
Developing A Flexible Spoken Dialog System Using Simulation

Grace Chung
�

Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100

Reston, VA, 20191
gchung@cnri.reston.va.us

Abstract

In this paper, we describe a new methodology
to develop mixed-initiative spoken dialog systems,
which is based on the extensive use of simulations
to accelerate the development process. With the
help of simulations, a system providing informa-
tion about a database of nearly 1000 restaurants in
the Boston area has been developed. The simula-
tor can produce thousands of unique dialogs which
benefit not only dialog development but also pro-
vide data to train the speech recognizer and under-
standing components, in preparation for real user
interactions. Also described is a strategy for creat-
ing cooperative responses to user queries, incorpo-
rating an intelligent language generation capability
that produces content-dependent verbal descriptions
of listed items.

1 Introduction

Spoken dialog systems have traditionally been dif-
ficult to instantiate because of the extensive efforts
required for configuring each component from the
natural language (NL) understanding to the domain-
specific context tracking and dialog engines. This
task is particularly involved when building systems
that empower users with greater flexibility at the
spoken input via mixed-initiative interaction (Zue
et al., 2000; Ferguson and Allen, 1998), and systems
that enable querying across large and frequently
changing databases.

The goal of this work is to assemble natural spo-
ken dialog interfaces that enable flexible interac-
tions through mixed initiative dialog and coopera-
tive responses. Such interfaces aim to help users
navigate large information spaces such as on-line
databases.

Conventional systems generally guide the users
through a series of scripted prompts, either through

�

This research is sponsored in part by SPAWAR SSC-SD. The
content of this paper does not necessarily reflect the position or
policy of the Government, and no official endorsement should
be inferred.

User: Are there any Thai restaurants?
System: Can you provide a neighborhood or city?

User: Boston.
System: There are 21 entries found. Can you be

more specific?
User: A restaurant in Dorchester.

System: There are no Thai restaurants in Dorch-
ester. Is there anything else I can help you
with?

User: What about in the South End?
System: There are 2 entries found. Thai Village

and House of Siam.

Table 1: Example human-computer dialog.

a finite-state grammar or a dialog control table. In
Table 1, the system prompts present a sequence of
questions in an attempt to solicit more constraints
from the user, with the goal of obtaining a small data
subset from the database. The system responses are
generated from a set of rules that only anticipate one
of a handful of situations: (1) when the set of en-
tries returned is too large, (2) the set of entries is
adequately small to enumerate, and (3) no available
entries have been returned.

A more flexible scenario would allow the user to
browse the content by specifying one or more con-
straints in any order. The system should then re-
turn a succinct summary of the content upon user
specification of each constraint. This would provide
improved feedback to the user about the available
choices so far, guards against stilted conversations
with a fixed number of dialog turns for every in-
teraction, and mitigates against repeated scenarios
where user queries return no items. However, much
effort is then required in configuring the numerous
scenarios for users to make sequences of queries in
various orders. User queries are likely to differ if the
database contents shift over time, changing the fre-
quency and availability of certain entries. Further-
more, there remains the well-known “chicken-and-
egg” problem of obtaining real-user data. With no
real examples of human-computer interactions, it is
difficult for developers to instantiate and configure



a robust system. Yet without a reasonably opera-
tional system, it is equally difficult to convince real
users to generate dialogs, particularly those which
achieve successful completion. Hence, the usual de-
velopment process consists of multiple iterations of
expensive data collections and incremental system
improvements.

This paper presents an alternative paradigm for
designing such a spoken dialog system. Our
methodology employs simulations to reduce the
time and effort required to build the system. Simu-
lations facilitate prototyping and testing of an initial
version of the system that automatically produces
cooperative responses to user queries. We advocate
the use of a suite of simulation techniques to cre-
ate large numbers of synthetic user interactions with
the system, including both typed and spoken inputs,
where the speech is generated using a speech syn-
thesizer.

The resulting dialogs can be used to (1) diagnose
the system for any problematic interactions, (2) en-
able a developer to examine system responses for
large numbers of possible user queries, and (3) cre-
ate an initial corpus for training the language mod-
els and probabilistic NL grammar. Thus, the initial
phase of development comprises simulating hun-
dreds of dialogs and iterative refinements prior to
real-user data collection.

In the next sections, we first describe our spo-
ken dialog system architecture. This is followed
by a description of a simulator, which operates in
concert with a language generation system to out-
put synthetic user queries. We elaborate on how the
architecture can simulate coherent dialogs, and can
be tuned to simulate a cooperative or uncooperative
user. Then, methods for generating cooperative re-
sponses for a restaurant information domain are de-
scribed. We detail how simulations have accelerated
these developments.

2 System Architecture with Simulator

Figure 1 depicts a spoken dialog system architec-
ture functioning with simulator components, which
create synthetic user inputs. Simulations can be cus-
tomized to generate in text or speech mode. In text
mode, text utterances are treated as user inputs to
the understanding components. The dialog man-
ager creates reply frames that encode information
for generating the system reply string. These are
also used by the simulator for selecting a random
user response in the next turn. In speech mode, syn-
thetic waveforms are created and recognized by the
speech recognizer, yielding an

�
-best list for the

understanding components.

Reply Frame
Simulated Semantic

Frame

Simulated User
Text

Semantic Frame

Language
Generation

Dialog System
Architecture

Speech
Synthesizer

Simulated User
Waveform Speech

Recognizer

Simulation
Architecture

Simulator

System Reply String

Language
Generation Database

NL Understanding
& Context Resolution

Dialog
Management

Figure 1: A spoken dialog system architecture inte-
grated with user simulation components.

Examples and experiments in this paper are
drawn from a Boston restaurant information system.
Obtained from an on-line source, the content of-
fers information for 863 restaurants, located in 106
cities in the Boston metropolitan area (e.g., Newton,
Cambridge) and 45 neighborhoods (e.g., Back Bay,
South End). Individual restaurant entries are asso-
ciated with detailed information such as cuisines,
phone numbers, opening hours, credit-card accep-
tance, price range, handicap accessibility, and menu
offerings. Additionally, latitude and longitude in-
formation for each restaurant location have been ob-
tained.

2.1 Instantiation of a System
The concept of driving the instantiation of a dialog
system from the data source was described in (Po-
lifroni et al., 2003). In the following, the steps envi-
sioned for creating an initial prototype starting with
on-line content are summarized below:

1. Combing the web for database content

2. Identifying the relevant set of keys associated
with the domain, and mapping to the informa-
tion parsed from the content originator

3. Creating an NL grammar covering possible do-
main queries

4. Configuring the discourse and dialog compo-
nents for an initial set of interactions

5. Defining templates for system responses

The above steps are sufficient for enabling a
working prototype to communicate with the pro-
posed simulator in text mode. The next phase will
involve iteratively running simulated dialogs and re-
finements on the spoken dialog system, followed by



�
c summary
:count 14
:categories
(

�
c cuisine

:ordered counts ( 4 2 2 2 ...
:ordered values ( “american” “indian” ..�

c price range
:ordered counts ( 7 2 2 1)
:ordered values ( “cheap” “low” “medium” ..

Table 2: Example summary frame derived from the
system reply frame.

examination of successive corpora of simulated di-
alogs. Later phases will then incorporate the speech
recognition and text-to-speech components.

2.2 Simulation with User Modeling

The simulator, Figure 1, is composed of several
modular components. The core simulator accepts
reply frames from the dialog system, and produces
a meaning representation of the next synthetic user
response. A text generation component paraphrases
the meaning representation into a text string. In text
mode, this poses as a typed user input, whereas in
speech mode, the text is passed to a synthesizer as
part of a synthesize/recognize cycle. Configuring
a simulation for any domain involves customizing
a simple external text file to control the behavior
of the domain-independent simulator module, and
tailoring text generation rules to output a variety of
example user input sentences from the meaning rep-
resentation.

One simulated dialog would commence with an
initial query such as “what restaurants do you pro-
vide?”. The synthetic user makes successive queries
that constrain the search to data subsets. It may (1)
continue to browse more data subsets, or (2) when
a small list of data entries is in focus, choose to
query attributes pertaining to one or more individ-
ual items, or (3) terminate the conversation. The en-
tire system is run continuously through hundreds of
dialogs to produce log files of user and system sen-
tences, and dialog information for subsequent anal-
yses. The simulator also generates generic kinds of
statements such as asking for help, repeat and clear-
ing the dialog history.

2.2.1 Generation of Semantic Frames
The simulator takes input from the system-
generated reply frame, and outputs a flat seman-
tic frame, encapsulating the meaning representation
of the next intended user query. The system re-
ply frame contains the essential entities, used in
the paraphrase for creating the system prompt. But
also, a sub-frame, shown in Figure 2, retains pre-

Terminate?Set Size
< N?

Use System
Reply Frame?

Select A Key and Value

Select 
Another Key?

Yes

Begin

Yes

Yes

Yes

No

No

No
Output Frame

Output Frame

Select Database Item & Key

Terminate
Frame

Load History
Frame

No

Figure 2: A schematic showing the decision making
procedure for the simulator.

computed counts associated with the frequency of
occurrence of values for every key pertaining to the
data subset within the discourse focus. During the
browsing stage, the simulator randomly selects a
key (e.g, a cuisine) from the given frame, and then
makes a random selection on the value, (e.g., “Chi-
nese.”). The simulator may choose one or more of
these key-value pairs as constraints to narrow the
search. For each key, more than one value from the
list of possible values may be specified, (e.g., query-
ing for “Chinese or Japanese restaurants.”). When
querying about individual restaurants, the simulator
randomly selects one restaurant entry from a small
list, and then seeks to obtain the value for one key
characteristic for a restaurant entry. For example,
this could be a phone number or an address.

Figure 2 illustrates the decision making per-
formed by the simulator at each turn. At each de-
cision point, the system “throws the dice” to deter-
mine how to proceed, for example, whether to se-
lect an additional key for constraint within the same
turn, and whether to persist in querying about the
available attributes of the small list of restaurants or
to start over.

The behavior of the simulator at each decision
point can be tuned from an external text file, which
allows the following to be specified:

� Probability of combining several constraints
into a single query

� Probability of querying a different value for
a previous key versus selecting from among
other keys presented by the reply frame



� Probability of continued querying of the at-
tributes of restaurants from a list of one or
more restaurants

� Probability of the user changing his goals,
hence querying with alternative constraints

A simple user model is maintained by the simu-
lator to track the key-value pairs that have already
been queried in the current dialog. This tracks the
dialog history so as to enable the synthetic user to
further query about a previously mentioned item.
It also prevents the dialog from cycling indefinitely
through the same combinations of constraints, help-
ing to make the dialog more coherent.

The external configuration file can effectively
tune the level of cooperative behavior for the syn-
thetic user. If the synthetic user selects a single key-
value pair from the reply frame at each turn, a non-
empty and successively smaller data subset is guar-
anteed to result at each turn. Moreover, selections
can be configured to bias towards frequencies of in-
stance values. The basis for this stems from the hy-
pothesis that locations populated with more restau-
rants are likely to be queried. That is, the statistics
of the database instances can directly reflect on the
distribution of user queries. For instance, users are
more likely to query about, “Chinese restaurants in
Chinatown.” Hence, the output dialogs may be more
suitable for training language models. Alternatively,
the synthetic user may be configured to select ran-
dom combinations of various keys and values from
the current or stored summary frame at a turn. Un-
der these circumstances, the subsequent database re-
trieval may yield no data for those particular combi-
nations of constraints.

2.2.2 Generation of Simulated Utterances
Each semantic frame is input to Genesis, a text gen-
eration module (Seneff, 2002), to output a synthetic
user utterance. Genesis executes surface-form gen-
eration via recursive generation rules and an asso-
ciated lexicon. A recent addition to Genesis is the
ability to randomly generate one of several variant
sentences for the same semantic frame. A developer
can specify several rules for each linguistic entity al-
lowing the generator to randomly select one. Due to
the hierarchical nature of these templates, numerous
output sentences can be produced from a single se-
mantic frame, with only a few variants specified for
each rule. Table 3 depicts example semantic frames
and corresponding sample sentences from the sim-
ulator.

In total, the full corpus of simulated sentences are
generated from approximately 55 hand-written rules
in the restaurants domain. These rules distinguish

themselves from previous text generation tasks by
the incorporation of spontaneous speech phenom-
ena such as filled pauses and fragments. In the ini-
tial phase, this small rules set is not systematically
mined from any existing corpora, but is handcrafted
by the developer. However, it may be possible in fu-
ture to incorporate both statistics and observations
learned from real data to augment the generation
rules.

2.2.3 Synthetic User Waveforms
A concatenative speech synthesizer (Yi et al., 2000)
is used to synthesize the simulated user utterances
for this domain. The parameters and concatenative
units employed in this synthesizer were tailored for
a previous domain, and therefore, the naturalness
and intelligibility of the output waveforms are ex-
pected to be poor. However, the occurrence of some
recognition errors may help in assessing their im-
pact on the system.

3 Cooperative Response Strategies
We have aimed to design a more cooperative spo-
ken dialog system in two respects. First, the in-
formation is delivered so that at each turn a dy-
namic summary of the database items in focus is
presented. Secondly, the dialog manager is aug-
mented with a domain-independent algorithm to
handle over-constrained queries. The system gives
alternative suggestions that are integrated with the
dynamic summaries.

3.1 Flexible System Responses

Response planning is performed both in the dialog
management and the language generator, Genesis.
To enable flexible responses, and avoid rigid system
prompts, the dialog manager accesses the database
at every turn with the current set of user-specified
constraints in focus. With this data subset returned,
a data refinement server (Polifroni et al., 2003) then
computes frequency characteristics of relevant keys
for the subset. This is incorporated into the system
reply frame as shown in Table 2.

Following this, Genesis provides a summary of
the characteristics of the data set, utilizing context
information provided by the dialog manager and the
frequency statistics. Genesis provides control on
how to summarize the data linguistically via explicit
rules files. The developer can specify variables � ,
� , and

�������
which control how lists of items are

summarized, separately for different classes of data.
If the number of items is under � , all options are
enumerated. If the top � frequency counts cover
more than

�������
of the data, then these categories

will be suggested, (e.g. “Some choices are Italian



Frame Example Sentences
�
c seek I’m interested in some low end restaurants in Back Bay please.
:neighborhood “Back Bay” Inexpensive restaurants in Back Bay.
:price range “low” � Okay a cheap restaurant in Back Bay.� uh � Are there any cheap restaurants in Back Bay?�

c request property Can you please tell me the hours for Emma’s?
:property ”hours” When is Emma’s open?
:name ”Emma’s” � Well what are the hours for Emma’s?

Okay then what are the opening hours of Emma’s?

Table 3: Sample semantic frames from the simulator, along with examples of generated sentence outputs.
For each example frame above, hundreds of simulated variant sentences can be obtained.

and Chinese.”). Alternatively, summaries can indi-
cate values that are missing or common across the
set, (e.g. “All of them are cheap.”).

By accessing the database and then examining the
data subset at each turn, the system informs the user
with a concise description of the choices available at
that point in the dialog. This is a more flexible alter-
native than following a script of prompts where in
the end the user may arrive at an empty set. More-
over, we argue that performing the summary in real
time yields greater robustness against changes in the
database contents.

3.2 Dialog Management

The domain-independent dialog manager is config-
urable via an external dialog control table. A set
of generic functions are triggered by logical condi-
tions specified in formal rules, where typically sev-
eral rules fire in each turn. The dialog manager has
been extended to handle scenarios in which the user
constraints yield an empty set. The aim is to avoid
simply stating that no data items were found, with-
out providing some guidance on how the user could
re-formulate his query. Domain-independent rou-
tines relax the constraints using a set of pre-defined
and configurable criteria. Alternate methods for re-
laxing constraints are:

� If a geographical key has been specified, re-
lax the value according to a geography ontol-
ogy. For instance, if a particular street name
has been specified, the relaxation generates a
subsuming neighborhood constraint in place of
the street name.

� If a geographical key has been specified, re-
move the geographical constraint and search
for the nearest item that satisfies the remain-
ing constraints. The algorithm computes the
nearest item according to the central lati-
tude/longitude coordinates of the neighbor-
hood or city.

� Relax the key-value with alternative values that
have been set to defaults in an external file.
For instance, if a Vietnamese restaurant is not
available at all, the system relaxes the query to
alternative Asian cuisines.

� Choose the one constraint to remove that pro-
duces the smallest data subset to speak about.
If no one constraint is able to produce a non-
empty set, successively remove more con-
straints. The rationale for finding a constraint
combination that produces a small data set, is
to avoid suggesting very general alternatives:
for instance, suggesting and summarizing the
“337 cheap restaurants” when “cheap fondue
restaurants” were requested.

The routine will attempt to apply each of these re-
laxation techniques in turn until a non-zero data set
can be attained.

4 Experiments

4.1 Simulations in Text Mode

The first stage of development involved iteratively
running the system in text mode and inspecting log
files of the generated interactions for problems. This
development cycle was particularly useful for ex-
tending the coverage of the NL parser and ensuring
the proper operation of the end-to-end system.

Simulations have helped diagnose initial prob-
lems overlooked in the rule-based mechanisms for
context tracking; this has served to ensure correct
inheritance of attributes given the many permuta-
tions of sequences of input sentences that are pos-
sible within a single conversation. This is valuable
because in such a mixed-initiative system, the user
is free to change topics and specify new parameters
at any time. For instance, a user may or may not fol-
low up with suggestions for restaurants offered by
the system. In fact, the user could continue to mod-
ify any of the constraints previously specified in the
conversation or query any attributes for an alternate



newly spoken restaurant. There are vast numbers of
dialog contexts that can result, and simulations have
assisted greatly in detecting problems.

Furthermore, by generating many variations of
possible user constraints, simulations have also
helped identify initial problems in the summariza-
tion rules for system response generation. The text
generation component is handcrafted and benefits
largely from examples of real queries to ensure their
proper operation. These kinds of problems would
otherwise normally be encountered only after many
user interactions have occurred.

Table 4 shows a typical simulated dialog. In the
interaction shown, the simulator provides one or
more constraints at each turn. It also selects alter-
native values according to the previous chosen key.
After the dialog has arrived at a small data set, the
simulator randomly asks questions about individual
items.

During one simulation run, we completed 2000
dialogs in text mode. There were a total of 8147
input utterances, resulting in an average of 4.07 in-
put utterances per dialog. Of the input utterances,
5446 were unique. These were generated from 3349
unique semantic frames. There were 4320 unique
system replies.

4.2 Simulating Over-Constrained Queries
By configuring the simulator to query with multi-
ple constraints in single turns, we were able to syn-
thesize over-constrained queries, in which, initially,
empty data sets were retrieved. In earlier devel-
opment cycles, simulated dialogs were crucial in
finding combinations that yielded problematic re-
sponses due to over-constrained queries. In one run
after refinements, we tested 300 dialogs whereby
two or more constraints were combined in each
query by the simulator. As a result, 113 queries ne-
cessitated the system to invoke the relaxation algo-
rithm in order to present a suggested alternative data
set. Under all these cases, the system gave sugges-
tions without fail. Some examples of the replies are
shown in Table 5.

4.3 Simulation with Speech Recognition
The next step is to implement the synthesize-and-
recognize cycle whereby the text-to-speech output
is directly piped to the recognition engine. A speech
recognizer (Glass, 2003) is built using the utterances
produced by the text mode as training data for the
language model. This recognizer uses class � -gram
models. With the training set of 8147 utterances,
the perplexity of the bigram and trigram models are
respectively 6.6 and 5.1. The speech recognizer, in-
cluding the restaurant names contains 2325 vocab-

SIM: What restaurants do you know?
SYS: There are 863 restaurants. Some of the

options are American, Pizza, and Italian.
Most of them are located in Boston and
Cambridge.

SIM: Any restaurants in Back Bay?
SYS: There are 57 restaurants in Back Bay.

Many of them are American, and Nouvelle
Cuisine.

SIM: So how about food in The South End?
SYS: There are 42 restaurants in The South End.

They are mostly American, and Nouvelle
Cuisine. Many of them are located on
Columbus Avenue, and Tremont Street.

SIM: I would like a moderately priced restau-
rant.

SYS: There are 9 medium priced restaurants in
The South End. Some of the options are
Nouvelle Cuisine, and American. Many of
them are on Tremont Street and Appleton
Street.

SIM: � oh � What about any cheap American
restaurants?

SYS: There are 7 cheap American restaurants
in The South End. They are located on
Columbus Avenue, Tremont Street, Dart-
mouth Street, and Washington Street.

SIM: Columbus Avenue.
SYS: I have found 3 cheap American restau-

rants in The South End on Columbus Av-
enue. Their names are Charlie’s Sandwich
Shoppe, Bob The Chefs, and Grill Fish.

SIM: What is the phone number of first one?
SYS: The phone number of Charlie’s Sandwich

Shoppe is 617 536 7669.
SIM: What is the price range for Grill Fish?
SYS: The price range of Grill Fish is cheap.

Table 4: Typical example of a simulated dialog. SIM

are the simulated inputs and SYS are the system re-
sponses.

ulary items. The understanding component would
select one sentence of an

�
-best list output from

the speech recognizer.
Presently, when a recognition error causes a hard

parse failure in the understanding, the simulator is
configured to output the same semantic frame as
contained in the previous utterance. This will cause
the text generator to output a different variant of
the same query. If the parse failures occur multi-
ple times in sequence, the simulated user aborts and
terminates the dialog.

4.4 Results from Spoken Dialog System

Our initial run of 36 dialogs yielded 213 sentences.
To simplify dialogs, the simulator is configured to
specify just one constraint at each turn. After the



1. Cheap Restaurants on Rowes Wharf: There are no cheap restaurants on Rowes Wharf. However, there
are in total 5 cheap restaurants in the Financial District. They are on Broad Street, Post Office Square, Federal
Street, and Bromfield Street.
2. Cheap Thai Restaurants in Dorchester: There are no cheap Thai restaurants in Dorchester. However,
there are in total 14 cheap Thai restaurants. They are predominantly in Brighton, and The South End. The
nearest one is Thai Village in the South End. It is less than 3 miles away from Dorchester.
3. Expensive Asian Restaurants on Hale Street: There are no high end Asian restaurants on Hale Street.
Alternatively Yanks serves high end American food. It is located at 717 Hale Street in Beverly Farms.

Table 5: Example summary responses from simulation generated over-constrained queries after relaxation
of user constraints. Various schemes for relaxation are shown. (1) relaxes on the geographical location, (2)
offers a nearest alternative, and (3) removes the cuisine constraint, outputting a single alternate selection.

data subset has been narrowed down to six items or
less, the simulator queries focus on one of the six
items. For the 213 utterances, the recognition word
error rate is 11.2%, and the sentence error rate is
32.4%. Because the synthesizer is highly domain
specific and was originally trained on another do-
main, the synthetic waveforms were in fact highly
unnatural. However, the relatively good recognition
performance can be attributed to segmental units be-
ing well matched to the segment-based recognizer,
an exact match to the trained � -gram model and the
lack of spontaneous speech phenomena such as dis-
fluencies. These 36 dialogs were analysed by hand.
All dialogs successfully arrived at some small data
subset at termination, without aborting due to er-
rors. 29 (80.1%) of the dialogs completed without
errors, with the correct desired data set achieved.
Of the errorful dialogs, 3 exhibited problems due to
recognition errors and 4 dialogs exhibited errors in
the parse and context tracking mechanisms. All the
questions regarding querying of individual restau-
rants were answered correctly.

5 Discussion
The above evaluations have been conducted on
highly restricted scenarios in order to focus devel-
opment on any fundamental problems that may ex-
ist in the system. In all, large numbers of synthetic
dialogs have helped us identify problems that in the
past would have been discovered only after data col-
lections, and possibly after many failed dialogs with
frustrated real users. The hope is that using sim-
ulation runs will improve system performance to a
level such that the first collection of real user data
will contain a reasonable rate of task success, ul-
timately providing a more useful training corpus.
Having eliminated many software problems, a final
real user evaluation will be more meaningful.

6 Related Work
Recently, researchers have begun to address the
rapid prototyping of spoken dialog applications.

While some are concerned with the generation of
systems from on-line content (Feng et al., 2003),
others have addressed portability issues within the
dialog manager (Denecke et al., 2002) and the un-
derstanding components (Dzikovska et al., 2003).

Real user simulations have been employed in
other areas of software engineering. Various kinds
of human-computer user interfaces can be evalu-
ated for usability, via employing simulated human
users (Riedl and St. Amant, 2002; Ritter and Young,
2001). These can range from web pages to cockpits
and air traffic control systems. Simulated users have
also accounted for perceptual and cognitive mod-
els. Previous work in dialog systems has addressed
simulation techniques towards the goal of training
and evaluation. In (Scheffler and Young, 2000),
extensive simulations incorporating user modeling
were used to train a system to select dialog strate-
gies in clarification sub-dialogs. These simulations
required collecting real-user data to build the user
model. Other researchers have used simulations for
the evaluation of dialog systems (Hone and Baber,
1995; Araki and Doshita, 1997; Lin and Lee, 2001).
In (Lopez et al., 2003), recorded utterances with
additive noise were used to run a dialog system in
simulation-mode. This was used to test alternate
confirmation strategies under various recognition
accuracies. Their methods did require the recording
of scripted user utterances, and hence were limited
in the variations of user input.

Our specific goals have dealt with creating more
cooperative and flexible responses in spoken dialog.
The issues of mismatch between user queries and
database contents have been addressed by others in
database systems (Gaasterland et al., 1992), while
the potential for problems with dead-end dialogs
caused by over-constrained queries have also been
recognized and tackled in (Qu and Green, 2002).

7 Conclusions and Future Work

The use of a simulator has greatly facilitated the de-
velopment of our dialog system, with the availabil-



ity of thousands of artificial dialogs. Even relatively
restricted synthetic dialogs have already accelerated
development. In the next phase, real user data col-
lection will be conducted, along with full-scale eval-
uation. We plan to compare the efficacy of our lan-
guage models built from simulated data with those
trained from real user data.

Future research will address issues of graceful re-
covery from recognition error. We believe that the
framework of using simulated dialogs possibly with
synthesized speech input augmented with controlled
levels of additive noise can be an effective way to
develop and evaluate error recovery strategies.

Current methods for simulating dialogs are quite
rudimentary. The text only produces certain variants
that have been observed but does not respect corpus
statistics, nor, in the case of synthetic speech, do
they account for spontaneous speech phenomena.
Improved simulations could use a set of indexed real
speech waveforms invoked by the core simulator to
create more realistic input.

The main functionalities in the simulator soft-
ware are now customizable from an external file.
The simulator is domain independent and can be tai-
lored for development of similar spoken dialog sys-
tems for browsing and navigating large databases.
However further work is needed to incorporate
greater configurability to the dialog flow. Increased
flexibility for customizing the model of the dialog
is needed to enable the software to be applied to the
development of other kinds of dialog systems.

8 Acknowledgment
The author wishes to thank Stephanie Seneff for her
valuable feedback and the anonymous reviewers for
their insightful comments and suggestions.

References
M. Araki and S. Doshita. 1997. Automatic evalua-

tion environment for spoken dialog system evalu-
ation. In Dialog Processing in Spoken Language
Systems, 183–194.

M. Denecke et al. 2002. Rapid Prototyping for Spo-
ken Dialog Systems. Proc. COLING, Taipei, Tai-
wan.

M. Dzikovska et al. 2003. Integrating linguistic and
domain knowledge for spoken dialog systems in
multiple domains. Proc. IJCAI, Acapulco, Mex-
ico.

J. Feng et al. 2003. Webtalk: Mining Websites for
Automatically Building Dialog Systems. Proc.
IEEE ASRU, Virgin Islands.

G. Ferguson and J Allen. 1998. TRIPS: An In-
tegrated Intelligent Problem-Solving Assistant.

Proc. of the Fifteenth National Conference on AI
(AAAI-98), 26–30. Madison, WI.

T. Gaasterland et al. 1992. An Overview of Coop-
erative Answering. Journal of Intelligent Infor-
mation Systems, 1(2), 123–157.

J. Glass. 2003. A Probabilistic Framework for
Segment-Based Speech Recognition. Computer
Speech and Language, 17, 137–152.

K. Hone and C. Baber. 1995. Using a simula-
tion method to predict the transaction time ef-
fects of applying alternative levels of constraint to
user utterances within speech interactive dialogs.
ESCA Workshop on Spoken Dialog Systems.

B. S. Lin and L. S. Lee. 2001. Computer-aided
analysis and design for spoken dialog systems
based on quantitative simulations. IEEE Trans.
on Speech and Audio Processing, 9(5), 534–548.

R. Lopez-Cozar et al. 2003. Assessment of dialog
systems by means of a new simulation technique.
Speech Communication, 40, 387–407.

J. Polifroni, G. Chung and S. Seneff. 2003. To-
wards automatic generation of mixed-initiative
dialog systems from web content. Proc. EU-
ROSPEECH, 193–196. Geneva, Switzerland.

Y. Qu and N. Green. 2002. A Constraint-Based Ap-
proach for Cooperative Information-Seeking Di-
alog. Proc. INLG, New York.

M. Riedl and R. St. Amant. 2002. Toward auto-
mated exploration of interactive systems. Proc.
IUI, 135–142.

F. Ritter and R. Young. 2001. Embodied models
as simulated users: Introduction to this special
issue on using cognitive models to improve in-
terface design. International Journal of Human-
Computer Studies, 55, 1–14.

K. Scheffler and S. Young. 2000. Probabilis-
tic simulation of human-machine dialogs. Proc.
ICASSP, 1217–1220. Istanbul, Turkey.

S. Seneff et al. 1998. Galaxy-II: A Reference Ar-
chitecture For Conversational System Develop-
ment. Proc. ICSLP. Sydney, Australia.

S. Seneff. 2002. Response Planning and Genera-
tion in the MERCURY Flight Reservation Sys-
tem. Computer Speech and Language 16, 283–
312.

V. Zue, et al. 2000. JUPITER: A Telephone-Based
Conversational Interface for Weather Information
IEEE Transactions on Speech and Audio Process-
ing, 8(1).

J. Yi et al. 2000. A flexible, scalable finite-state
transducer architecture for corpus-based concate-
native speech synthesis. Proc. ICSLP. Beijing,
China.


