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Abstract

The part-whole relation is of special im-
portance in biomedicine: structure and
process are organised along partitive axes.
Anatomy, for example, is rich in part-
whole relations. This paper reports pre-
liminary experiments on part-whole ex-
traction from a corpus of anatomy defi-
nitions, using a fully automatic iterative
algorithm to learn simple lexico-syntactic
patterns from multiword terms. The ex-
periments show that meronyms can be ex-
tracted using these patterns. A failure
analysis points out factors that could con-
tribute to improvements in both precision
and recall, including pattern generalisa-
tion, pattern pruning, and term match-
ing. The analysis gives insights into the
relationship between domain terminology
and lexical relations, and into evaluation
strategies for relation learning.

1 Introduction

We are used to seeing words listed alphabetically
in dictionaries. In terms of meaning, this order-
ing has little relevance beyond shared roots. In the
OED, jam is sandwiched betweenjalpaite (a
sulphide) andjama (a cotton gown). It is a long
way from bread and raspberry 1. Vocabular-
ies, however, do have a natural structure: one that
we rely on for language understanding. This struc-
ture is defined in part by lexical, or sense, relations,

1Oxford English Dictionary, Second Edition, 1989.

such as the familiar relations of synonymy and hy-
ponymy (Cruse, 2000). Meronymy relates the lex-
ical item for a part to that for a whole, equivalent
to the conceptual relation ofpartOf2. Example 1
shows a meronym. When we read the text, we un-
derstand that thefrontal lobes are not a new
entity unrelated to what has gone before, but part of
the previously mentionedbrain .

(1) MRI sections were taken through the
brain. Frontal lobeshrinkage suggests a
generalised cerebral atrophy.

The research described in this paper considers
meronymy, and its extraction from text. It is tak-
ing place in the context of the Clinical e-Science
Framework (CLEF) project3, which is developing
information extraction (IE) tools to allow querying
of medical records. Both IE and querying require
domain knowledge, whether encoded explicitly or
implicitly. In IE, domain knowledge is required to
resolve co-references between textual entities, such
as those in Example 1. In querying, domain knowl-
edge is required to expand and constrain user expres-
sions. For example, the query in Example 2 should
retrieve sarcomas in the pelvis, but not in limbs.

(2) Retrieve patients on Gemcitabine with ad-
vanced sarcomas in the trunk of the body.

The part-whole relation is critical to domain
knowledge in biomedicine: the structure and func-
tion of biological organisms are organised along par-
titive axes. The relation is modelled in several medi-
cal knowledge resources (Rogers and Rector, 2000),

2Although it is generally held thatpartOf is not just a single
simple relation, this will not be considered here.

3http://www.clef-user.com/
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but they are incomplete, costly to maintain, and un-
suitable for language engineering. This paper looks
at simple lexico-syntactic techniques for learning
meronyms. Section 2 considers background and re-
lated work; Section 3 introduces an algorithm for
relation extraction, and its implementation in the
PartEx system; Section 4 considers materials and
methods used for experiments with PartEx. The
experiments are reported in Section 5, followed by
conclusions and suggestions for future work.

2 Related Work

Early work on knowledge extraction from elec-
tronic dictionaries used lexico-syntactic patterns to
build relational records from definitions. This in-
cluded some work onpartOf (Evens, 1988). Lex-
ical relation extraction has, however, concentrated
on hyponym extraction. A widely cited method
is that of Hearst (1992), who argues that specific
lexical relations are expressed in well-known intra-
sentential lexico-syntactic patterns. Hearst success-
fully extracted hyponym relations, but had little suc-
cess with meronymy, finding that meronymic con-
texts are ambiguous (for example,cat’s paw and
cat’s dinner ). Morin (1999) reported a semi-
automatic implementation of Hearst’s algorithm.
Recent work has applied lexical relation extraction
to ontology learning (Maedche and Staab, 2004).

Berland and Charniak (1999) report what they be-
lieved to be the first work finding part-whole rela-
tions from unlabelled corpora. The method used is
similar to that of Hearst, but includes metrics for
ranking proposed part-whole relations. They report
55% accuracy for the top 50 ranked relations, using
only the two best extraction patterns.

Girju (2003) reports a relation discovery algo-
rithm based on Hearst. Girju contends that the am-
biguity of part-whole patterns means that more in-
formation is needed to distinguish meronymic from
non-meronymic contexts. She developed an algo-
rithm to learn semantic constraints for this differen-
tiation, achieving 83% precision and 98% recall with
a small set of manually selected patterns. Others
have looked specifically at meronymy in anaphora
resolution (e.g. Poesio et al (2002)).

The algorithm presented here learns relations di-
rectly between semantically typed multiword terms,

Input:

• A lexicon

• Relations between
terms

• Corpus from which
to learn

Output:

• New relations

• New terms

• Context patterns

Steps:

1. Using input resources

(a) Label terms
(b) Label relations

2. For a fixed number of iterations or until no
new relations are learned

(a) Identify contexts that contain both
participants in a relation

(b) Create patterns describing contexts
(c) Generalise the patterns
(d) Use generalised patterns to identify new

relation instances
(e) Label new terms
(f) Label new relations

Figure 1: PartEx algorithm for relation discovery

and itself contributes to term recognition. Learning
is automatic, with neither manual selection of best
patterns, nor expert validation of patterns. In these
respects, it differs from earlier work. Hearst and
others learn relations between either noun phrases
or single words, while Morin (1999) discusses how
hypernyms learnt between single words can be pro-
jected onto multi-word terms. Earlier algorithms in-
clude manual selection of initial or “best” patterns.
The experiments differ from others in that they are
restricted to a well defined domain, anatomy, and
use existing domain knowledge resources.

3 Algorithm

Input to the algorithm consists of existing lexical and
relational resources, such as terminologies and on-
tologies. These are used to label text with training
relations. The context of these relations are found
automatically, and patterns created to describe these
contexts. These patterns are generalised and used
to discover new relations, which are fed back itera-
tively into the algorithm. The algorithm is given in
Figure 1. An example iteration is shown in Figure 2.

3.1 Discovering New Terms

Step 2e in Figure 1 labels new terms, which may be
discovered as a by-product of identifying new rela-
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Figure 2: PartEx relation discovery between terms,
patterns represented by tokens and parts of speech.

tion instances. This is possible because there is a
distinction between the lexical item used to find the
pattern context (Step 2a), and the pattern element
against which new relations are matched (Step 2d).
For example, a pattern could be found from the con-
text (term relation term ), and expressed as (noun
relation adjective noun ). When applied to the
text to learn new relation instances, sequences of to-
kens taking part in this relation will be found, and
may be inferred to be terms for the next iteration.

3.2 Implementation: PartEx

Implementation was independent of any specific re-
lation, but configured, as the PartEx system, to dis-
cover partOf. Relations were usually learned be-
tween terms, although this was varied in some exper-
iments. The algorithm was implemented using the
GATE NLP framework (Cunningham et al., 2002)
and texts preprocessed using the tokeniser, sentence
splitter, and part-of-speech (POS) tagger provided
with GATE. In training, terms were labelled using
MMTx, which uses lexical variant generation to map
noun phrases to candidate terms and concepts at-
tested in a terminology database. Final candidate
selection is based on linguistic matching metrics,
and concept resolution on filtering ambiguity from
the MMTx source terminologies (Aronson, 2001).

Training relations were labelled from an existing
meronymy. Simple contexts of up to five tokens
between the participants in the relation were identi-
fied using JAPE, a regular expression language inte-
grated into GATE. For some experiments, relations
were considered between noun phrases, labelled us-
ing LT CHUNK (Mikheev and Finch, 1997). GATE
wrappers for MMTx, LT CHUNK, and other PartEx
modules are freely available4.

Patterns describing contexts were expressed as
shallow lexico-syntactic patterns in JAPE, and a
JAPE transducer used to find new relations. A typi-
cal pattern consisted of a sequence of parts of speech
and words. Pattern generalisation was minimal, re-
moving only those patterns that were either identical
to another pattern, or that had more specific lexico-
syntactic elements of another pattern. To simplify
pattern creation for the experiments reported here,
patterns only used context between the relation par-
ticipants, and did not use regular expression quan-
tifiers. New terms found during relation discovery
were labelled using a finite state machine created
with the Termino compiler (Harkema et al., 2004).

4 Materials and Method

Lexical and relational resources were provided by
the Unified Medical Language System (UMLS), a
collection of medical terminologies5. Term lookup
in the training phase was carried out using MMTx.
Experiments made particular use of The Univer-
sity of Washington Digital Anatomist Foundational
Model (UWDA), a knowledge base of anatomy in-
cluded in UMLS. Relation labelling in the training
phase used a meronymy derived by computing the
transitive closure of that provided with the UWDA.

The UWDA gives definitions for some terms, as
headless phrases that do not include the term be-
ing defined. A corpus was constructed from these,
for learning and evaluation. This corpus used the
first 300 UWDA terms with a definition, that had a
UMLS semantic type of “Body Part”. These terms
included synonyms and orthographic variants given
the same definition. Complete definitions were con-
structed by prepending terms to definitions with the
copula “is”. An example is shown in Figure 2.

4http://www.dcs.shef.ac.uk/∼angus
5Version 2003AC, http://www.nlm.nih.gov/research/umls/
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Experiments were carried out using cross valida-
tion over ten random unseen folds, with 71 unique
meronyms across all ten folds. Definitions were
pre-processed by tokenising, sentence splitting, POS
tagging and term labelling. Evaluation was carried
out by comparison of relations learned in the held
back fold, to those in an artificially generated gold
standard (described below). Evaluation was type
based, rather than instance based: unique relation
instances in the gold standard were compared with
unique relation instances found by PartEx, i.e. iden-
tical relation instances found within the same fold
were treated as a single type. Evaluation therefore
measures domain knowledge discovery.

Gold standard relations were generated using the
same context window as for Step 2a of the al-
gorithm. Pairs of terms from each context were
checked automatically for a relation in UWDA, and
this added to the gold standard. This evaluation
strategy is not ideal. First, the presence of a part
and a whole in a context does not mean that they are
being meronymically related (for example, “found
in the hand and finger”). The number of spurious
meronyms in the gold standard has not yet been as-
certained. Second, a true relation in the text may not
appear in a limited resource such as the UWDA (al-
though this can be overcome through a failure anal-
ysis, as described in Section 4.1). Although a better
gold standard would be based on expert mark up of
the text, the one used serves to give quick feedback
with minimal cost. Standard evaluation metrics were
used. The accuracy of initial term and relation la-
belling were not evaluated, as these are identical in
both gold standard creation and in experiments.

4.1 Failure Analysis

For some experiments, a failure analysis was carried
out on missing and spurious relations. The reasons
for failure were hypothesised by examining the sen-
tence in which the relation occurred, the pattern that
led to its discovery, and the source of the pattern.

Some spurious relations appeared to be correct,
even though they were not in the gold standard.
This is because the gold standard is based on a re-
source which itself has limits. One of the aims of
the work is to supplement such resources: the algo-
rithm shouldfind correct relations that are not in
the resource. Proper evaluation of these relations re-

quires care, and methodologies are currently being
investigated. A quick measure of their contribution
was, however, found by applying a simple method-
ology, based on the source texts being definitional,
authoritative, and describing relations in unambigu-
ous language. The methodology adjusts the number
of spurious relations, and calculates acorrected pre-
cision. By leaving the number of actual relations
unchanged, corrected precision still reflects the pro-
portion of discovered relations that were correct rel-
ative to the gold standard, but also reflects the num-
ber of correct relations not in the gold standard. The
methodology followed the steps in Figure 3.

1. Examine the context of the relation.

2. If the text gives a clear statement of
meronomy, the relation is not spurious.

3. If the text is clearly not a statement of
meronomy, the relation is spurious.

4. If the text is ambiguous, refer to a second
authoritative resource 6. If this gives a
clear statement of meronomy, the relation is
not spurious.

5. If none of these apply, the relation is
spurious.

6. Calculate corrected precision from the new
number of spurious relations.

Figure 3: Calculating corrected precision.

5 Experimental Results

Table 3 shows the results of running PartEx in var-
ious configurations, and evaluating over the same
ten folds. The first configuration, labelled BASE,
used PartEx as described in Section 3.2, to give a
recall of 0.80 and precision of 0.25. A failure anal-
ysis for this configuration is given in Table 2. It
shows that the largest contribution to spurious re-
lations (i.e. to lack of precision), was due to re-
lations discovered by some pattern that is ambigu-
ous for meronymy (category PATTERN). For exam-
ple, the pattern “[noun] and [noun] ” finds the
incorrect meronym “median partOf lateral ”
from the text “median and lateral glossoepiglottic
folds”. The algorithm learned the pattern from a cor-
rect meronym, and applying it in the next iteration,
learned spurious relations, compounding the error.

6In this case, Clinically Oriented Anatomy. K. Moore and
A. Dalley. 4th Edition. 1999. Lippincott Williams and Wilkins.
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Category Description Count %

SPECIFIC There are one or more variant patterns that come close to matching this relation, but none specific to it. 10 50%
DISCARD Patterns that could have picked these up were discarded, as they were also generating spurious patterns. 7 35%
SCARCE The context is unique in the corpus, and so a pattern could not be learnt without generalisation. 3 15%
COMPOUND The relation is within a compound noun. These are not recognised by the discovery algorithm. 1 5%
COMPLEX Complex context, which is beyond the simple current “part token* whole” context. 1 5%

Table 1: Failure analysis of 20 missing relations over ten folds, using PartEx configuration FILT.

Category Description BASE FILT
Count % Count %

PATTERN The pattern used to discover the relation does not encode partonomy in this case (Patterns involving:
is 33 (69%);and10 (21%);or 3 (6%); other 2 (4%)).

48 43% 0 0%

CORRECT Although not in the gold standard, the relation is clearly correct, either from an unambiguous state-
ment of fact in the text from which it was mined, or by reference to a standard anatomy textbook.

30 27% 33 49%

DEEP The relation is within a deeper structure than the surface patterns considered. The algorithm has
found an incorrect relation that relates to this deep structure. For example, the text “limen nasi is
subdivision of surface of viscerocranial mucosa” leads to (limen nasi partOf surface ).

12 11% 14 21%

FRAGMENT:DEEP A combination of the FRAGMENT and DEEP categories. For example, given the text “nucleus of
nerve is subdivision of neural tree”, it has learnt that (subdivision partOf neural ).

10 9% 4 6%

FRAGMENT The relation is a fragment of one in the text. For example, “plica salpingopalatine is subdivision of
viscerocranial mucosa” leads to (plica salpingopalatine partOf viscerocranial ).

9 8% 12 18%

OTHER Other reason. 4 4% 3 5%

Table 2: Failure analysis of spurious part-whole relations found by PartEx, for configuration BASE (over
half the spurious relations across ten folds) and configuration FILT (all spurious relations in ten folds). In
each case, a small number of relations are in two categories.

Possible Actual Missing Spurious P R

BASE 71 56 15 168 0.25 0.80
FILT 71 51 20 67 0.43 0.73
CORR 71 51 20 34 0.58 0.73
ITR1 71 45 26 66 0.39 0.62
ITR2 71 51 20 67 0.43 0.73
TERM 71 51 20 213 0.20 0.74
TOK 30 26 4 266 0.09 0.88
NP 32 27 5 393 0.07 0.81
POS 71 21 50 749 0.03 0.32

Table 3: Evaluation of PartEx. Total number of re-
lations, mean precision (P) and mean recall (R) for
various configurations, as discussed in the text.

The bulk of the spurious results of this type were
learnt from patterns using the tokensand, is, andor.

This problem needs a principled solution, perhaps
based on pruning patterns against a held-out portion
of training data, or by learning ambiguous patterns
from a large general corpus. Such a solution is be-
ing developed. In order to mimic it for the purpose
of these experiments, a filter was built to remove pat-
terns derived from problematic contexts. Table 3
shows the results of this change, as configuration
FILT: precision rose to 0.43, and recall dropped. All
other experiments reported used this filter.

A failure analysis of missing relations from con-
figuration FILT is shown in Table 1. The drop in
recall is explained by PartEx filtering ambiguous
patterns. The biggest contribution to lack of recall

was over-specific patterns (for example, the pattern
“ [term] is part of [term] “ would not identify
the meronym in “finger is apart of the hand”. Gen-
eralisation of patterns is essential to improve recall.
Improvements could also be made with more sophis-
ticated context, and by examining compounds.

A failure analysis of spurious relations for config-
uration FILT is shown in Table 2. The biggest im-
pact on precision was made by relations that could
be considered correct, as discussed in Section 4.1.
A corrected precision of 0.58 was calculated, shown
as configuration CORR in Table 3. Two other fac-
tors affecting precision can be deduced from Ta-
ble 2. First, some relations were encoded in deeper
linguistic structures than those considered (category
DEEP). Improvements could be made to precision
by considering these deeper structures. Second,
some spurious relations were found between frag-
ments of terms, due to failure of term recognition.

The algorithm used by PartEx is iterative, the im-
plementation completing in two iterations. Config-
urations ITR1 and ITR2 in Table 3 show that both
recall and precision increase as learning progresses.

Four other experiments were run, to assess the im-
pact of term recognition. Results are shown in Ta-
ble 3. Configuration TERM continued to label terms
in the training phase, but did not label new terms
found during iteration (as discussed in Section 3.1).
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TOK and NP used no term recognition, instead find-
ing relations between tokens and noun phrases re-
spectively (the gold standard being amended to re-
flect the new task). POS omitted part-of-speech tags
from patterns. In all cases, there was a large in-
crease in spurious results, impacting precision. Term
recognition seemed to provide a constraint in rela-
tion discovery, although the nature of this is unclear.

6 Conclusions

The PartEx system is capable of fully automated
learning of meronyms between semantically typed
terms, from the experimental corpus. With simu-
lated pattern pruning, it achieves a recall of 0.73 and
a precision of 0.58. In contrast to earlier work, these
results were achieved without manual labelling of
the corpus, and without direct manual selection of
high performance patterns. Although the cost of this
automation is lower results than the earlier work,
failure analyses provide insights into the algorithm
and scope for its further improvement.

Current work includes: automated pattern prun-
ing, extending pattern context and generalisation; in-
corporating deeper analyses of the text, such as se-
mantic labelling (c.f. Girju (2003)) and the use of
dependency structures; investigating the rôle of term
recognition in relation discovery; measures for eval-
uating new relation discovery; extraction of putative
sub-relations of meronymy. Work to scale the algo-
rithm to larger corpora is also under way, in recogni-
tion of the fact that the corpus used was small, highly
regularised, and unusually rich in meronyms.
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