
Proceedings of the 43rd Annual Meeting of the ACL, pages 581–588,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling Using Different Syntactic Views∗

Sameer Pradhan, Wayne Ward,
Kadri Hacioglu, James H. Martin

Center for Spoken Language Research,
University of Colorado,

Boulder, CO 80303
{spradhan,whw,hacioglu,martin}@cslr.colorado.edu

Daniel Jurafsky
Department of Linguistics,

Stanford University,
Stanford, CA 94305

jurafsky@stanford.edu

Abstract

Semantic role labeling is the process of
annotating the predicate-argument struc-
ture in text with semantic labels. In this
paper we present a state-of-the-art base-
line semantic role labeling system based
on Support Vector Machine classifiers.
We show improvements on this system
by: i) adding new features including fea-
tures extracted from dependency parses,
ii) performing feature selection and cali-
bration and iii) combining parses obtained
from semantic parsers trained using dif-
ferent syntactic views. Error analysis of
the baseline system showed that approx-
imately half of the argument identifica-
tion errors resulted from parse errors in
which there was no syntactic constituent
that aligned with the correct argument. In
order to address this problem, we com-
bined semantic parses from a Minipar syn-
tactic parse and from a chunked syntac-
tic representation with our original base-
line system which was based on Charniak
parses. All of the reported techniques re-
sulted in performance improvements.

1 Introduction

Semantic Role Labeling is the process of annotat-
ing the predicate-argument structure in text with se-

∗This research was partially supported by the ARDA
AQUAINT program via contract OCG4423B and by the NSF
via grants IS-9978025 and ITR/HCI 0086132

mantic labels (Gildea and Jurafsky, 2000; Gildea
and Jurafsky, 2002; Gildea and Palmer, 2002; Sur-
deanu et al., 2003; Hacioglu and Ward, 2003; Chen
and Rambow, 2003; Gildea and Hockenmaier, 2003;
Pradhan et al., 2004; Hacioglu, 2004). The architec-
ture underlying all of these systems introduces two
distinct sub-problems: the identification of syntactic
constituents that are semantic roles for a given pred-
icate, and the labeling of the those constituents with
the correct semantic role.

A detailed error analysis of our baseline system
indicates that the identification problem poses a sig-
nificant bottleneck to improving overall system per-
formance. The baseline system’s accuracy on the
task of labeling nodes known to represent semantic
arguments is 90%. On the other hand, the system’s
performance on the identification task is quite a bit
lower, achieving only 80% recall with 86% preci-
sion. There are two sources of these identification
errors: i) failures by the system to identify all and
only those constituents that correspond to semantic
roles, when those constituents are present in the syn-
tactic analysis, and ii) failures by the syntactic ana-
lyzer to provide the constituents that align with cor-
rect arguments. The work we present here is tailored
to address these two sources of error in the identifi-
cation problem.

The remainder of this paper is organized as fol-
lows. We first describe a baseline system based on
the best published techniques. We then report on
two sets of experiments using techniques that im-
prove performance on the problem of finding argu-
ments when they are present in the syntactic analy-
sis. In the first set of experiments we explore new

581

features, including features extracted from a parser
that provides a different syntactic view – a Combi-
natory Categorial Grammar (CCG) parser (Hocken-
maier and Steedman, 2002). In the second set of
experiments, we explore approaches to identify opti-
mal subsets of features for each argument class, and
to calibrate the classifier probabilities.

We then report on experiments that address the
problem of arguments missing from a given syn-
tactic analysis. We investigate ways to combine
hypotheses generated from semantic role taggers
trained using different syntactic views – one trained
using the Charniak parser (Charniak, 2000), another
on a rule-based dependency parser – Minipar (Lin,
1998), and a third based on a flat, shallow syntactic
chunk representation (Hacioglu, 2004a). We show
that these three views complement each other to im-
prove performance.

2 Baseline System

For our experiments, we use Feb 2004 release of
PropBank1 (Kingsbury and Palmer, 2002; Palmer
et al., 2005), a corpus in which predicate argument
relations are marked for verbs in the Wall Street
Journal (WSJ) part of the Penn TreeBank (Marcus
et al., 1994). PropBank was constructed by as-
signing semantic arguments to constituents of hand-
corrected TreeBank parses. Arguments of a verb
are labeled ARG0 to ARG5, where ARG0 is the
PROTO-AGENT, ARG1 is the PROTO-PATIENT, etc.
In addition to these CORE ARGUMENTS, additional
ADJUNCTIVE ARGUMENTS, referred to as ARGMs
are also marked. Some examples are ARGM-LOC,
for locatives; ARGM-TMP, for temporals; ARGM-
MNR, for manner, etc. Figure 1 shows a syntax tree
along with the argument labels for an example ex-
tracted from PropBank. We use Sections 02-21 for
training, Section 00 for development and Section 23
for testing.

We formulate the semantic labeling problem as
a multi-class classification problem using Support
Vector Machine (SVM) classifier (Hacioglu et al.,
2003; Pradhan et al., 2003; Pradhan et al., 2004)
TinySVM2 along with YamCha3 (Kudo and Mat-

1
http://www.cis.upenn.edu/˜ace/

2
http://chasen.org/˜taku/software/TinySVM/

3
http://chasen.org/˜taku/software/yamcha/

S
h
h
h
hh

(
(

(
((

NP
h
h
hh

(
(

((

The acquisition

ARG1

VP
`
`
`̀

VBD

was

NULL

VP
X
X
X

�
�
�

VBN

completed

predicate

PP
`
`
`̀

in September

ARGM−TMP

[ARG1 The acquisition] was [predicate completed] [ARGM−TMP in September].

Figure 1: Syntax tree for a sentence illustrating the
PropBank tags.

sumoto, 2000; Kudo and Matsumoto, 2001) are used
to implement the system. Using what is known as
the ONE VS ALL classification strategy, n binary
classifiers are trained, where n is number of seman-
tic classes including a NULL class.

The baseline feature set is a combination of fea-
tures introduced by Gildea and Jurafsky (2002) and
ones proposed in Pradhan et al., (2004), Surdeanu et
al., (2003) and the syntactic-frame feature proposed
in (Xue and Palmer, 2004). Table 1 lists the features
used.

PREDICATE LEMMA

PATH: Path from the constituent to the predicate in the parse tree.
POSITION: Whether the constituent is before or after the predicate.
VOICE

PREDICATE SUB-CATEGORIZATION

PREDICATE CLUSTER

HEAD WORD: Head word of the constituent.
HEAD WORD POS: POS of the head word
NAMED ENTITIES IN CONSTITUENTS: 7 named entities as 7 binary features.
PARTIAL PATH: Path from the constituent to the lowest common ancestor
of the predicate and the constituent.
VERB SENSE INFORMATION: Oracle verb sense information from PropBank
HEAD WORD OF PP: Head of PP replaced by head word of NP inside it,
and PP replaced by PP-preposition
FIRST AND LAST WORD/POS IN CONSTITUENT

ORDINAL CONSTITUENT POSITION

CONSTITUENT TREE DISTANCE

CONSTITUENT RELATIVE FEATURES: Nine features representing
the phrase type, head word and head word part of speech of the
parent, and left and right siblings of the constituent.
TEMPORAL CUE WORDS

DYNAMIC CLASS CONTEXT

SYNTACTIC FRAME

CONTENT WORD FEATURES: Content word, its POS and named entities
in the content word

Table 1: Features used in the Baseline system

As described in (Pradhan et al., 2004), we post-
process the n-best hypotheses using a trigram lan-
guage model of the argument sequence.

We analyze the performance on three tasks:
• Argument Identification – This is the pro-

cess of identifying the parsed constituents in
the sentence that represent semantic arguments
of a given predicate.

582

• Argument Classification – Given constituents
known to represent arguments of a predicate,
assign the appropriate argument labels to them.

• Argument Identification and Classification –
A combination of the above two tasks.

ALL ARGs Task P R F1 A
(%) (%) (%)

HAND Id. 96.2 95.8 96.0
Classification - - - 93.0
Id. + Classification 89.9 89.0 89.4

AUTOMATIC Id. 86.8 80.0 83.3
Classification - - - 90.1
Id. + Classification 80.9 76.8 78.8

Table 2: Baseline system performance on all tasks
using hand-corrected parses and automatic parses on
PropBank data.

Table 2 shows the performance of the system us-
ing the hand corrected, TreeBank parses (HAND)
and using parses produced by a Charniak parser
(AUTOMATIC). Precision (P), Recall (R) and F1

scores are given for the identification and combined
tasks, and Classification Accuracy (A) for the clas-
sification task.

Classification performance using Charniak parses
is about 3% absolute worse than when using Tree-
Bank parses. On the other hand, argument identifi-
cation performance using Charniak parses is about
12.7% absolute worse. Half of these errors – about
7% are due to missing constituents, and the other
half – about 6% are due to mis-classifications.

Motivated by this severe degradation in argument
identification performance for automatic parses, we
examined a number of techniques for improving
argument identification. We made a number of
changes to the system which resulted in improved
performance. The changes fell into three categories:
i) new features, ii) feature selection and calibration,
and iii) combining parses from different syntactic
representations.

3 Additional Features

3.1 CCG Parse Features

While the Path feature has been identified to be very
important for the argument identification task, it is
one of the most sparse features and may be diffi-
cult to train or generalize (Pradhan et al., 2004; Xue
and Palmer, 2004). A dependency grammar should

generate shorter paths from the predicate to depen-
dent words in the sentence, and could be a more
robust complement to the phrase structure grammar
paths extracted from the Charniak parse tree. Gildea
and Hockenmaier (2003) report that using features
extracted from a Combinatory Categorial Grammar
(CCG) representation improves semantic labeling
performance on core arguments. We evaluated fea-
tures from a CCG parser combined with our baseline
feature set. We used three features that were intro-
duced by Gildea and Hockenmaier (2003):

• Phrase type – This is the category of the max-
imal projection between the two words – the
predicate and the dependent word.

• Categorial Path – This is a feature formed by
concatenating the following three values: i) cat-
egory to which the dependent word belongs, ii)
the direction of dependence and iii) the slot in
the category filled by the dependent word.

• Tree Path – This is the categorial analogue of
the path feature in the Charniak parse based
system, which traces the path from the depen-
dent word to the predicate through the binary
CCG tree.

Parallel to the hand-corrected TreeBank parses,
we also had access to correct CCG parses derived
from the TreeBank (Hockenmaier and Steedman,
2002a). We performed two sets of experiments.
One using the correct CCG parses, and the other us-
ing parses obtained using StatCCG4 parser (Hocken-
maier and Steedman, 2002). We incorporated these
features in the systems based on hand-corrected
TreeBank parses and Charniak parses respectively.
For each constituent in the Charniak parse tree, if
there was a dependency between the head word of
the constituent and the predicate, then the corre-
sponding CCG features for those words were added
to the features for that constituent. Table 3 shows the
performance of the system when these features were
added. The corresponding baseline performances
are mentioned in parentheses.

3.2 Other Features

We added several other features to the system. Po-
sition of the clause node (S, SBAR) seems to be

4Many thanks to Julia Hockenmaier for providing us with
the CCG bank as well as the StatCCG parser.

583

ALL ARGs Task P R F1

(%) (%)

HAND Id. 97.5 (96.2) 96.1 (95.8) 96.8 (96.0)
Id. + Class. 91.8 (89.9) 90.5 (89.0) 91.2 (89.4)

AUTOMATIC Id. 87.1 (86.8) 80.7 (80.0) 83.8 (83.3)
Id. + Class. 81.5 (80.9) 77.2 (76.8) 79.3 (78.8)

Table 3: Performance improvement upon adding
CCG features to the Baseline system.

an important feature in argument identification (Ha-
cioglu et al., 2004) therefore we experimented with
four clause-based path feature variations. We added
the predicate context to capture predicate sense vari-
ations. For some adjunctive arguments, punctuation
plays an important role, so we added some punctu-
ation features. All the new features are shown in
Table 4

CLAUSE-BASED PATH VARIATIONS:
I. Replacing all the nodes in a path other than clause nodes with an “*”.
For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD
becomes NP↑S↑*S↑*↑*↓VBD
II. Retaining only the clause nodes in the path, which for the above
example would produce NP↑S↑S↓VBD,
III. Adding a binary feature that indicates whether the constituent
is in the same clause as the predicate,
IV. collapsing the nodes between S nodes which gives NP↑S↑NP↑VP↓VBD.
PATH N-GRAMS: This feature decomposes a path into a series of trigrams.
For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD becomes:
NP↑S↑VP, S↑VP↑SBAR, VP↑SBAR↑NP, SBAR↑NP↑VP, etc. We
used the first ten trigrams as ten features. Shorter paths were padded
with nulls.
SINGLE CHARACTER PHRASE TAGS: Each phrase category is clustered
to a category defined by the first character of the phrase label.
PREDICATE CONTEXT: Two words and two word POS around the
predicate and including the predicate were added as ten new features.
PUNCTUATION: Punctuation before and after the constituent were
added as two new features.
FEATURE CONTEXT: Features for argument bearing constituents
were added as features to the constituent being classified.

Table 4: Other Features

4 Feature Selection and Calibration

In the baseline system, we used the same set of fea-
tures for all the n binary ONE VS ALL classifiers.
Error analysis showed that some features specifi-
cally suited for one argument class, for example,
core arguments, tend to hurt performance on some
adjunctive arguments. Therefore, we thought that
selecting subsets of features for each argument class
might improve performance. To achieve this, we
performed a simple feature selection procedure. For
each argument, we started with the set of features in-
troduced by (Gildea and Jurafsky, 2002). We pruned
this set by training classifiers after leaving out one
feature at a time and checking its performance on
a development set. We used the χ

2 significance

while making pruning decisions. Following that, we
added each of the other features one at a time to the
pruned baseline set of features and selected ones that
showed significantly improved performance. Since
the feature selection experiments were computation-
ally intensive, we performed them using 10k training
examples.

SVMs output distances not probabilities. These
distances may not be comparable across classifiers,
especially if different features are used to train each
binary classifier. In the baseline system, we used the
algorithm described by Platt (Platt, 2000) to convert
the SVM scores into probabilities by fitting to a sig-
moid. When all classifiers used the same set of fea-
tures, fitting all scores to a single sigmoid was found
to give the best performance. Since different fea-
ture sets are now used by the classifiers, we trained
a separate sigmoid for each classifier.

Raw Scores Probabilities
After lattice-rescoring

Uncalibrated Calibrated
(%) (%) (%)

Same Feat. same sigmoid 74.7 74.7 75.4
Selected Feat. diff. sigmoids 75.4 75.1 76.2

Table 5: Performance improvement on selecting fea-
tures per argument and calibrating the probabilities
on 10k training data.

Foster and Stine (2004) show that the pool-
adjacent-violators (PAV) algorithm (Barlow et al.,
1972) provides a better method for converting raw
classifier scores to probabilities when Platt’s algo-
rithm fails. The probabilities resulting from either
conversions may not be properly calibrated. So, we
binned the probabilities and trained a warping func-
tion to calibrate them. For each argument classifier,
we used both the methods for converting raw SVM
scores into probabilities and calibrated them using
a development set. Then, we visually inspected
the calibrated plots for each classifier and chose the
method that showed better calibration as the calibra-
tion procedure for that classifier. Plots of the pre-
dicted probabilities versus true probabilities for the
ARGM-TMP VS ALL classifier, before and after cal-
ibration are shown in Figure 2. The performance im-
provement over a classifier that is trained using all
the features for all the classes is shown in Table 5.

Table 6 shows the performance of the system af-
ter adding the CCG features, additional features ex-

584

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted Probability

T
ru

e
P

ro
ba

bi
lit

y

Before Calibration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted Probability

T
ru

e
P

ro
ba

bi
lit

y

After Calibration

Figure 2: Plots showing true probabilities versus predicted probabilities before and after calibration on the
test set for ARGM-TMP.

tracted from the Charniak parse tree, and performing
feature selection and calibration. Numbers in paren-
theses are the corresponding baseline performances.

TASK P R F1 A
(%) (%) (%)

Id. 86.9 (86.8) 84.2 (80.0) 85.5 (83.3)
Class. - - - 92.0 (90.1)
Id. + Class. 82.1 (80.9) 77.9 (76.8) 79.9 (78.8)

Table 6: Best system performance on all tasks using
automatically generated syntactic parses.

5 Alternative Syntactic Views

Adding new features can improve performance
when the syntactic representation being used for
classification contains the correct constituents. Ad-
ditional features can’t recover from the situation
where the parse tree being used for classification
doesn’t contain the correct constituent representing
an argument. Such parse errors account for about
7% absolute of the errors (or, about half of 12.7%)
for the Charniak parse based system. To address
these errors, we added two additional parse repre-
sentations: i) Minipar dependency parser, and ii)
chunking parser (Hacioglu et al., 2004). The hope is
that these parsers will produce different errors than
the Charniak parser since they represent different
syntactic views. The Charniak parser is trained on
the Penn TreeBank corpus. Minipar is a rule based
dependency parser. The chunking parser is trained
on PropBank and produces a flat syntactic represen-
tation that is very different from the full parse tree

produced by Charniak. A combination of the three
different parses could produce better results than any
single one.

5.1 Minipar-based Semantic Labeler

Minipar (Lin, 1998; Lin and Pantel, 2001) is a rule-
based dependency parser. It outputs dependencies
between a word called head and another called mod-
ifier. Each word can modify at most one word. The
dependency relationships form a dependency tree.

The set of words under each node in Minipar’s
dependency tree form a contiguous segment in the
original sentence and correspond to the constituent
in a constituent tree. We formulate the semantic la-
beling problem in the same way as in a constituent
structure parse, except we classify the nodes that
represent head words of constituents. A similar for-
mulation using dependency trees derived from Tree-
Bank was reported in Hacioglu (Hacioglu, 2004).
In that experiment, the dependency trees were de-
rived from hand-corrected TreeBank trees using
head word rules. Here, an SVM is trained to as-
sign PropBank argument labels to nodes in Minipar
dependency trees using the following features:

Table 8 shows the performance of the Minipar-
based semantic parser.

Minipar performance on the PropBank corpus is
substantially worse than the Charniak based system.
This is understandable from the fact that Minipar
is not designed to produce constituents that would
exactly match the constituent segmentation used in
TreeBank. In the test set, about 37% of the argu-

585

PREDICATE LEMMA

HEAD WORD: The word representing the node in the dependency tree.
HEAD WORD POS: Part of speech of the head word.
POS PATH: This is the path from the predicate to the head word through
the dependency tree connecting the part of speech of each node in the tree.
DEPENDENCY PATH: Each word that is connected to the head
word has a particular dependency relationship to the word. These
are represented as labels on the arc between the words. This
feature is the dependencies along the path that connects two words.
VOICE

POSITION

Table 7: Features used in the Baseline system using
Minipar parses.

Task P R F1

(%) (%)

Id. 73.5 43.8 54.6
Id. + Classification 66.2 36.7 47.2

Table 8: Baseline system performance on all tasks
using Minipar parses.

ments do not have corresponding constituents that
match its boundaries. In experiments reported by
Hacioglu (Hacioglu, 2004), a mismatch of about
8% was introduced in the transformation from hand-
corrected constituent trees to dependency trees. Us-
ing an errorful automatically generated tree, a still
higher mismatch would be expected. In case of
the CCG parses, as reported by Gildea and Hock-
enmaier (2003), the mismatch was about 23%. A
more realistic way to score the performance is to
score tags assigned to head words of constituents,
rather than considering the exact boundaries of the
constituents as reported by Gildea and Hocken-
maier (2003). The results for this system are shown
in Table 9.

Task P R F1

(%) (%)

CHARNIAK Id. 92.2 87.5 89.8
Id. + Classification 85.9 81.6 83.7

MINIPAR Id. 83.3 61.1 70.5
Id. + Classification 72.9 53.5 61.7

Table 9: Head-word based performance using Char-
niak and Minipar parses.

5.2 Chunk-based Semantic Labeler

Hacioglu has previously described a chunk based se-
mantic labeling method (Hacioglu et al., 2004). This
system uses SVM classifiers to first chunk input text
into flat chunks or base phrases, each labeled with
a syntactic tag. A second SVM is trained to assign
semantic labels to the chunks. The system is trained

on the PropBank training data.

WORDS

PREDICATE LEMMAS

PART OF SPEECH TAGS

BP POSITIONS: The position of a token in a BP using the IOB2
representation (e.g. B-NP, I-NP, O, etc.)
CLAUSE TAGS: The tags that mark token positions in a sentence
with respect to clauses.
NAMED ENTITIES: The IOB tags of named entities.
TOKEN POSITION: The position of the phrase with respect to
the predicate. It has three values as ”before”, ”after” and ”-” (for
the predicate)
PATH: It defines a flat path between the token and the predicate
CLAUSE BRACKET PATTERNS

CLAUSE POSITION: A binary feature that identifies whether the
token is inside or outside the clause containing the predicate
HEADWORD SUFFIXES: suffixes of headwords of length 2, 3 and 4.
DISTANCE: Distance of the token from the predicate as a number
of base phrases, and the distance as the number of VP chunks.
LENGTH: the number of words in a token.
PREDICATE POS TAG: the part of speech category of the predicate
PREDICATE FREQUENCY: Frequent or rare using a threshold of 3.
PREDICATE BP CONTEXT: The chain of BPs centered at the predicate
within a window of size -2/+2.
PREDICATE POS CONTEXT: POS tags of words immediately preceding
and following the predicate.
PREDICATE ARGUMENT FRAMES: Left and right core argument patterns
around the predicate.
NUMBER OF PREDICATES: This is the number of predicates in
the sentence.

Table 10: Features used by chunk based classifier.

Table 10 lists the features used by this classifier.
For each token (base phrase) to be tagged, a set of
features is created from a fixed size context that sur-
rounds each token. In addition to the above features,
it also uses previous semantic tags that have already
been assigned to the tokens contained in the linguis-
tic context. A 5-token sliding window is used for the
context.

P R F1

(%) (%)

Id. and Classification 72.6 66.9 69.6

Table 11: Semantic chunker performance on the
combined task of Id. and classification.

SVMs were trained for begin (B) and inside (I)
classes of all arguments and outside (O) class for a
total of 78 one-vs-all classifiers. Again, TinySVM5

along with YamCha6 (Kudo and Matsumoto, 2000;
Kudo and Matsumoto, 2001) are used as the SVM
training and test software.

Table 11 presents the system performances on the
PropBank test set for the chunk-based system.

5
http://chasen.org/˜taku/software/TinySVM/

6
http://chasen.org/˜taku/software/yamcha/

586

6 Combining Semantic Labelers

We combined the semantic parses as follows: i)
scores for arguments were converted to calibrated
probabilities, and arguments with scores below a
threshold value were deleted. Separate thresholds
were used for each parser. ii) For the remaining ar-
guments, the more probable ones among overlap-
ping ones were selected. In the chunked system,
an argument could consist of a sequence of chunks.
The probability assigned to the begin tag of an ar-
gument was used as the probability of the sequence
of chunks forming an argument. Table 12 shows
the performance improvement after the combina-
tion. Again, numbers in parentheses are respective
baseline performances.

TASK P R F1

(%) (%)

Id. 85.9 (86.8) 88.3 (80.0) 87.1 (83.3)
Id. + Class. 81.3 (80.9) 80.7 (76.8) 81.0 (78.8)

Table 12: Constituent-based best system perfor-
mance on argument identification and argument
identification and classification tasks after combin-
ing all three semantic parses.

The main contribution of combining both the
Minipar based and the Charniak-based parsers was
significantly improved performance on ARG1 in ad-
dition to slight improvements to some other argu-
ments. Table 13 shows the effect on selected argu-
ments on sentences that were altered during the the
combination of Charniak-based and Chunk-based
parses.

Number of Propositions 107
Percentage of perfect props before combination 0.00
Percentage of perfect props after combination 45.95

Before After
P R F1 P R F1

(%) (%) (%) (%)

Overall 94.8 53.4 68.3 80.9 73.8 77.2
ARG0 96.0 85.7 90.5 92.5 89.2 90.9
ARG1 71.4 13.5 22.7 59.4 59.4 59.4
ARG2 100.0 20.0 33.3 50.0 20.0 28.5
ARGM-DIS 100.0 40.0 57.1 100.0 100.0 100.0

Table 13: Performance improvement on parses
changed during pair-wise Charniak and Chunk com-
bination.

A marked increase in number of propositions for
which all the arguments were identified correctly
from 0% to about 46% can be seen. Relatively few

predicates, 107 out of 4500, were affected by this
combination.

To give an idea of what the potential improve-
ments of the combinations could be, we performed
an oracle experiment for a combined system that
tags head words instead of exact constituents as we
did in case of Minipar-based and Charniak-based se-
mantic parser earlier. In case of chunks, first word in
prepositional base phrases was selected as the head
word, and for all other chunks, the last word was se-
lected to be the head word. If the correct argument
was found present in either the Charniak, Minipar or
Chunk hypotheses then that was selected. The re-
sults for this are shown in Table 14. It can be seen
that the head word based performance almost ap-
proaches the constituent based performance reported
on the hand-corrected parses in Table 3 and there
seems to be considerable scope for improvement.

Task P R F1

(%) (%)

C Id. 92.2 87.5 89.8
Id. + Classification 85.9 81.6 83.7

C+M Id. 98.4 90.6 94.3
Id. + Classification 93.1 86.0 89.4

C+CH Id. 98.9 88.8 93.6
Id. + Classification 92.5 83.3 87.7

C+M+CH Id. 99.2 92.5 95.7
Id. + Classification 94.6 88.4 91.5

Table 14: Performance improvement on head word
based scoring after oracle combination. Charniak
(C), Minipar (M) and Chunker (CH).

Table 15 shows the performance improvement in
the actual system for pairwise combination of the
parsers and one using all three.

Task P R F1

(%) (%)

C Id. 92.2 87.5 89.8
Id. + Classification 85.9 81.6 83.7

C+M Id. 91.7 89.9 90.8
Id. + Classification 85.0 83.9 84.5

C+CH Id. 91.5 91.1 91.3
Id. + Classification 84.9 84.3 84.7

C+M+CH Id. 91.5 91.9 91.7
Id. + Classification 85.1 85.5 85.2

Table 15: Performance improvement on head word
based scoring after combination. Charniak (C),
Minipar (M) and Chunker (CH).

587

7 Conclusions

We described a state-of-the-art baseline semantic
role labeling system based on Support Vector Ma-
chine classifiers. Experiments were conducted to
evaluate three types of improvements to the sys-
tem: i) adding new features including features ex-
tracted from a Combinatory Categorial Grammar
parse, ii) performing feature selection and calibra-
tion and iii) combining parses obtained from seman-
tic parsers trained using different syntactic views.
We combined semantic parses from a Minipar syn-
tactic parse and from a chunked syntactic repre-
sentation with our original baseline system which
was based on Charniak parses. The belief was that
semantic parses based on different syntactic views
would make different errors and that the combina-
tion would be complimentary. A simple combina-
tion of these representations did lead to improved
performance.

8 Acknowledgements

This research was partially supported by the ARDA
AQUAINT program via contract OCG4423B and
by the NSF via grants IS-9978025 and ITR/HCI
0086132. Computer time was provided by NSF
ARI Grant #CDA-9601817, NSF MRI Grant #CNS-
0420873, NASA AIST grant #NAG2-1646, DOE
SciDAC grant #DE-FG02-04ER63870, NSF spon-
sorship of the National Center for Atmospheric Re-
search, and a grant from the IBM Shared University
Research (SUR) program.

We would like to thank Ralph Weischedel and
Scott Miller of BBN Inc. for letting us use their
named entity tagger – IdentiFinder; Martha Palmer
for providing us with the PropBank data; Dan Gildea
and Julia Hockenmaier for providing the gold stan-
dard CCG parser information, and all the anony-
mous reviewers for their helpful comments.

References
R. E. Barlow, D. J. Bartholomew, J. M. Bremmer, and H. D. Brunk. 1972. Statis-

tical Inference under Order Restrictions. Wiley, New York.

Eugene Charniak. 2000. A maximum-entropy-inspired parser. In Proceedings of
NAACL, pages 132–139, Seattle, Washington.

John Chen and Owen Rambow. 2003. Use of deep linguistics features for
the recognition and labeling of semantic arguments. In Proceedings of the
EMNLP, Sapporo, Japan.

Dean P. Foster and Robert A. Stine. 2004. Variable selection in data mining:
building a predictive model for bankruptcy. Journal of American Statistical
Association, 99, pages 303–313.

Dan Gildea and Julia Hockenmaier. 2003. Identifying semantic roles using com-
binatory categorial grammar. In Proceedings of the EMNLP, Sapporo, Japan.

Daniel Gildea and Daniel Jurafsky. 2000. Automatic labeling of semantic roles.
In Proceedings of ACL, pages 512–520, Hong Kong, October.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles.
Computational Linguistics, 28(3):245–288.

Daniel Gildea and Martha Palmer. 2002. The necessity of syntactic parsing for
predicate argument recognition. In Proceedings of ACL, Philadelphia, PA.

Kadri Hacioglu. 2004. Semantic role labeling using dependency trees. In Pro-
ceedings of COLING, Geneva, Switzerland.

Kadri Hacioglu and Wayne Ward. 2003. Target word detection and semantic role
chunking using support vector machines. In Proceedings of HLT/NAACL,
Edmonton, Canada.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James Martin, and Dan Jurafsky.
2003. Shallow semantic parsing using support vector machines. Technical
Report TR-CSLR-2003-1, Center for Spoken Language Research, Boulder,
Colorado.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James Martin, and Daniel Juraf-
sky. 2004. Semantic role labeling by tagging syntactic chunks. In Proceed-
ings of CoNLL-2004, Shared Task – Semantic Role Labeling.

Kadri Hacioglu. 2004a. A lightweight semantic chunking model based on tag-
ging. In Proceedings of HLT/NAACL, Boston, MA.

Julia Hockenmaier and Mark Steedman. 2002. Generative models for statistical
parsing with combinatory grammars. In Proceedings of the ACL, pages 335–
342.

Julia Hockenmaier and Mark Steedman. 2002a. Acquiring compact lexicalized
grammars from a cleaner treebank. In Proceedings of the 3rd International
Conference on Language Resources and Evaluation (LREC-2002), Las Pal-
mas, Canary Islands, Spain.

Paul Kingsbury and Martha Palmer. 2002. From Treebank to PropBank. In
Proceedings of LREC, Las Palmas, Canary Islands, Spain.

Taku Kudo and Yuji Matsumoto. 2000. Use of support vector learning for chunk
identification. In Proceedings of CoNLL and LLL, pages 142–144.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with support vector machines.
In Proceedings of the NAACL.

Dekang Lin and Patrick Pantel. 2001. Discovery of inference rules for question
answering. Natural Language Engineering, 7(4):343–360.

Dekang Lin. 1998. Dependency-based evaluation of MINIPAR. In In Workshop
on the Evaluation of Parsing Systems, Granada, Spain.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann
Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn
Treebank: Annotating predicate argument structure.

Martha Palmer, Dan Gildea, and Paul Kingsbury. 2005. The proposition bank:
An annotated corpus of semantic roles. To appear Computational Linguistics.

John Platt. 2000. Probabilities for support vector machines. In A. Smola,
P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large
Margin Classifiers. MIT press, Cambridge, MA.

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James Martin, and Dan Jurafsky.
2003. Semantic role parsing: Adding semantic structure to unstructured text.
In Proceedings of ICDM, Melbourne, Florida.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and Dan Jurafsky.
2004. Shallow semantic parsing using support vector machines. In Proceed-
ings of HLT/NAACL, Boston, MA.

Mihai Surdeanu, Sanda Harabagiu, John Williams, and Paul Aarseth. 2003. Us-
ing predicate-argument structures for information extraction. In Proceedings
of ACL, Sapporo, Japan.

Nianwen Xue and Martha Palmer. 2004. Calibrating features for semantic role
labeling. In Proceedings of EMNLP, Barcelona, Spain.

588

