABLe-
N/L results indicate the accuracy of answers 
returned by the QA matching and extraction 
algorithm described in section 2.6 only.  This 
algorithm is similar to prior answer extraction 
techniques, and provides a baseline for our 
experiments. The QABLe-L results include 
answers returned by the full QABLe framework, 
including the utilization of learned transformation 
rules, but trained only on the limited training 
portion of the Remedia corpus.  The QABLe-L+ 
results are for the version trained on the expanded 
training set.    

As expected, the accuracy of QABLe-N/L is 
comparable to those of the earlier systems.  The 
Remedia-only training set version, QABLe-L, 
shows an improvement over both the baseline 
QABLe, and most of the prior system results.  This 
is due to its expanded ability to deal with semantic 
alternations in the narrative by finding and learning 
transformation rules that reformulate the 
alternations into a lexical form matching that of the 
question.   

The results of QABLe-L+, trained on the 
expanded training set, are for the most part 
noticeably better than those of QABLe-L.  This is 
because training on more example instances leads 
to wider domain coverage through the acquisition 
of more transformation rules.  Table 3 gives a 
break-down of rule learning and use for the two 
learning versions of QABLe.   The first column is 
the total number of rules learned by each system 
version.  The second column is the number of rules 
that ended up being successfully used in generating 
an answer.  The third column gives the average 
number of rules each system needed to answer an 
answer (where a correct answer was generated).  
Note that QABLe-L+ used fewer rules on average 
to generate more correct answers than QABLe-L.   
This is because QABLe-L+ had more opportunities 
to refine its policy controlling rule firing through 
reinforcement and generalization. 

Note that the learning versions of QABLe do 
significantly better than the QABLe-N/L and all 
the prior systems on why-type questions.  This is 
because many of these questions require an 
inference step, or the combination of information 
spanning multiple sentences.  QABLe-L and 
QABLe-L+ are able to successfully learn 
transformation rules to deal with a subset of these 
cases. 

4  Conclusion  
This paper present an approach to automatically 
learn strategies for natural language questions 
answering from examples composed of textual 
sources, questions, and corresponding answers.   
The strategies thus acquired are composed of 
ranked lists transformation rules that when applied 
to an initial state consisting of an unseen text and 
question, can derive the required answer.  The 
model was shown to outperform three prior 
systems on a standard story comprehension corpus. 
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