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Abstract

Stochastic Optimality Theory (Boersma,
1997) is a widely-used model in linguis-
tics that did not have a theoretically sound
learning method previously. In this pa-
per, a Markov chain Monte-Carlo method
is proposed for learning Stochastic OT
Grammars. Following a Bayesian frame-
work, the goal is finding the posterior dis-
tribution of the grammar given the rela-
tive frequencies of input-output pairs. The
Data Augmentation algorithm allows one
to simulate a joint posterior distribution by
iterating two conditional sampling steps.
This Gibbs sampler constructs a Markov
chain that converges to the joint distribu-
tion, and the target posterior can be de-
rived as its marginal distribution.

1 Introduction

Optimality Theory (Prince and Smolensky, 1993)
is a linguistic theory that dominates the field of
phonology, and some areas of morphology and syn-
tax. The standard version of OT contains the follow-
ing assumptions:

• A grammar is a set of ordered constraints({Ci :
i = 1, · · · , N}, >);

• Each constraintCi is a function: Σ∗ →
{0, 1, · · · }, whereΣ∗ is the set of strings in the
language;

∗The author thanks Bruce Hayes, Ed Stabler, Yingnian Wu,
Colin Wilson, and anonymous reviewers for their comments.

• Each underlying formu corresponds to a set
of candidatesGEN(u). To obtain the unique
surface form, the candidate set is successively
filtered according to the order of constraints, so
that only the most harmonic candidates remain
after each filtering. If only 1 candidate is left
in the candidate set, it is chosen as the optimal
output.

The popularity of OT is partly due to learning al-
gorithms that induce constraint ranking from data.
However, most of such algorithms cannot be ap-
plied to noisy learning data. Stochastic Optimality
Theory (Boersma, 1997) is a variant of Optimality
Theory that tries to quantitatively predict linguis-
tic variation. As a popular model among linguists
that are more engaged with empirical data than with
formalisms, Stochastic OT has been used in a large
body of linguistics literature.

In Stochastic OT, constraints are regarded as
independent normal distributions with unknown
means and fixed variance. As a result, the stochastic
constraint hierarchy generates systematic linguistic
variation. For example, consider a grammar with
3 constraints,C1 ∼ N(µ1, σ

2), C2 ∼ N(µ2, σ
2),

C3 ∼ N(µ3, σ
2), and 2 competing candidates for a

given inputx:

p(.) C1 C2 C3

x ∼ y1 .77 0 0 1
x ∼ y2 .23 1 1 0

Table 1: A Stochastic OT grammar

with 1 input and 2 outputs
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The probabilitiesp(.) are obtained by repeatedly
sampling the 3 normal distributions, generating the
winning candidate according to the ordering of con-
straints, and counting the relative frequencies in the
outcome. As a result, the grammar will assign non-
zero probabilities to a given set of outputs, as shown
above.

The learning problem of Stochastic OT involves
fitting a grammarG ∈ RN to a set of candidates
with frequency counts in a corpus. For example,
if the learning data is the above table, we need to
find an estimate ofG = (µ1, µ2, µ3)1 so that the
following ordering relations hold with certain prob-
abilities:

max{C1, C2} > C3; with probability.77
max{C1, C2} < C3; with probability.23

(1)

The current method for fitting Stochastic OT mod-
els, used by many linguists, is the Gradual Learn-
ing Algorithm (GLA) (Boersma and Hayes, 2001).
GLA looks for the correct ranking values by using
the following heuristic, which resembles gradient
descent. First, an input-output pair is sampled from
the data; second, an ordering of the constraints is
sampled from the grammar and used to generate an
output; and finally, the means of the constraints are
updated so as to minimize the error. The updating
is done by adding or subtracting a “plasticity” value
that goes to zero over time. The intuition behind
GLA is that it does “frequency matching”, i.e. look-
ing for a better match between the output frequen-
cies of the grammar and those in the data.

As it turns out, GLA does not work in all cases2,
and its lack of formal foundations has been ques-
tioned by a number of researchers (Keller and
Asudeh, 2002; Goldwater and Johnson, 2003).
However, considering the broad range of linguistic
data that has been analyzed with Stochastic OT, it
seems unadvisable to reject this model because of
the absence of theoretically sound learning meth-
ods. Rather, a general solution is needed to eval-
uate Stochastic OT as a model for linguistic varia-
tion. In this paper, I introduce an algorithm for learn-
ing Stochastic OT grammars using Markov chain
Monte-Carlo methods. Within a Bayesian frame-

1Up to translation by an additive constant.
2Two examples included in the experiment section. See 6.3.

work, the learning problem is formalized as find-
ing theposterior distributionof ranking values (G)
given the information on constraint interaction based
on input-output pairs (D). The posterior contains all
the information needed for linguists’ use: for exam-
ple, if there is a grammar that will generate the exact
frequencies as in the data, such a grammar will ap-
pear as a mode of the posterior.

In computation, the posterior distribution is sim-
ulated with MCMC methods because the likeli-
hood function has a complex form, thus making
a maximum-likelihood approach hard to perform.
Such problems are avoided by using theData Aug-
mentationalgorithm (Tanner and Wong, 1987) to
make computation feasible: to simulate the pos-
terior distributionG ∼ p(G|D), we augment the
parameter space and simulate a joint distribution
(G, Y ) ∼ p(G,Y |D). It turns out that by setting
Y as the value of constraints that observe the de-
sired ordering, simulating fromp(G,Y |D) can be
achieved with aGibbs sampler, which constructs a
Markov chain that converges to the joint posterior
distribution (Geman and Geman, 1984; Gelfand and
Smith, 1990). I will also discuss some issues related
to efficiency in implementation.

2 The difficulty of a maximum-likelihood
approach

Naturally, one may consider “frequency matching”
as estimating the grammar based on the maximum-
likelihood criterion. Given a set of constraints and
candidates, the data may be compiled in the form of
(1), on which the likelihood calculation is based. As
an example, given the grammar and data set in Table
1, the likelihood ofd=“max{C1, C2} > C3” can
be written asP (d|µ1, µ2, µ3)=

1− ∫ 0
−∞

∫ 0
−∞

1
2πσ2 exp

{
− ~fxy ·Σ·~fT

xy

2

}
dx dy

where~fxy = (x− µ1 + µ3, y − µ2 + µ3), andΣ
is the identity covariance matrix. The integral sign
follows from the fact that bothC1 − C2, C2 − C3

are normal, since each constraint is independently
normally distributed.

If we treat each data as independently generated
by the grammar, then the likelihood will be a prod-
uct of such integrals (multiple integrals if many con-
straints are interacting). One may attempt to max-
imize such a likelihood function using numerical

347



methods3, yet it appears to be desirable to avoid like-
lihood calculations altogether.

3 The missing data scheme for learning
Stochastic OT grammars

The Bayesian approach tries to explorep(G|D),
the posterior distribution. Notice if we take the
usual approach by using the relationshipp(G|D) ∝
p(D|G) · p(G), we will encounter the same prob-
lem as in Section 2. Therefore we need a feasible
way of samplingp(G|D) without having to derive
the closed-form ofp(D|G).

The key idea here is the so-called “missing data”
scheme in Bayesian statistics: in a complex model-
fitting problem, the computation can sometimes be
greatly simplified if we treat part of the unknown
parameters as data and fit the model in successive
stages. To apply this idea, one needs to observe that
Stochastic OT grammars are learned fromordinal
data, as seen in (1). In other words, only one as-
pect of the structure generated by those normal dis-
tributions — the ordering of constraints — is used
to generate outputs.

This observation points to the possibility of
treating the sample values of constraints~y =
(y1, y2, · · · , yN ) that satisfy the ordering relations
as missing data. It is appropriate to refer to them
as “missing” because a language learner obviously
cannot observe real numbers from the constraints,
which are postulated by linguistic theory. When
the observed data are augmented with missing data
and become acomplete datamodel, computation be-
comes significantly simpler. This type of idea is of-
ficially known asData Augmentation(Tanner and
Wong, 1987). More specifically, we also make the
following intuitive observations:

• The complete data model consists of 3 random
variables: the observed ordering relationsD,
the grammarG, and the missing samples of
constraint valuesY that generate the ordering
D.

• G andY are interdependent:

– For each fixedd, values ofY that respectd
can be obtained easily onceG is given: we
just sample fromp(Y |G) and only keep

3Notice even computing the gradient is non-trivial.

those that observed. Then we letd vary
with its frequency in the data, and obtain
a sample ofp(Y |G,D);

– Once we have the values ofY that respect
the ranking relationsD, G becomes in-
dependent ofD. Thus, samplingG from
p(G|Y, D) becomes the same as sampling
from p(G|Y ).

4 Gibbs sampler for the joint posterior —
p(G, Y |D)

The interdependence ofG andY helps design iter-
ative algorithms for samplingp(G, Y |D). In this
case, since each step samples from a conditional
distribution (p(G|Y, D) or p(Y |G,D)), they can be
combined to form a Gibbs sampler (Geman and Ge-
man, 1984). In the same order as described in Sec-
tion 3, the two conditional sampling steps are imple-
mented as follows:

1. Sample an ordering relationd according to
the prior p(D), which is simply normalized
frequency counts; sample a vector of con-
straint valuesy = {y1, · · · , yN} from the nor-

mal distributionsN(µ(t)
1 , σ2), · · · , N(µ(t)

N , σ2)
such thaty observes the ordering ind;

2. Repeat Step 1 and obtainM samples of miss-
ing data: y1, · · · , yM ; sample µ

(t+1)
i from

N(
∑

j yj
i /M, σ2/M).

The grammarG = (µ1, · · · , µN ), and the su-
perscript(t) represents a sample ofG in iteration
t. As explained in 3, Step 1 samples missing data
from p(Y |G,D), and Step 2 is equivalent to sam-
pling from p(G|Y, D), by the conditional indepen-
dence ofG andD given Y . The normal posterior
distributionN(

∑
j yj

i /M, σ2/M) is derived by us-
ing p(G|Y ) ∝ p(Y |G)p(G), wherep(Y |G) is nor-
mal, andp(G) ∼ N(µ0, σ0) is chosen to be an non-
informative prior withσ0 →∞.

M (the number of missing data) is not a crucial
parameter. In our experiments,M is set to the total
number of observed forms4. Although it may seem
thatσ2/M is small for a largeM and does not play

4Other choices ofM , e.g.M = 1, lead to more or less the
same running time.
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a significant role in the sampling ofµ(t+1)
i , the vari-

ance of the sampling distribution is a necessary in-
gredient of the Gibbs sampler5.

Under fairly general conditions (Geman and Ge-
man, 1984), the Gibbs sampler iterates these two
steps until it converges to a unique stationary dis-
tribution. In practice, convergence can be monitored
by calculating cross-sample statistics from multiple
Markov chains with different starting points (Gel-
man and Rubin, 1992). After the simulation is
stopped at convergence, we will have obtained a
perfect sample ofp(G,Y |D). These samples can
be used to derive our target distributionp(G|D) by
simply keeping all theG components, sincep(G|D)
is a marginal distribution ofp(G,Y |D). Thus, the
sampling-based approach gives us the advantage of
doing inference without performing any integration.

5 Computational issues in implementation

In this section, I will sketch some key steps in the
implementation of the Gibbs sampler. Particular at-
tention is paid to samplingp(Y |G,D), since a direct
implementation may require an unrealistic running
time.

5.1 Computingp(D) from linguistic data

The prior probabilityp(D) determines the number
of samples (missing data) that are drawn under each
ordering relation. The following example illustrates
how the orderingD andp(D) are calculated from
data collected in a linguistic analysis. Consider a
data set that contains 2 inputs and a few outputs,
each associated with an observed frequency in the
lexicon:

C1 C2 C3 C4 C5 Freq.
x1 y11 0 1 0 1 0 4

y12 1 0 0 0 0 3
y13 0 1 1 0 1 0
y14 0 0 1 0 0 0

x2 y21 1 1 0 0 0 3
y22 0 0 1 1 1 0

Table 2: A Stochastic OT grammar with 2 inputs

The three ordering relations (corresponding to 3
attested outputs) andp(D) are computed as follows:

5As required by the proof in (Geman and Geman, 1984).

Ordering RelationD p(D)



C1>max{C2, C4}
max{C3, C5}>C4

C3>max{C2, C4}
.4





max{C2, C4}>C1
max{C2, C3, C5}>C1

C3>C1
.3

max{C3, C4, C5} > max{C1, C2} .3

Table 3: The ordering relationsD andp(D)

computed from Table 2.

Here each ordering relation has several conjuncts,
and the number of conjuncts is equal to the number
of competing candidates for each given input. These
conjuncts need to hold simultaneously because each
winning candidate needs to be more harmonic than
all other competing candidates. The probabilities
p(D) are obtained by normalizing the frequencies of
the surface forms in the original data. This will have
the consequence of placing more weight on lexical
items that occur frequently in the corpus.

5.2 Samplingp(Y |G,D) under complex
ordering relations

A direct implementationp(Y |G, d) is straightfor-
ward: 1) first obtainN samples fromN Gaussian
distributions; 2) check each conjunct to see if the
ordering relation is satisfied. If so, then keep the
sample; if not, discard the sample and try again.

However, this can be highly inefficient in many
cases. For example, ifm constraints appear in the
ordering relationd and the sample is rejected, the
N −m random numbers for constraints not appear-
ing in d are also discarded. Whend has several con-
juncts, the chance of rejecting samples for irrelevant
constraints is even greater.

In order to save the generated random
numbers, the vector Y can be decom-
posed into its 1-dimensional components
(Y1, Y2, · · · , YN ). The problem then becomes
samplingp(Y1, · · · , YN |G,D). Again, we may use
conditional sampling to drawyi one at a time: we
keepyj 6=i andd fixed6, and drawyi so thatd holds
for y. There are now two cases: ifd holds regardless
of yi, then any sample fromN(µ(t)

i , σ2) will do;
otherwise, we will need to drawyi from a truncated

6Here we useyj 6=i for all components ofy except thei-th
dimension.
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normal distribution.
To illustrate this idea, consider an example used

earlier whered=“max{c1, c2} > c3”, and the ini-

tial sample and parameters are(y(0)
1 , y

(0)
2 , y

(0)
3 ) =

(µ(0)
1 , µ

(0)
2 , µ

(0)
3 ) = (1,−1, 0).

Sampling dist. Y1 Y2 Y3

p(Y1|µ1, Y1 > y3) 2.3799 -1.0000 0
p(Y2|µ2) 2.3799 -0.7591 0
p(Y3|µ3, Y3 < y1) 2.3799 -0.7591 -1.0328
p(Y1|µ1) -1.4823 -0.7591 -1.0328
p(Y2|µ2, Y2 > y3) -1.4823 2.1772 -1.0328
p(Y3|µ3, Y3 < y2) -1.4823 2.1772 1.0107

Table 4: Conditional sampling steps for

p(Y |G, d) = p(Y1, Y2, Y3|µ1, µ2, µ3, d)

Notice that in each step, the sampling density is
either just a normal, or a truncated normal distribu-
tion. This is because we only need to make sure that
d will continue to hold for the next sampley(t+1),
which differs fromy(t) by just 1 constraint.

In our experiment, sampling from truncated nor-
mal distributions is realized by using the idea ofre-
jection sampling: to sample from a truncated nor-
mal7 πc(x) = 1

Z(c) ·N(µ, σ) ·I{x>c}, we first find an
envelopedensity functiong(x) that is easy to sam-
ple directly, such thatπc(x) is uniformly bounded by
M · g(x) for some constantM that does not depend
onx. It can be shown that once each samplex from
g(x) is rejected with probabilityr(x) = 1− πc(x)

M ·g(x) ,
the resulting histogram will provide a perfect sample
for πc(x). In the current work, the exponential dis-
tribution g(x) = λ exp {−λx} is used as the enve-
lope, with the following choices forλ and the rejec-
tion ratior(x), which have been optimized to lower
the rejection rate:

λ =
c +

√
c + 4σ2

2σ2

r(x) = exp
{

(x + c)2

2
+ λ0(x + c)− σ2λ2

0

2

}

Putting these ideas together, the final version of
Gibbs sampler is constructed by implementing Step
1 in Section 4 as a sequence of conditional sam-
pling steps forp(Yi|Yj 6=i, d), and combining them

7Notice the truncated distribution needs to be re-normalized
in order to be a proper density.

with the sampling ofp(G|Y, D). Notice the order in
whichYi is updated is fixed, which makes our imple-
mentation an instance of thesystematic-scanGibbs
sampler (Liu, 2001). This implementation may be
improved even further by utilizing the structure of
the ordering relationd, and optimizing the order in
whichYi is updated.

5.3 Model identifiability

Identifiability is related to the uniqueness of solu-
tion in model fitting. GivenN constraints, a gram-
mar G ∈ RN is not identifiable becauseG + C
will have the same behavior asG for any constant
C = (c0, · · · , c0). To remove translation invariance,
in Step 2 the average ranking value is subtracted
from G, such that

∑
i µi = 0.

Another problem related to identifiability arises
when the data contains the so-called “categorical
domination”, i.e., there may be data of the follow-
ing form:

c1 > c2 with probability1.

In theory, the mode of the posterior tends to infin-
ity and the Gibbs sampler will not converge. Since
having categorical dominance relations is a com-
mon practice in linguistics, we avoid this problem
by truncating the posterior distribution8 by I|µ|<K ,
whereK is chosen to be a positive number large
enough to ensure that the model be identifiable. The
role of truncation/renormalization may be seen as a
strong prior that makes the model identifiable on a
bounded set.

A third problem related to identifiability occurs
when the posterior has multiple modes, which sug-
gests that multiple grammars may generate the same
output frequencies. This situation is common when
the grammar contains interactions between many
constraints, and greedy algorithms like GLA tend to
find one of the many solutions. In this case, one
can either introduce extra ordering relations or use
informative priors to samplep(G|Y ), so that the in-
ference on the posterior can be done with a relatively
small number of samples.

5.4 Posterior inference

Once the Gibbs sampler has converged to its station-
ary distribution, we can use the samples to make var-

8The implementation of sampling from truncated normals is
the same as described in 5.2.
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ious inferences on the posterior. In the experiments
reported in this paper, we are primarily interested in
the mode of the posterior marginal9 p(µi|D), where
i = 1, · · · , N . In cases where the posterior marginal
is symmetric and uni-modal, its mode can be esti-
mated by the sample median.

In real linguistic applications, the posterior
marginal may be a skewed distribution, and many
modes may appear in the histogram. In these cases,
more sophisticated non-parametric methods, such as
kernel density estimation, can be used to estimate
the modes. To reduce the computation in identifying
multiple modes, a mixture approximation (by EM
algorithm or its relatives) may be necessary.

6 Experiments

6.1 Ilokano reduplication

The following Ilokano grammar and data set, used
in (Boersma and Hayes, 2001), illustrate a complex
type of constraint interaction: the interaction be-
tween the three constraints:∗COMPLEX-ONSET,
ALIGN, andIDENTBR([long]) cannot be factored
into interactions between 2 constraints. For any
given candidate to be optimal, the constraint that
prefers such a candidate must simultaneously dom-
inate the other two constraints. Hence it is not im-
mediately clear whether there is a grammar that will
assign equal probability to the 3 candidates.

/HRED-bwaja/ p(.) ∗C-ONS AL IBR

bu:.bwa.ja .33 1 0 1
bwaj.bwa.ja .33 2 0 0
bub.wa.ja .33 0 1 0

Table 5: Data for Ilokano reduplication.

Since it does not address the problem of identifi-
ability, the GLA does not always converge on this
data set, and the returned grammar does not always
fit the input frequencies exactly, depending on the
choice of parameters10.

In comparison, the Gibbs sampler converges
quickly11, regardless of the parameters. The result
suggests the existence of a unique grammar that will

9Note G = (µ1, · · · , µN ), andp(µi|D) is a marginal of
p(G|D).

10B &H reported results of averaging many runs of the algo-
rithm. Yet there appears to be significant randomness in each
run of the algorithm.

11Within 1000 iterations.

assign equal probabilities to the 3 candidates. The
posterior samples and histograms are displayed in
Figure 1. Using the median of the marginal posteri-
ors, the estimated grammar generates an exact fit to
the frequencies in the input data.
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Figure 1: Posterior marginal samples and histograms for

Experiment 2.

6.2 Spanish diminutive suffixation

The second experiment uses linguistic data on Span-
ish diminutives and the analysis proposed in (Arbisi-
Kelm, 2002). There are 3 base forms, each as-
sociated with 2 diminutive suffixes. The gram-
mar consists of 4 constraints: ALIGN(TE,Word,R),
MAX-OO(V), DEP-IO and BaseTooLittle. The data
presents the problem of learning from noise, since
no Stochastic OT grammar can provide an exact fit
to the data: the candidate [ubita] violates an extra
constraint compared to [liri.ito], and [ubasita] vio-
lates the same constraint as [liryosito]. Yet unlike
[lityosito], [ubasita] is not observed.

Input Output Freq. A M D B
/uba/ [ubita] 10 0 1 0 1

[ubasita] 0 1 0 0 0
/mar/ [marEsito] 5 0 0 1 0

[marsito] 5 0 0 0 1
/liryo/ [liri.ito] 9 0 1 0 0

[liryosito] 1 1 0 0 0

Table 6: Data for Spanish diminutive suffixation.

In the results found by GLA, [marEsito] always
has a lower frequency than [marsito] (See Table 7).
This is not accidental. Instead it reveals a problem-
atic use of heuristics in GLA12: since the constraint
B is violated by [ubita], it is always demoted when-
ever the underlying form /uba/ is encountered dur-
ing learning. Therefore, even though the expected

12Thanks to Bruce Hayes for pointing out this problem.
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model assigns equal values toµ3 and µ4 (corre-
sponding toD and B, respectively),µ3 is always
less thanµ4, simply because there is more chance
of penalizingD rather thanB. This problem arises
precisely because of the heuristic (i.e. demoting
the constraint that prefers the wrong candidate) that
GLA uses to find the target grammar.

The Gibbs sampler, on the other hand, does not
depend on heuristic rules in its search. Since modes
of the posteriorp(µ3|D) andp(µ4|D) reside in neg-
ative infinity, the posterior is truncated byIµi<K ,
with K = 6, based on the discussion in 5.3. Re-
sults of the Gibbs sampler and two runs of GLA13

are reported in Table 7.

Input Output Obs Gibbs GLA1 GLA2

/uba/ [ubita] 100% 95% 96% 96%
[ubasita] 0% 5% 4% 4%

/mar/ [marEsito] 50% 50% 38% 45%
[marsito] 50% 50% 62% 55%

/liryo/ [liri.ito] 90% 95% 96% 91.4%
[liryosito] 10% 5% 4% 8.6%

Table 7: Comparison of Gibbs sampler and GLA

7 A comparison with Max-Ent models

Previously, problems with the GLA14 have inspired
other OT-like models of linguistic variation. One
such proposal suggests using the more well-known
Maximum Entropymodel (Goldwater and Johnson,
2003). In Max-Ent models, a grammarG is also
parameterized by a real vector of weightsw =
(w1, · · · , wN ), but the conditional likelihood of an
outputy given an inputx is given by:

p(y|x) =
exp{∑i wifi(y, x)}∑
z exp{∑i wifi(z, x)} (2)

wherefi(y, x) is the violation each constraint as-
signs to the input-output pair(x, y).

Clearly, Max-Ent is a rather different type of
model from Stochastic OT, not only in the use
of constraint ordering, but also in the objective
function (conditional likelihood rather than likeli-
hood/posterior). However, it may be of interest to
compare these two types of models. Using the same

13The two runs here both use 0.002 and 0.0001 as the final
plasticity. The initial plasticity and the iterations are set to 2
and 1.0e7. Slightly better fits can be found by tuning these pa-
rameters, but the observation remains the same.

14See (Keller and Asudeh, 2002) for a summary.

data as in 6.2, results of fitting Max-Ent (using con-
jugate gradient descent) and Stochastic OT (using
Gibbs sampler) are reported in Table 8:

Input Output Obs SOT ME MEsm

/uba/ [ubita] 100% 95% 100% 97.5%
[ubasita] 0% 5% 0% 2.5%

/mar/ [marEsito] 50% 50% 50% 48.8%
[marsito] 50% 50% 50% 51.2%

/liryo/ [liri.ito] 90% 95% 90% 91.4%
[liryosito] 10% 5% 10% 8.6%

Table 8: Comparison of Max-Ent and Stochastic OT models

It can be seen that the Max-Ent model, in the ab-
sence of a smoothing prior, fits the data perfectly by
assigning positive weights to constraintsB andD. A
less exact fit (denoted by MEsm) is obtained when
the smoothing Gaussian prior is used withµi = 0,
σ2

i = 1. But as observed in 6.2, an exact fit is im-
possible to obtain using Stochastic OT, due to the
difference in the way variation is generated by the
models. Thus it may be seen that Max-Ent is a more
powerful class of models than Stochastic OT, though
it is not clear how the Max-Ent model’s descriptive
power is related to generative linguistic theories like
phonology.

Although the abundance of well-behaved opti-
mization algorithms has been pointed out in favor
of Max-Ent models, it is the author’s hope that the
MCMC approach also gives Stochastic OT a sim-
ilar underpinning. However, complex Stochastic
OT models often bring worries about identifiability,
whereas the convexity property of Max-Ent may be
viewed as an advantage15.

8 Discussion

From a non-Bayesian perspective, the MCMC-based
approach can be seen as a randomized strategy for
learning a grammar. Computing resources make it
possible to explore the entire space of grammars and
discover where good hypotheses are likely to occur.
In this paper, we have focused on the frequently vis-
ited areas of the hypothesis space.

It is worth pointing out that the Graduate Learning
Algorithm can also be seen from this perspective.
An examination of the GLA shows that when the
plasticity term is fixed, parameters found by GLA
also form a Markov chainG(t) ∈ RN , t = 1, 2, · · · .
Therefore, assuming the model is identifiable, it

15Concerns about identifiability appear much more fre-
quently in statistics than in linguistics.
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seems possible to use GLA in the same way as the
MCMC methods: rather than forcing it to stop, we
can run GLA until it reaches stationary distribution,
if it exists.

However, it is difficult to interpret the results
found by this “random walk-GLA” approach: the
stationary distribution of GLA may not be the target
distribution — the posteriorp(G|D). To construct
a Markov chain that converges top(G|D), one may
consider turning GLA into a real MCMC algorithm
by designingreversible jumps, or theMetropolis al-
gorithm. But this may not be easy, due to the diffi-
culty in likelihood evaluation (including likelihood
ratio) discussed in Section 2.

In contrast, our algorithm provides a general solu-
tion to the problem of learning Stochastic OT gram-
mars. Instead of looking for a Markov chain inRN ,
we go to a higher dimensional spaceRN ×RN , us-
ing the idea of data augmentation. By taking advan-
tage of the interdependence ofG andY , the Gibbs
sampler provides a Markov chain that converges to
p(G,Y |D), which allows us to return to the original
subspace and derivep(G|D) — the target distribu-
tion. Interestingly, by adding more parameters, the
computation becomes simpler.

9 Future work

This work can be extended in two directions. First,
it would be interesting to consider other types of
OT grammars, in connection with the linguistics lit-
erature. For example, the variances of the normal
distribution are fixed in the current paper, but they
may also be treated as unknown parameters (Nagy
and Reynolds, 1997). Moreover, constraints may be
parameterized as mixture distributions, which rep-
resent other approaches to using OT for modeling
linguistic variation (Anttila, 1997).

The second direction is to introduce informative
priors motivated by linguistic theories. It is found
through experimentation that for more sophisticated
grammars, identifiability often becomes an issue:
some constraints may have multiple modes in their
posterior marginal, and it is difficult to extract modes
in high dimensions16. Therefore, use of priors is
needed in order to make more reliable inferences. In
addition, priors also have a linguistic appeal, since

16Notice that posterior marginals do not provide enough in-
formation for modes of the joint distribution.

current research on the “initial bias” in language ac-
quisition can be formulated as priors (e.g.Faithful-
ness Low(Hayes, 2004)) from a Bayesian perspec-
tive.

Implementing these extensions will merely in-
volve modifyingp(G|Y, D), which we leave for fu-
ture work.
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