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Abstract
We present a technique that improves the efficiency
of word-lattice parsing as used in speech recogni-
tion language modeling. Our technique applies a
probabilistic parser iteratively where on each iter-
ation it focuses on a different subset of the word-
lattice. The parser’s attention is shifted towards
word-lattice subsets for which there are few or no
syntactic analyses posited. This attention-shifting
technique provides a six-times increase in speed
(measured as the number of parser analyses evalu-
ated) while performing equivalently when used as
the first-stage of a multi-stage parsing-based lan-
guage model.

1 Introduction
Success in language modeling has been dominated
by the linear n-gram for the past few decades. A
number of syntactic language models have proven
to be competitive with the n-gram and better than
the most popular n-gram, the trigram (Roark, 2001;
Xu et al., 2002; Charniak, 2001; Hall and Johnson,
2003). Language modeling for speech could well be
the first real problem for which syntactic techniques
are useful.

John ate the pizza on a plate with a fork .

NP:plate NP:fork

PP:withPP:on

IN INVB NP

VP:ate

Figure 1: An incomplete parse tree with head-word an-
notations.

One reason that we expect syntactic models to
perform well is that they are capable of model-
ing long-distance dependencies that simple n-gram

∗ This research was supported in part by NSF grants 9870676
and 0085940.

models cannot. For example, the model presented
by Chelba and Jelinek (Chelba and Jelinek, 1998;
Xu et al., 2002) uses syntactic structure to identify
lexical items in the left-context which are then mod-
eled as an n-gram process. The model presented
by Charniak (Charniak, 2001) identifies both syn-
tactic structural and lexical dependencies that aid in
language modeling. While there are n-gram mod-
els that attempt to extend the left-context window
through the use of caching and skip models (Good-
man, 2001), we believe that linguistically motivated
models, such as these lexical-syntactic models, are
more robust.

Figure 1 presents a simple example to illustrate
the nature of long-distance dependencies. Using
a syntactic model such as the the Structured Lan-
guage Model (Chelba and Jelinek, 1998), we pre-
dict the word fork given the context {ate, with}
where a trigram model uses the context {with, a}.
Consider the problem of disambiguating between
. . . plate with a fork and . . . plate with effort. The
syntactic model captures the semantic relationship
between the words ate and fork. The syntactic struc-
ture allows us to find lexical contexts for which
there is some semantic relationship (e.g., predicate-
argument).

Unfortunately, syntactic language modeling tech-
niques have proven to be extremely expensive in
terms of computational effort. Many employ the
use of string parsers; in order to utilize such tech-
niques for language modeling one must preselect a
set of strings from the word-lattice and parse each of
them separately, an inherently inefficient procedure.
Of the techniques that can process word-lattices di-
rectly, it takes significant computation to achieve
the same levels of accuracy as the n–best rerank-
ing method. This computational cost is the result of
increasing the search space evaluated with the syn-
tactic model (parser); the larger space resulting from
combining the search for syntactic structure with the
search for paths in the word-lattice.

In this paper we propose a variation of a proba-
bilistic word-lattice parsing technique that increases
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Figure 2: A partial word-lattice from the NIST HUB-1 dataset.

efficiency while incurring no loss of language mod-
eling performance (measured as Word Error Rate –
WER). In (Hall and Johnson, 2003) we presented
a modular lattice parsing process that operates in
two stages. The first stage is a PCFG word-lattice
parser that generates a set of candidate parses over
strings in a word-lattice, while the second stage
rescores these candidate edges using a lexicalized
syntactic language model (Charniak, 2001). Under
this paradigm, the first stage is not only responsible
for selecting candidate parses, but also for selecting
paths in the word-lattice. Due to computational and
memory requirements of the lexicalized model, the
second stage parser is capable of rescoring only a
small subset of all parser analyses. For this reason,
the PCFG prunes the set of parser analyses, thereby
indirectly pruning paths in the word lattice.

We propose adding a meta-process to the first-
stage that effectively shifts the selection of word-
lattice paths to the second stage (where lexical in-
formation is available). We achieve this by ensuring
that for each path in the word-lattice the first-stage
parser posits at least one parse.

2 Parsing speech word-lattices

P (A,W ) = P (A|W )P (W ) (1)

The noisy channel model for speech is presented in
Equation 1, where A represents the acoustic data ex-
tracted from a speech signal, and W represents a
word string. The acoustic model P (A|W ) assigns
probability mass to the acoustic data given a word
string and the language model P (W ) defines a dis-
tribution over word strings. Typically the acoustic
model is broken into a series of distributions condi-
tioned on individual words (though these are based
on false independence assumptions).

P (A|w1 . . . wi . . . wn) =
n∏

i=1

P (A|wi) (2)

The result of the acoustic modeling process is a set

of string hypotheses; each word of each hypothesis
is assigned a probability by the acoustic model.

Word-lattices are a compact representation of
output of the acoustic recognizer; an example is pre-
sented in Figure 2. The word-lattice is a weighted
directed acyclic graph where a path in the graph cor-
responds to a string predicted by the acoustic recog-
nizer. The (sum) product of the (log) weights on the
graph (the acoustic probabilities) is the probability
of the acoustic data given the string. Typically we
want to know the most likely string given the acous-
tic data.

arg maxP (W |A) (3)

= arg max P (A,W )
= arg max P (A|W )P (W )

In Equation 3 we use Bayes’ rule to find the opti-
mal string given P (A|W ), the acoustic model, and
P (W ), the language model. Although the language
model can be used to rescore1 the word-lattice, it is
typically used to select a single hypothesis.

We focus our attention in this paper to syntactic
language modeling techniques that perform com-
plete parsing, meaning that parse trees are built
upon the strings in the word-lattice.

2.1 n–best list reranking

Much effort has been put forth in developing effi-
cient probabilistic models for parsing strings (Cara-
ballo and Charniak, 1998; Goldwater et al., 1998;
Blaheta and Charniak, 1999; Charniak, 2000; Char-
niak, 2001); an obvious solution to parsing word-
lattices is to use n–best list reranking. The n–best
list reranking procedure, depicted in Figure 3, uti-
lizes an external language model that selects a set
of strings from the word-lattice. These strings are
analyzed by the parser which computes a language
model probability. This probability is combined

1To rescore a word-lattice, each arch is assigned a new score
(probability) defined by a new model (in combination with the
acoustic model).
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Figure 3: n–best list reranking

with the acoustic model probability to reranked the
strings according to the joint probability P (A,W ).

There are two significant disadvantages to this ap-
proach. First, we are limited by the performance
of the language model used to select the n–best
lists. Usually, the trigram model is used to se-
lect n paths through the lattice generating at most
n unique strings. The maximum performance that
can be achieved is limited by the performance of
this extractor model. Second, of the strings that
are analyzed by the parser, many will share com-
mon substrings. Much of the work performed by
the parser is duplicated for these substrings. This
second point is the primary motivation behind pars-
ing word-lattices (Hall and Johnson, 2003).

2.2 Multi-stage parsing

Π

PCFG Parser

π
′
⊂ Π

Lexicalized 
Parser

Figure 4: Coarse-to-fine lattice parsing.

In Figure 4 we present the general overview of
a multi-stage parsing technique (Goodman, 1997;
Charniak, 2000; Charniak, 2001). This process

1. Parse word-lattice with PCFG parser
2. Overparse, generating additional candidates
3. Compute inside-outside probabilities
4. Prune candidates with probability threshold

Table 1: First stage word-lattice parser

is know as coarse-to-fine modeling, where coarse
models are more efficient but less accurate than
fine models, which are robust but computation-
ally expensive. In this particular parsing model a
PCFG best-first parser (Bobrow, 1990; Caraballo
and Charniak, 1998) is used to search the uncon-
strained space of parses Π over a string. This first
stage performs overparsing which effectively al-
lows it to generate a set of high probability candi-
date parses π′. These parses are then rescored us-
ing a lexicalized syntactic model (Charniak, 2001).
Although the coarse-to-fine model may include any
number of intermediary stages, in this paper we con-
sider this two-stage model.

There is no guarantee that parses favored by the
second stage will be generated by the first stage. In
other words, because the first stage model prunes
the space of parses from which the second stage
rescores, the first stage model may remove solutions
that the second stage would have assigned a high
probability.

In (Hall and Johnson, 2003), we extended the
multi-stage parsing model to work on word-lattices.
The first-stage parser, Table 1, is responsible for
positing a set of candidate parses over the word-
lattice. Were we to run the parser to completion it
would generate all parses for all strings described
by the word-lattice. As with string parsing, we stop
the first stage parser early, generating a subset of
all parses. Only the strings covered by complete



parses are passed on to the second stage parser. This
indirectly prunes the word-lattice of all word-arcs
that were not covered by complete parses in the first
stage.

We use a first stage PCFG parser that performs
a best-first search over the space of parses, which
means that it depends on a heuristic “figure-of-
merit” (FOM) (Caraballo and Charniak, 1998). A
good FOM attempts to model the true probability
of a chart edge2 P (N i

j,k). Generally, this proba-
bility is impossible to compute during the parsing
process as it requires knowing both the inside and
outside probabilities (Charniak, 1993; Manning and
Schütze, 1999). The FOM we describe is an ap-
proximation to the edge probability and is computed
using an estimate of the inside probability times an
approximation to the outside probability 3.

The inside probability β(Ni
j,k) can be computed

incrementally during bottom-up parsing. The nor-
malized acoustic probabilities from the acoustic rec-
ognizer are included in this calculation.

α̂(N i
j,k) (4)

=
∑

i,l,q,r

fwd(T q
i,j)p(N i|T q)p(Tr|N i)bkwd(T r

k,l)

The outside probability is approximated with a
bitag model and the standard tag/category bound-
ary model (Caraballo and Charniak, 1998; Hall and
Johnson, 2003). Equation 4 presents the approx-
imation to the outside probability. Part-of-speech
tags T q and T r are the candidate tags to the left
and right of the constituent Ni

j,k. The fwd() and
bkwd() functions are the HMM forward and back-
ward probabilities calculated over a lattice con-
taining the part-of-speech tag, the word, and the
acoustic scores from the word-lattice to the left and
right of the constituent, respectively. p(Ni|T q) and
p(Tr|N i) are the boundary statistics which are esti-
mated from training data (details of this model can
be found in (Hall and Johnson, 2003)).

FOM(N i
j,k) = α̂(N i

j,k)β(N i
j,k)η

C(j, k) (5)

The best-first search employed by the first stage
parser uses the FOM defined in Equation 5, where
η is a normalization factor based on path length
C(j, k). The normalization factor prevents small
constituents from consistently being assigned a

2A chart edge Ni
j,k indicates a grammar category Ni can

be constructed from nodes j to k.
3An alternative to the inside and outside probabilities are

the Viterbi inside and outside probabilities (Goldwater et al.,
1998; Hall and Johnson, 2003).

higher probability than larger constituents (Goldwa-
ter et al., 1998).

Although this heuristic works well for directing
the parser towards likely parses over a string, it
is not an ideal model for pruning the word-lattice.
First, the outside approximation of this FOM is
based on a linear part-of-speech tag model (the
bitag). Such a simple syntactic model is unlikely
to provide realistic information when choosing a
word-lattice path to consider. Second, the model is
prone to favoring subsets of the word-lattice caus-
ing it to posit additional parse trees for the favored
sublattice rather than exploring the remainder of the
word-lattice. This second point is the primary moti-
vation for the attention shifting technique presented
in the next section.

3 Attention shifting4

We explore a modification to the multi-stage parsing
algorithm that ensures the first stage parser posits
at least one parse for each path in the word-lattice.
The idea behind this is to intermittently shift the at-
tention of the parser to unexplored parts of the word
lattice.

Identify
Used Edges

Clear Agenda/
Add Edges for 
Unused Words

Is Agenda
Empty? no

Continue 
Multi-stage

Parsing

yes

PCFG
Word-lattice

Parser

Figure 5: Attention shifting parser.

Figure 5 depicts the attention shifting first stage
parsing procedure. A used edge is a parse edge that
has non-zero outside probability. By definition of

4The notion of attention shifting is motivated by the work on
parser FOM compensation presented in (Blaheta and Charniak,
1999).



the outside probability, used edges are constituents
that are part of a complete parse; a parse is com-
plete if there is a root category label (e.g., S for sen-
tence) that spans the entire word-lattice. In order to
identify used edges, we compute the outside prob-
abilities for each parse edge (efficiently computing
the outside probability of an edge requires that the
inside probabilities have already been computed).

In the third step of this algorithm we clear the
agenda, removing all partial analyses evaluated by
the parser. This forces the parser to abandon analy-
ses of parts of the word-lattice for which complete
parses exist. Following this, the agenda is popu-
lated with edges corresponding to the unused words,
priming the parser to consider these words. To en-
sure the parser builds upon at least one of these
unused edges, we further modify the parsing algo-
rithm:

• Only unused edges are added to the agenda.

• When building parses from the bottom up, a
parse is considered complete if it connects to a
used edge.

These modifications ensure that the parser focuses
on edges built upon the unused words. The sec-
ond modification ensures the parser is able to de-
termine when it has connected an unused word with
a previously completed parse. The application of
these constraints directs the attention of the parser
towards new edges that contribute to parse anal-
yses covering unused words. We are guaranteed
that each iteration of the attention shifting algorithm
adds a parse for at least one unused word, meaning
that it will take at most |A| iterations to cover the en-
tire lattice, where A is the set of word-lattice arcs.
This guarantee is trivially provided through the con-
straints just described. The attention-shifting parser
continues until there are no unused words remain-
ing and each parsing iteration runs until it has found
a complete parse using at least one of the unused
words.

As with multi-stage parsing, an adjustable param-
eter determines how much overparsing to perform
on the initial parse. In the attention shifting algo-
rithm an additional parameter specifies the amount
of overparsing for each iteration after the first. The
new parameter allows for independent control of the
attention shifting iterations.

After the attention shifting parser populates a
parse chart with parses covering all paths in the
lattice, the multi-stage parsing algorithm performs
additional pruning based on the probability of the
parse edges (the product of the inside and outside

probabilities). This is necessary in order to con-
strain the size of the hypothesis set passed on to the
second stage parsing model.

The Charniak lexicalized syntactic language
model effectively splits the number of parse states
(an edges in a PCFG parser) by the number of
unique contexts in which the state is found. These
contexts include syntactic structure such as parent
and grandparent category labels as well as lexical
items such as the head of the parent or the head of a
sibling constituent (Charniak, 2001). State splitting
on this level causes the memory requirement of the
lexicalized parser to grow rapidly.

Ideally, we would pass all edges on to the sec-
ond stage, but due to memory limitations, pruning
is necessary. It is likely that edges recently discov-
ered by the attention shifting procedure are pruned.
However, the true PCFG probability model is used
to prune these edges rather than the approximation
used in the FOM. We believe that by considering
parses which have a relatively high probability ac-
cording to the combined PCFG and acoustic models
that we will include most of the analyses for which
the lexicalized parser assigns a high probability.

4 Experiments

The purpose of attention shifting is to reduce the
amount of work exerted by the first stage PCFG
parser while maintaining the same quality of lan-
guage modeling (in the multi-stage system). We
have performed a set of experiments on the NIST
’93 HUB–1 word-lattices. The HUB–1 is a collec-
tion of 213 word-lattices resulting from an acoustic
recognizer’s analysis of speech utterances. Profes-
sional readers reading Wall Street Journal articles
generated the utterances.

The first stage parser is a best-first PCFG parser
trained on sections 2 through 22, and 24 of the Penn
WSJ treebank (Marcus et al., 1993). Prior to train-
ing, the treebank is transformed into speech-like
text, removing punctuation and expanding numer-
als, etc.5 Overparsing is performed using an edge
pop6 multiplicative factor. The parser records the
number of edge pops required to reach the first com-
plete parse. The parser continues to parse a until
multiple of the number of edge pops required for
the first parse are popped off the agenda.

The second stage parser used is a modified ver-
sion of the Charniak language modeling parser de-
scribed in (Charniak, 2001). We trained this parser

5Brian Roark of AT&T provided a tool to perform the
speech normalization.

6An edge pop is the process of the parser removing an edge
from the agenda and placing it in the parse chart.



on the BLLIP99 corpus (Charniak et al., 1999); a
corpus of 30million words automatically parsed us-
ing the Charniak parser (Charniak, 2000).

In order to compare the work done by the n–best
reranking technique to the word-lattice parser, we
generated a set of n–best lattices. 50–best lists were
extracted using the Chelba A* decoder7. A 50–
best lattice is a sublattice of the acoustic lattice that
generates only the strings found in the 50–best list.
Additionally, we provide the results for parsing the
full acoustic lattices (although these work measure-
ments should not be compared to those of n–best
reranking).

We report the amount of work, shown as the
cumulative # edge pops, the oracle WER for the
word-lattices after first stage pruning, and the WER
of the complete multi-stage parser. In all of the
word-lattice parsing experiments, we pruned the set
of posited hypothesis so that no more than 30,000
local-trees are generated8. We chose this thresh-
old due to the memory requirements of the sec-
ond stage parser. Performing pruning at the end of
the first stage prevents the attention shifting parser
from reaching the minimum oracle WER (most no-
table in the full acoustic word-lattice experiments).
While the attention-shifting algorithm ensures all
word-lattice arcs are included in complete parses,
forward-backward pruning, as used here, will elim-
inate some of these parses, indirectly eliminating
some of the word-lattice arcs.

To illustrate the need for pruning, we computed
the number of states used by the Charniak lexi-
calized syntactic language model for 30,000 local
trees. An average of 215 lexicalized states were
generated for each of the 30,000 local trees. This
means that the lexicalized language model, on av-
erage, computes probabilities for over 6.5 million
states when provided with 30,000 local trees.

Model # edge pops O-WER WER
n–best (Charniak) 2.5 million 7.75 11.8
100x LatParse 3.4 million 8.18 12.0
10x AttShift 564,895 7.78 11.9

Table 2: Results for n–best lists and n–best lattices.

Table 2 shows the results for n–best list rerank-
ing and word-lattice parsing of n–best lattices.
We recreated the results of the Charniak language
model parser used for reranking in order to measure
the amount of work required. We ran the first stage
parser with 4-times overparsing for each string in

7The n–best lists were provided by Brian Roark (Roark,
2001)

8A local-tree is an explicit expansion of an edge and its chil-
dren. An example local tree is NP3,8 → DT3,4 NN4,8.

the n–best list. The LatParse result represents run-
ning the word-lattice parser on the n–best lattices
performing 100–times overparsing in the first stage.
The AttShift model is the attention shifting parser
described in this paper. We used 10–times overpars-
ing for both the initial parse and each of the attention
shifting iterations. When run on the n–best lattice,
this model achieves a comparable WER, while re-
ducing the amount of parser work sixfold (as com-
pared to the regular word-lattice parser).

Model # edge pops O-WER WER
acoustic lats N/A 3.26 N/A
100x LatParse 3.4 million 5.45 13.1
10x AttShift 1.6 million 4.17 13.1

Table 3: Results for acoustic lattices.

In Table 3 we present the results of the word-
lattice parser and the attention shifting parser when
run on full acoustic lattices. While the oracle WER
is reduced, we are considering almost half as many
edges as the standard word-lattice parser. The in-
creased size of the acoustic lattices suggests that it
may not be computationally efficient to consider the
entire lattice and that an additional pruning phase is
necessary.

The most significant constraint of this multi-stage
lattice parsing technique is that the second stage
process has a large memory requirement. While the
attention shifting technique does allow the parser to
propose constituents for every path in the lattice, we
prune some of these constituents prior to performing
analysis by the second stage parser. Currently, prun-
ing is accomplished using the PCFG model. One
solution is to incorporate an intermediate pruning
stage (e.g., lexicalized PCFG) between the PCFG
parser and the full lexicalized model. Doing so will
relax the requirement for aggressive PCFG pruning
and allows for a lexicalized model to influence the
selection of word-lattice paths.

5 Conclusion
We presented a parsing technique that shifts the at-
tention of a word-lattice parser in order to ensure
syntactic analyses for all lattice paths. Attention
shifting can be thought of as a meta-process around
the first stage of a multi-stage word-lattice parser.
We show that this technique reduces the amount of
work exerted by the first stage PCFG parser while
maintaining comparable language modeling perfor-
mance.

Attention shifting is a simple technique that at-
tempts to make word-lattice parsing more efficient.
As suggested by the results for the acoustic lattice
experiments, this technique alone is not sufficient.



Solutions to improve these results include modify-
ing the first-stage grammar by annotating the cat-
egory labels with local syntactic features as sug-
gested in (Johnson, 1998) and (Klein and Manning,
2003) as well as incorporating some level of lexical-
ization. Improving the quality of the parses selected
by the first stage should reduce the need for gen-
erating such a large number of candidates prior to
pruning, improving efficiency as well as overall ac-
curacy. We believe that attention shifting, or some
variety of this technique, will be an integral part of
efficient solutions for word-lattice parsing.
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