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Abstract

The limited coverage of lexical-semantic re-
sources is a significant problem forNLP sys-
tems which can be alleviated by automati-
cally classifying the unknown words. Su-
persense taggingassigns unknown nouns one
of 26 broad semantic categories used by lex-
icographers to organise their manual inser-
tion into WORDNET. Ciaramita and Johnson
(2003) present a tagger which uses synonym
set glosses as annotated training examples. We
describe an unsupervised approach, based on
vector-space similarity, which does not require
annotated examples but significantly outper-
forms their tagger. We also demonstrate the use
of an extremely large shallow-parsed corpus for
calculating vector-space semantic similarity.

1 Introduction

Lexical-semantic resources have been applied successful
to a wide range of Natural Language Processing (NLP)
problems ranging from collocation extraction (Pearce,
2001) and class-based smoothing (Clark and Weir, 2002),
to text classification (Baker and McCallum, 1998) and
question answering (Pasca and Harabagiu, 2001). In par-
ticular, WORDNET (Fellbaum, 1998) has significantly in-
fluenced research inNLP.

Unfortunately, these resource are extremely time-
consuming and labour-intensive to manually develop and
maintain, requiring considerable linguistic and domain
expertise. Lexicographers cannot possibly keep pace
with language evolution: sense distinctions are contin-
ually made and merged, words are coined or become
obsolete, and technical terms migrate into the vernacu-
lar. Technical domains, such as medicine, require sepa-
rate treatment since common words often take on special
meanings, and a significant proportion of their vocabu-
lary does not overlap with everyday vocabulary. Bur-
gun and Bodenreider (2001) compared an alignment of

WORDNET with the UMLS medical resource and found
only a very small degree of overlap. Also, lexical-
semantic resources suffer from:

bias towards concepts and senses from particular topics.
Some specialist topics are better covered in WORD-
NET than others, e.g.dog has finer-grained distinc-
tions thancat andworm although this does not re-
flect finer distinctions in reality;

limited coverage of infrequent words and senses. Cia-
ramita and Johnson (2003) found that common
nouns missing from WORDNET 1.6 occurred every
8 sentences in theBLLIP corpus. By WORDNET 2.0,
coverage has improved but the problem of keeping
up with language evolution remains difficult.

consistencywhen classifying similar words into cate-
gories. For instance, the WORDNET lexicographer
file for ionosphere (location) is different to exo-
sphere and stratosphere (object), two other layers
of the earth’s atmosphere.

These problems demonstrate the need for automatic or
semi-automatic methods for the creation and mainte-
nance of lexical-semantic resources. Broad semantic
classification is currently used by lexicographers to or-
ganise the manual insertion of words into WORDNET,
and is an experimental precursor to automatically insert-
ing words directly into the WORDNET hierarchy. Cia-
ramita and Johnson (2003) call thissupersense tagging
and describe a multi-class perceptron tagger, which uses
WORDNET’s hierarchical structure to create many anno-
tated training instances from the synset glosses.

This paper describes an unsupervised approach to su-
persense tagging that does not require annotated sen-
tences. Instead, we use vector-space similarity to re-
trieve a number of synonyms for each unknown common
noun. The supersenses of these synonyms are then com-
bined to determine the supersense. This approach sig-
nificantly outperforms the multi-class perceptron on the
same dataset based on WORDNET 1.6 and 1.7.1.
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LEX-FILE DESCRIPTION

act acts or actions
animal animals
artifact man-made objects
attribute attributes of people and objects
body body parts
cognition cognitive processes and contents
communication communicative processes and contents
event natural events
feeling feelings and emotions
food foods and drinks
group groupings of people or objects
location spatial position
motive goals
object natural objects (not man-made)
person people
phenomenon natural phenomena
plant plants
possession possession and transfer of possession
process natural processes
quantity quantities and units of measure
relation relations between people/things/ideas
shape two and three dimensional shapes
state stable states of affairs
substance substances
time time and temporal relations

Table 1: 25 noun lexicographer files in WORDNET

2 Supersenses

There are 26 broad semantic classes employed by lex-
icographers in the initial phase of inserting words into
the WORDNET hierarchy, calledlexicographer files(lex-
files). For the noun hierarchy, there are 25 lex-files and a
file containing the top level nodes in the hierarchy called
Tops. Other syntactic classes are also organised using
lex-files: 15 for verbs, 3 for adjectives and 1 for adverbs.

Lex-files form a set of coarse-grained sense distinc-
tions within WORDNET. For example,company appears
in the following lex-files in WORDNET 2.0: group, which
coverscompany in the social, commercial and troupe
fine-grained senses; andstate, which covers companion-
ship. The names and descriptions of the noun lex-files
are shown in Table 1. Some lex-files map directly to
the top level nodes in the hierarchy, calledunique begin-
ners, while others are grouped together as hyponyms of
a unique beginner (Fellbaum, 1998, page 30). For exam-
ple, abstraction subsumes the lex-filesattribute, quantity,
relation, communication andtime.

Ciaramita and Johnson (2003) call the noun lex-file
classessupersenses. There are 11 unique beginners in
the WORDNET noun hierarchy which could also be used
as supersenses. Ciaramita (2002) has produced a mini-
WORDNET by manually reducing the WORDNET hier-
archy to 106 broad categories. Ciaramita et al. (2003)
describe how the lex-files can be used as root nodes in a
two level hierarchy with the WORDNET synsets appear-

ing directly underneath.
Other alternative sets of supersenses can be created by

an arbitrary cut through the WORDNET hierarchy near
the top, or by using topics from a thesaurus such as
Roget’s (Yarowsky, 1992). These topic distinctions are
coarser-grained than WORDNET senses, which have been
criticised for being too difficult to distinguish even for
experts. Ciaramita and Johnson (2003) believe that the
key sense distinctions are still maintained by supersenses.
They suggest that supersense tagging is similar to named
entity recognition, which also has a very small set of cat-
egories with similar granularity (e.g.location andperson)
for labelling predominantly unseen terms.

Supersense tagging can provide automated or semi-
automated assistance to lexicographers adding words to
the WORDNET hierarchy. Once this task is solved suc-
cessfully, it may be possible to insert words directly
into the fine-grained distinctions of the hierarchy itself.
Clearly, this is the ultimate goal, to be able to insert
new terms into lexical resources, extending the structure
where necessary. Supersense tagging is also interesting
for many applications that use shallow semantics, e.g. in-
formation extraction and question answering.

3 Previous Work

A considerable amount of research addresses structurally
and statistically manipulating the hierarchy of WORD-
NET and the construction of new wordnets using the con-
cept structure from English. Forlexical FreeNet, Beefer-
man (1998) adds over 350 000 collocation pairs (trigger
pairs) extracted from a 160 million word corpus of broad-
cast news using mutual information. The co-occurrence
window was 500 words which was designed to approxi-
mate average document length.

Caraballo and Charniak (1999) have explored deter-
mining noun specificity from raw text. They find that
simple frequency counts are the most effective way of
determining the parent-child ordering, achieving 83% ac-
curacy over types ofvehicle, food andoccupation. The
other measure they found to be successful was the en-
tropy of the conditional distribution of surrounding words
given the noun. Specificity ordering is a necessary step
for building a noun hierarchy. However, this approach
clearly cannot build a hierarchy alone. For instance,en-
tity is less frequent than many concepts it subsumes. This
suggests it will only be possible to add words to an ex-
isting abstract structure rather than create categories right
up to the unique beginners.

Hearst and Scḧutze (1993) flatten WORDNET into 726
categories using an algorithm which attempts to min-
imise the variance in category size. These categories are
used to label paragraphs with topics, effectively repeat-
ing Yarowsky’s (1992) experiments using the their cat-
egories rather than Roget’s thesaurus. Schütze’s (1992)
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WordSpace system was used to add topical links, such
as betweenball, racquet andgame (the tennis problem).
Further, they also use the same vector-space techniques
to label previously unseen words using the most common
class assigned to the top 20 synonyms for that word.

Widdows (2003) uses a similar technique to insert
words into the WORDNET hierarchy. He first extracts
synonyms for the unknown word using vector-space sim-
ilarity measures based on Latent Semantic Analysis and
then searches for a location in the hierarchy nearest to
these synonyms. This same technique as is used in our
approach to supersense tagging.

Ciaramita and Johnson (2003) implement a super-
sense tagger based on the multi-class perceptron classi-
fier (Crammer and Singer, 2001), which uses the standard
collocation, spelling and syntactic features common in
WSD and named entity recognition systems. Their insight
was to use the WORDNET glosses as annotated training
data and massively increase the number of training in-
stances using the noun hierarchy. They developed an effi-
cient algorithm for estimating the model over hierarchical
training data.

4 Evaluation

Ciaramita and Johnson (2003) propose a very natural
evaluation for supersense tagging: inserting the extra
common nouns that have been added to a new version
of WORDNET. They use the common nouns that have
been added to WORDNET 1.7.1 since WORDNET 1.6 and
compare this evaluation with a standard cross-validation
approach that uses a small percentage of the words from
their WORDNET 1.6 training set for evaluation. Their
results suggest that the WORDNET 1.7.1 test set is sig-
nificantly harder because of the large number of abstract
category nouns, e.g.communication and cognition, that
appear in the 1.7.1 data, which are difficult to classify.

Our evaluation will use exactly the same test sets as
Ciaramita and Johnson (2003). The WORDNET 1.7.1 test
set consists of 744 previously unseen nouns, the majority
of which (over 90%) have only one sense. The WORD-
NET 1.6 test set consists of several cross-validation sets
of 755 nouns randomly selected from theBLLIP train-
ing set used by Ciaramita and Johnson (2003). They
have kindly supplied us with the WORDNET 1.7.1 test set
and one cross-validation run of the WORDNET 1.6 test
set. Our development experiments are performed on the
WORDNET 1.6 test set with one final run on the WORD-
NET 1.7.1 test set. Some examples from the test sets are
given in Table 2 with their supersenses.

5 Corpus

We have developed a 2 billion word corpus, shallow-
parsed with a statisticalNLP pipeline, which is by far the

WORDNET 1.6 WORDNET 1.7.1
NOUN SUPERSENSE NOUN SUPERSENSE

stock index communication week time
fast food food buyout act
bottler group insurer group
subcompact artifact partner person
advancer person health state
cash flow possession income possession
downside cognition contender person
discounter artifact cartel group
trade-off act lender person
billionaire person planner artifact

Table 2: Example nouns and their supersenses

largestNLP processed corpus described in published re-
search. The corpus consists of theBritish National Cor-
pus (BNC), the Reuters Corpus Volume 1(RCV1), and
most of the Linguistic Data Consortium’s news text col-
lected since 1987:Continuous Speech Recognition III
(CSR-III ); North American News Text Corpus(NANTC);
the NANTC Supplement(NANTS); and theACQUAINT

Corpus. The components and their sizes including punc-
tuation are given in Table 3. TheLDC has recently re-
leased theEnglish Gigawordcorpus which includes most
of the corpora listed above.

CORPUS DOCS. SENTS. WORDS

BNC 4 124 6.2M 114M
RCV1 806 791 8.1M 207M
CSR-III 491 349 9.3M 226M
NANTC 930 367 23.2M 559M
NANTS 942 167 25.2M 507M
ACQUAINT 1 033 461 21.3M 491M

Table 3: 2 billion word corpus statistics

We have tokenized the text using the Grok-OpenNLP
tokenizer (Morton, 2002) and split the sentences using
MXTerminator (Reynar and Ratnaparkhi, 1997). Any
sentences less than 3 words or more than 100 words long
were rejected, along with sentences containing more than
5 numbers or more than 4 brackets, to reduce noise. The
rest of the pipeline is described in the next section.

6 Semantic Similarity

Vector-space models of similarity are based on thedistri-
butional hypothesisthat similar words appear in similar
contexts. This hypothesis suggests that semantic simi-
larity can be measured by comparing the contexts each
word appears in. In vector-space models eachheadword
is represented by a vector of frequency counts record-
ing the contexts that it appears in. The key parameters
are the context extraction method and the similarity mea-
sure used to compare context vectors. Our approach to
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vector-space similarity is based on the SEXTANT system
described in Grefenstette (1994).

Curran and Moens (2002b) compared several context
extraction methods and found that the shallow pipeline
and grammatical relation extraction used in SEXTANT

was both extremely fast and produced high-quality re-
sults. SEXTANT extracts relation tuples(w, r,w′) for
each noun, wherew is the headword,r is the relation type
andw′ is the other word. The efficiency of the SEXTANT

approach makes the extraction of contextual information
from over 2 billion words of raw text feasible. We de-
scribe the shallow pipeline in detail below.

Curran and Moens (2002a) compared several differ-
ent similarity measures and found that Grefenstette’s
weighted JACCARD measure performed the best:∑

min(wgt(w1, ∗r, ∗w′),wgt(w2, ∗r, ∗w′))∑
max(wgt(w1, ∗r, ∗w′),wgt(w2, ∗r, ∗w′))

(1)

wherewgt(w, r, w′) is the weight function for relation
(w, r, w′). Curran and Moens (2002a) introduced the
TTEST weight function, which is used in collocation ex-
traction. Here, the t-test compares the joint and product
probability distributions of the headword and context:

p(w, r, w′)− p(∗, r, w′)p(w, ∗, ∗)√
p(∗, r, w′)p(w, ∗, ∗)

(2)

where∗ indicates a global sum over that element of the
relation tuple. JACCARD and TTEST produced better
quality synonyms than existing measures in the literature,
so we use Curran and Moen’s configuration for our super-
sense tagging experiments.

6.1 Part of Speech Tagging and Chunking

Our implementation of SEXTANT uses a maximum en-
tropy POS tagger designed to be very efficient, tagging
at around 100 000 words per second (Curran and Clark,
2003), trained on the entire Penn Treebank (Marcus et al.,
1994). The only similar performing tool is theTrigrams
‘n’ Tags tagger (Brants, 2000) which uses a much simpler
statistical model. Our implementation uses a maximum
entropy chunker which has similar feature types to Koel-
ing (2000) and is also trained on chunks extracted from
the entire Penn Treebank using the CoNLL 2000 script.
Since the Penn Treebank separatesPPs and conjunctions
from NPs, they are concatenated to match Grefenstette’s
table-based results, i.e. the SEXTANT always prefers noun
attachment.

6.2 Morphological Analysis

Our implementation usesmorpha , the Sussex morpho-
logical analyser (Minnen et al., 2001), which is imple-
mented usinglex grammars for both affix splitting and
generation.morpha has wide coverage – nearly 100%

RELATION DESCRIPTION

adj noun–adjectival modifier relation
dobj verb–direct object relation
iobj verb–indirect object relation
nn noun–noun modifier relation
nnprep noun–prepositional head relation
subj verb–subject relation

Table 4: Grammatical relations from SEXTANT

against theCELEX lexical database (Minnen et al., 2001)
– and is very efficient, analysing over 80 000 words per
second.morpha often maintains sense distinctions be-
tween singular and plural nouns; for instance:specta-
cles is not reduced tospectacle, but fails to do so in
other cases:glasses is converted toglass. This inconsis-
tency is problematic when using morphological analysis
to smooth vector-space models. However, morphological
smoothing still produces better results in practice.

6.3 Grammatical Relation Extraction

After the raw text has beenPOS tagged and chunked,
the grammatical relation extraction algorithm is run over
the chunks. This consists of five passes over each sen-
tence that first identify noun and verb phrase heads and
then collect grammatical relations between each common
noun and its modifiers and verbs. A global list of gram-
matical relations generated by each pass is maintained
across the passes. The global list is used to determine if a
word is already attached. Once all five passes have been
completed this association list contains all of the noun-
modifier/verb pairs which have been extracted from the
sentence. The types of grammatical relation extracted by
SEXTANT are shown in Table 4. For relations between
nouns (nn andnnprep), we also create inverse relations
(w′, r′, w) representing the fact thatw′ can modifyw.
The 5 passes are described below.
Pass 1: Noun Pre-modifiers

This pass scansNPs, left to right, creating adjectival
(adj) and nominal (nn) pre-modifier grammatical rela-
tions (GRs) with every noun to the pre-modifier’s right,
up to a preposition or the phrase end. This corresponds to
assuming right-branching noun compounds. Within each
NP only theNP andPPheads remain unattached.
Pass 2: Noun Post-modifiers

This pass scansNPs, right to left, creating post-modifier
GRs between the unattached heads ofNPs andPPs. If
a preposition is encountered between the noun heads, a
prepositional noun (nnprep) GR is created, otherwise an
appositional noun (nn) GR is created. This corresponds
to assuming right-branchingPP attachment. After this
phrase only theNP head remains unattached.
Tense Determination

The rightmost verb in eachVP is considered the head. A
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VP is initially categorised asactive. If the head verb is a
form of be then theVP becomesattributive. Otherwise,
the algorithm scans theVP from right to left: if an auxil-
iary verb form ofbe is encountered theVP becomespas-
sive; if a progressive verb (exceptbeing) is encountered
theVP becomesactive.

Only the noun heads on either side ofVPs remain
unattached. The remaining three passes attach these to
the verb heads as either subjects or objects depending on
the voice of theVP.
Pass 3: Verb Pre-Attachment

This pass scans sentences, right to left, associating the
first NP head to the left of theVP with its head. If theVP

is active, a subject (subj) relation is created; otherwise,
a direct object (dobj) relation is created. For example,
antigen is the subject ofrepresent.
Pass 4: Verb Post-Attachment

This pass scans sentences, left to right, associating the
first NP or PP head to the right of theVP with its head.
If the VP was classed asactive and the phrase is anNP

then a direct object (dobj) relation is created. If theVP

was classed aspassive and the phrase is anNP then a
subject (subj) relation is created. If the following phrase
is a PP then an indirect object (iobj) relation is created.
The interaction between the head verb and the preposi-
tion determine whether the noun is an indirect object of
a ditransitive verb or alternatively the head of aPP that is
modifying the verb. However, SEXTANT always attaches
thePP to the previous phrase.
Pass 5: Verb Progressive Participles

The final step of the process is to attach progressive verbs
to subjects and objects (without concern for whether they
are already attached). Progressive verbs can function as
nouns, verbs and adjectives and once again a naı̈ve ap-
proximation to the correct attachment is made. Any pro-
gressive verb which appears after a determiner or quan-
tifier is considered a noun. Otherwise, it is a verb and
passes 3 and 4 are repeated to attach subjects and objects.

Finally, SEXTANT collapses thenn, nnprep andadj re-
lations together into a single broad noun-modifier gram-
matical relation. Grefenstette (1994) claims this extractor
has a grammatical relation accuracy of 75% after manu-
ally checking 60 sentences.

7 Approach

Our approach uses voting across the known supersenses
of automatically extracted synonyms, to select a super-
sense for the unknown nouns. This technique is simi-
lar to Hearst and Schütze (1993) and Widdows (2003).
However, sometimes the unknown noun does not appear
in our 2 billion word corpus, or at least does not appear
frequently enough to provide sufficient contextual infor-
mation to extract reliable synonyms. In these cases, our

SUFFIX EXAMPLE SUPERSENSE

-ness remoteness attribute
-tion, -ment annulment act
-ist, -man statesman person
-ing, -ion bowling act
-ity viscosity attribute
-ics, -ism electronics cognition
-ene, -ane, -ine arsine substance
-er, -or, -ic, -ee, -an mariner person
-gy entomology cognition

Table 5: Hand-coded rules for supersense guessing

fall-back method is a simple hand-coded classifier which
examines the unknown noun and makes a guess based on
simple morphological analysis of the suffix. These rules
were created by inspecting the suffixes of rare nouns in
WORDNET 1.6. The supersense guessing rules are given
in Table 5. If none of the rules match, then the default
supersenseartifact is assigned.

The problem now becomes how to convert the ranked
list of extracted synonyms for each unknown noun into
a single supersense selection. Each extracted synonym
votes for its one or more supersenses that appear in
WORDNET 1.6. There are many parameters to consider:

• how many extracted synonyms to use;
• how to weight each synonym’s vote;
• whether unreliable synonyms should be filtered out;
• how to deal with polysemous synonyms.

The experiments described below consider a range of op-
tions for these parameters. In fact, these experiments are
so quick to run we have been able to exhaustively test
many combinations of these parameters. We have exper-
imented with up to 200 voting extracted synonyms.

There are several ways to weight each synonym’s con-
tribution. The simplest approach would be to give each
synonym the same weight. Another approach is to use
the scores returned by the similarity system. Alterna-
tively, the weights can use the ranking of the extracted
synonyms. Again these options have been considered
below. A related question is whether to use all of the
extracted synonyms, or perhaps filter out synonyms for
which a small amount of contextual information has been
extracted, and so might be unreliable.

The final issue is how to deal with polysemy. Does ev-
ery supersense of each extracted synonym get the whole
weight of that synonym or is it distributed evenly between
the supersenses like Resnik (1995)? Another alternative
is to only consider unambiguous synonyms with a single
supersense in WORDNET.

A disadvantage of this similarity approach is that it re-
quires full synonym extraction, which compares the un-
known word against a large number of words when, in
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SYSTEM WN 1.6 WN 1.7.1

Ciaramita and Johnson baseline 21% 28%
Ciaramita and Johnson perceptron 53% 53%
Similarity based results 68% 63%

Table 6: Summary of supersense tagging accuracies

fact, we want to calculate the similarity to a small number
of supersenses. This inefficiency could be reduced sig-
nificantly if we consider only very high frequency words,
but even this is still expensive.

8 Results

We have used the WORDNET 1.6 test set to experi-
ment with different parameter settings and have kept the
WORDNET 1.7.1 test set as a final comparison of best
results with Ciaramita and Johnson (2003). The experi-
ments were performed by considering all possible config-
urations of the parameters described above.

The following voting options were considered for each
supersense of each extracted synonym: the initial vot-
ing weight for a supersense could either be a constant
(IDENTITY ) or the similarity score (SCORE) of the syn-
onym. The initial weight could then be divided by the
number of supersenses to share out the weight (SHARED).
The weight could also be divided by the rank (RANK) to
penalise supersenses further down the list. The best per-
formance on the 1.6 test set was achieved with theSCORE

voting, without sharing or ranking penalties.
The extracted synonyms are filtered before contribut-

ing to the vote with their supersense(s). This filtering in-
volves checking that the synonym’s frequency and num-
ber of contexts are large enough to ensure it is reliable.
We have experimented with a wide range of cutoffs and
the best performance on the 1.6 test set was achieved us-
ing a minimum cutoff of 5 for the synonym’s frequency
and the number of contexts it appears in.

The next question is how many synonyms are consid-
ered. We considered using just the nearest unambiguous
synonym, and the top 5, 10, 20, 50, 100 and 200 syn-
onyms. All of the top performing configurations used 50
synonyms. We have also experimented with filtering out
highly polysemous nouns by eliminating words with two,
three or more synonyms. However, such a filter turned
out to make little difference.

Finally, we need to decide when to use the similarity
measure and when to fall-back to the guessing rules. This
is determined by looking at the frequency and number of
attributes for the unknown word. Not surprisingly, the
similarity system works better than the guessing rules if
it has any information at all.

The results are summarised in Table 6. The accuracy
of the best-performing configurations was 68% on the

WORDNET 1.6 WORDNET 1.7.1
SUPERSENSE N P R F N P R F

Tops 2 0 0 0 1 50 100 67
act 84 60 74 66 86 53 73 61

animal 16 69 56 62 5 33 60 43
artifact 134 61 86 72 129 57 76 65

attribute 32 52 81 63 16 44 69 54
body 8 88 88 88 5 50 40 44

cognition 31 56 45 50 41 70 34 46
communication 66 80 56 66 57 58 44 50

event 14 83 36 50 10 80 40 53
feeling 8 70 88 78 1 0 0 0
food 29 91 69 78 12 67 67 67

group 27 75 22 34 26 50 4 7
location 43 81 30 44 13 40 15 22
motive 0 0 0 0 1 0 0 0
object 17 73 47 57 13 75 23 35
person 155 76 89 82 207 81 86 84

phenomenon 3 100 100 100 9 0 0 0
plant 11 80 73 76 0 0 0 0

possession 9 100 22 36 16 78 44 56
process 2 0 0 0 9 50 11 18
quantity 12 80 33 47 5 0 0 0
relation 2 100 50 67 0 0 0 0
shape 1 0 0 0 0 0 0 0
state 21 48 48 48 28 50 39 44

substance 24 58 58 58 44 63 73 67
time 5 100 60 75 10 36 40 38

Overall 756 68 68 68 744 63 63 63

Table 7: Breakdown of results by supersense

WORDNET 1.6 test set with several other parameter com-
binations described above performing nearly as well. On
the previously unused WORDNET 1.7.1 test set, our accu-
racy is 63% using the best system on the WORDNET 1.6
test set. By optimising the parameters on the 1.7.1 test
set we can increase that to 64%, indicating that we have
not excessively over-tuned on the 1.6 test set. Our results
significantly outperform Ciaramita and Johnson (2003)
on both test sets even though our system is unsupervised.
The large difference between our 1.6 and 1.7.1 test set
accuracy demonstrates that the 1.7.1 set is much harder.

Table 7 shows the breakdown in performance for each
supersense. The columns show the number of instances
of each supersense with the precision, recall and f-score
measures as percentages. The most frequent supersenses
in both test sets wereperson, attribute and act. Of the
frequent categories,person is the easiest supersense to
get correct in both the 1.6 and 1.7.1 test sets, followed
by food, artifact and substance. This is not surprising
since these concrete words tend to have very fewer other
senses, well constrained contexts and a relatively high
frequency. These factors are conducive for extracting re-
liable synonyms.

These results also support Ciaramita and Johnson’s
view that abstract concepts likecommunication, cognition
andstate are much harder. We would expect thelocation
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supersense to perform well since it is quite concrete, but
unfortunately our synonym extraction system does not
incorporate proper nouns, so many of these words were
classified using the hand-built classifier. Also, in the data
from Ciaramita and Johnson all of the words are in lower
case, so no sensible guessing rules could help.

9 Other Alternatives and Future Work

An alternative approach worth exploring is to create con-
text vectors for the supersense categories themselves and
compare these against the words. This has the advantage
of producing a much smaller number of vectors to com-
pare against. In the current system, we must compare a
word against the entire vocabulary (over 500 000 head-
words), which is much less efficient than a comparison
against only 26 supersense context vectors.

The question now becomes how to construct vectors
of supersenses. The most obvious solution is to sum the
context vectors across the words which have each su-
persense. However, our early experiments suggest that
this produces extremely large vectors which do not match
well against the much smaller vectors of each unseen
word. Also, the same questions arise in the construc-
tion of these vectors. How are words with multiple su-
persenses handled? Our preliminary experiments suggest
that only combining the vectors for unambiguous words
produces the best results.

One solution would be to take the intersection between
vectors across words for each supersense (i.e. to find the
common contexts that these words appear in). However,
given the sparseness of the data this may not leave very
large context vectors. A final solution would be to con-
sider a large set of thecanonical attributes(Curran and
Moens, 2002a) to represent each supersense. Canonical
attributes summarise the key contexts for each headword
and are used to improve the efficiency of the similarity
comparisons.

There are a number of problems our system does not
currently handle. Firstly, we do not include proper names
in our similarity system which means that location enti-
ties can be very difficult to identify correctly (as the re-
sults demonstrate). Further, our similarity system does
not currently incorporate multi-word terms. We over-
come this by using the synonyms of the last word in
the multi-word term. However, there are 174 multi-word
terms (23%) in the WORDNET 1.7.1 test set which we
could probably tag more accurately with synonyms for
the whole multi-word term. Finally, we plan to imple-
ment a supervised machine learner to replace the fall-
back method, which currently has an accuracy of 37%
on the WORDNET 1.7.1 test set.

We intend to extend our experiments beyond the Cia-
ramita and Johnson (2003) set to include previous and

more recent versions of WORDNET to compare their dif-
ficulty, and also perform experiments over a range of cor-
pus sizes to determine the impact of corpus size on the
quality of results.

We would like to move onto the more difficult task
of insertion into the hierarchy itself and compare against
the initial work by Widdows (2003) using latent seman-
tic analysis. Here the issue of how to combine vec-
tors is even more interesting since there is the additional
structure of the WORDNET inheritance hierarchy and the
small synonym sets that can be used for more fine-grained
combination of vectors.

10 Conclusion

Our application of semantic similarity to supersense tag-
ging follows earlier work by Hearst and Schütze (1993)
and Widdows (2003). To classify a previously unseen
common noun our approach extracts synonyms which
vote using their supersenses in WORDNET 1.6. We have
experimented with several parameters finding that the
best configuration uses 50 extracted synonyms, filtered
by frequency and number of contexts to increase their re-
liability. Each synonym votes for each of its supersenses
from WORDNET 1.6 using the similarity score from our
synonym extractor.

Using this approach we have significantly outper-
formed the supervised multi-class perceptron Ciaramita
and Johnson (2003). This paper also demonstrates the
use of a very efficient shallowNLP pipeline to process
a massive corpus. Such a corpus is needed to acquire
reliable contextual information for the often very rare
nouns we are attempting to supersense tag. This appli-
cation of semantic similarity demonstrates that an unsu-
pervised methods can outperform supervised methods for
someNLP tasks if enough data is available.
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Hinrich Scḧutze. 1992. Context space. InIntelligent Proba-
bilistic Approaches to Natural Language, number FS-92-04
in Fall Symposium Series, pages 113–120, Stanford Univer-
sity, CA USA.

Dominic Widdows. 2003. Unsupervised methods for develop-
ing taxonomies by combining syntactic and statistical infor-
mation. InProceedings of the Human Language Technology
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 276–283, Edmon-
ton, Alberta Canada.

David Yarowsky. 1992. Word-sense disambiguation using sta-
tistical models of Roget’s categories trained on large corpora.
In Proceedings of the 14th international conference on Com-
putational Linguistics, pages 454–460, Nantes, France.

33


