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Abstract

This paper discusses the supervised learn-
ing of morphology using stochastic trans-
ducers, trained using the Expectation-
Maximization (EM) algorithm. Two ap-
proaches are presented: first, using the
transducers directly to model the process,
and secondly using them to define a sim-
ilarity measure, related to the Fisher ker-
nel method (Jaakkola and Haussler, 1998),
and then using a Memory-Based Learn-
ing (MBL) technique. These are evaluated
and compared on data sets from English,
German, Slovene and Arabic.

1 Introduction

Finite-state methods are in large part adequate to
model morphological processes in many languages.
A standard methodology is that of two-level mor-
phology (Koskenniemi, 1983) which is capable of
handling the complexity of Finnish, though it needs
substantial extensions to handle non-concatenative
languages such as Arabic (Kiraz, 1994). These mod-
els are primarily concerned with the mapping from
deep lexical strings to surface strings, and within
this framework learning is in general difficult (Itai,
1994). In this paper I present algorithms for learn-
ing the finite-state transduction between pairs of un-
inflected and inflected words. – supervised learning
of morphology. The techniques presented here are,
however, applicable to learning other types of string
transductions.

Memory-based techniques, based on principles of
non-parametric density estimation, are a powerful
form of machine learning well-suited to natural lan-
guage tasks. A particular strength is their ability to
model both general rules and specific exceptions in
a single framework (van den Bosch and Daelemans,
1999).

However they have generally only been used in
supervised learning techniques where a class label or
tag has been associated to each feature vector. Given
these manual or semi-automatic class labels, a set of
features and a pre-defined distance function new in-
stances are classified according to the class label of
the closest instance. However these approaches are
not a complete solution to the problem of learning
morphology, since they do not directly produce the
transduction. The problem must first be converted
into an appropriate feature-based representation and
classified in some way. The techniques presented
here operate directly on sequences of atomic sym-
bols, using a much less articulated representation,
and much less input information.

2 Stochastic Transducers

It is possible to apply the EM algorithm to learn the
parameters of stochastic transducers, (Ristad, 1997;
Casacuberta, 1995; Clark, 2001a). (Clark, 2001a)
showed how this approach could be used to learn
morphology by starting with a randomly initialized
model and using the EM algorithm to find a local
maximum of the joint probabilities over the pairs of
inflected and uninflected words. In addition rather
than using the EM algorithm to optimize the joint
probability it would be possible to use a gradient de-
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scent algorithm to maximize the conditional proba-
bility.

The models used here are Stochastic Non-
Deterministic Finite-State Transducers (FST), or
Pair Hidden Markov Models (Durbin et al., 1998),
a name that emphasizes the similarity of the train-
ing algorithm to the well-known Forward-Backward
training algorithm for Hidden Markov Models.

Instead of outputting symbols in a single stream,
however, as in normal Hidden Markov Models they
output them on two separate streams, the left and
right streams. In general we could have different
left and right alphabets; here we assume they are the
same. At each transition the FST may output the
same symbol on both streams, a symbol on the left
stream only, or a symbol on the right stream only. I
call these ����� , ����� and ����� outputs respectively. For
each state � the sum of all these output parameters
over the alphabet 	 must be one.
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Since we are concerned with finite strings rather
than indefinite streams of symbols, we have in ad-
dition to the normal initial state � � , an explicit end
state � � , such that the FST terminates when it enters
this state. The FST then defines a joint probabil-
ity distribution on pairs of strings from the alphabet.
Though we are more interested in stochastic trans-
ductions, which are best represented by the condi-
tional probability of one string given the other, it is
more convenient to operate with models of the joint
probability, and then to derive the conditional prob-
ability as needed later on.

It is possible to modify the normal dynamic-
programming training algorithm for HMMs, the
Baum-Welch algorithm (Baum and Petrie, 1966) to
work with FSTs as well. This algorithm will maxi-
mize the joint probability of the training data.

We define the forward and backward proba-
bilities as follows. Given two strings � � � ! ! ! �#"
and $ � � ! ! ! $�% we define the forward probabilities&('��*) ��+ � as the probability that it will start from
� � and output � � � ! ! !,� �.- on the left stream, and
$ � � ! ! !�� $�/ on the right stream and be in state � , and
the backward probabilities 0 ' �*) ��+ � as the probability
that starting from state � it will output �1-32 � � ! ! !,� �4" ,

on the right and $,/52 � � ! ! !�� $�% on the left and then
terminate, ie end in state � � .

We can calculate these using the following recur-
rence relations:
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where, in these models, ������� �4- � $�/,� is zero un-
less � - is equal to $ / . Instead of the normal two-
dimensional trellis discussed in standard works on
HMMs, which has one dimension corresponding to
the current state and one corresponding to the posi-
tion, we have a three-dimensional trellis, with a di-
mension for the position in each string. With these
modifications, we can use all of the standard HMM
algorithms. In particular, we can use this as the ba-
sis of a parameter estimation algorithm using the
expectation-maximization theorem. We use the for-
ward and backward probabilities to calculate the ex-
pected number of times each transition will be taken;
at each iteration we set the new values of the parame-
ters to be the appropriately normalized sums of these
expectations.

Given a FST, and a string � , we often need to find
the string $ that maximizes ; � � � $A� . This is equiv-
alent to the task of finding the most likely string
generated by a HMM, which is NP-hard (Casacu-
berta and de la Higuera, 2000), but it is possible
to sample from the conditional distribution ; � $ � �B� ,
which allows an efficient stochastic computation. If
we consider only what is output on the left stream,
the FST is equivalent to a HMM with null transitions
corresponding to the �,��� transitions of the FST. We
can remove these using standard techniques and then
use this to calculate the left backward probabilities



for a particular string � : 0��' �*) � defined as the prob-
ability that starting from state � the FST generates
�.-32 � � ! ! !�� �#" on the left and terminates. Then if one
samples from the FST, but weights each transition by
the appropriate left backward probability, it will be
equivalent to sampling from the conditional distri-
bution of

� � $ � �B� . We can then find the string $ that
is most likely given � , by generating randomly from
; � $ � �B� . After we have generated a number of strings,
we can sum ; � $ � �1� for all the observed strings; if the
difference between this sum and 1 is less than the
maximum value of ; � $ � �1� we know we have found
the most likely $ . In practice, the distributions we
are interested in often have a $ with ; � $ � �1����� !�� ; in
this case we immediately know that we have found
the maximum.

We then model the morphological process as a
transduction from the lemma form to the inflected
form, and assume that the model outputs for each
input, the output with highest conditional or joint
probability with respect to the model. There are a
number of reasons why this simple approach will
not work: first, for many languages the inflected
form is lexically not phonologically specified and
thus the model will not be able to identify the cor-
rect form; secondly, modelling all of the irregular
exceptions in a single transduction is computation-
ally intractable at the moment. One way to improve
the efficiency is to use a mixture of models as dis-
cussed in (Clark, 2001a), each corresponding to a
morphological paradigm. The productivity of each
paradigm can be directly modelled, and the class of
each lexical item can again be memorized.

There are a number of criticisms that can be made
of this approach.

	 Many of the models produced merely memo-
rize a pair of strings – this is extremely ineffi-
cient.

	 Though the model correctly models the produc-
tivity of some morphological classes, it mod-
els this directly. A more satisfactory approach
would be to have this arise naturally as an emer-
gent property of other aspects of the model.

	 These models may not be able to account for
some psycho-linguistic evidence that appears
to require some form of proximity or similarity.

In the next section I shall present a technique that
addresses these problems.

3 Fisher Kernels and Information
Geometry

The method used is a simple application of the infor-
mation geometry approach introduced by (Jaakkola
and Haussler, 1998) in the field of bio-informatics.
The central idea is to use a generative model to ex-
tract finite-dimensional features from a symbol se-
quence. Given a generative model for a string, one
can use the sufficient statistics of those generative
models as features. The vector of sufficient statis-
tics can be thought of as a finite-dimensional rep-
resentation of the sequence in terms of the model.
This transformation from an unbounded sequence of
atomic symbols to a finite-dimensional real vector is
very powerful and allows the use of Support Vec-
tor Machine techniques for classification. (Jaakkola
and Haussler, 1998) recommend that instead of us-
ing the sufficient statistics, that the Fisher scores are
used, together with an inner product derived from
the Fisher information matrix of the model. The
Fisher scores are defined for a data point 
 and a
particular model as

� -� �
������ ; � 
���� � � - (1)

The partial derivative of the log likelihood is easy
to calculate as a byproduct of the E-step of the EM
algorithm, and has the value for HMMs (Jaakkola et
al., 2000) of

� -� �
��� � - � 
��

��-
9 ��� ��/ � 
�� (2)

where
� - is the indicator variable for the parameter) , and ��/ is the indicator value for the state + where� - leaves state + ; the last term reflects the constraint

that the sum of the parameters must be one.
The kernel function is defined as

� � 
 � � ��� � ��!#" �$ �&%
(3)

where ! $ is the Fisher information matrix.
This kernel function thus defines a distance be-

tween elements,
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 � � � � � � �#� � ��� �+*-, (4)



This distance in the feature space then defines a
pseudo-distance in the example space.

The name information geometry which is some-
times used to describe this approach derives from
a geometrical interpretation of this kernel. For a
parametric model with � free parameters, the set of
all these models will form a smooth � -dimensional
manifold in the space of all distributions. The curva-
ture of this manifold can be described by a Rieman-
nian tensor – this tensor is just the expected Fisher
information for that model. It is a tensor because
it transforms properly when the parametrization is
changed.

In spite of this compelling geometric explanation,
there are difficulties with using this approach di-
rectly. First, the Fisher information matrix cannot
be calculated directly, and secondly in natural lan-
guage applications, unlike in bio-informatic applica-
tions we have the perennial problem of data sparsity,
which means that unlikely events occur frequently.
This means that the scaling in the Fisher scores gives
extremely high weights to these rare events, which
can skew the results. Accordingly this work uses the
unscaled sufficient statistics. This is demonstrated
below.

4 Details

Given a transducer that models the transduction
from uninflected to inflected words, we can ex-
tract the sufficient statistics from the model in two
ways. We can consider the statistics of the joint
model ; � � � $ ��� � or the statistics of the conditional
model ; � $ � � � � � . Here we have used the condi-
tional model, since we are interested primarily in the
change of the stem, and not the parts of the stem that
remain unchanged. It is thus possible to use either
the features of the joint model or of the conditional
model, and it is also possible to either scale the fea-
tures or not, by dividing by the parameter value as
in Equation 2. The second term in Equation 2 cor-
responding to the normalization can be neglected.
We thus have four possible features that are com-
pared on one of the data sets in Table 4. Based on
the performance here we have chosen the unscaled
conditional sufficient statistics for the rest of the ex-
periments presented here, which are calculated thus:

� - ��� � � $ � � � � � � - ��� � � $ ��� 9 ��� � - � ��� (5)

$ ; � $ � �B� '
Closest

6pl3Id 0.313 1.46 pl3 pl3d
6pl3d 0.223 0.678 s6pl3 s6pl3d
6pld 0.0907 1.36 s6pl3 s6pl3d
6pl3It 0.0884 1.67 p6f p6ft
6pl3t 0.0632 1.33 p6f p6ft

Table 1: Example of the MBL technique for the past
tense of apply (6pl3). This example shows that the
most likely transduction is the suffix Id, which is in-
correct, but the MBL approach gives the correct re-
sult in line 2.

Given an input string � we want to find the string
$ such that the pair � � $ is very close to some ele-
ment of the training data. We can do this in a num-
ber of different ways. Clearly if � is already in the
training set then the distance will be minimized by
choosing $ to be one of the outputs that is stored for
input $ ; the distance in this case will be zero. Other-
wise we sample repeatedly (here we have taken 100
samples) from the conditional distribution of each of
the submodels. This in practice seems to give good
results, though there are more principled criteria that
could be applied.

We give a concrete example using the LING En-
glish past tense data set described below. Given an
unseen verb in its base form, for example apply, in
phonetic transcription 6pl3, we generate 100 sam-
ples from the conditional distribution. The five most
likely of these are shown in Table 1, together with
the conditional probability, the distance to the clos-
est example and the closest example.

We are using a � -nearest-neighbor rule with � �
� , since there are irregular words that have com-
pletely idionsyncratic inflected forms. It would be
possible to use a larger value of � , which might help
with robustness, particularly if the token frequency
was also used, since irregular words tend to be more
common.

In summary the algorithm proceeds as follows:

	 We train a small Stochastic Transducer on the
pairs of strings using the EM algorithm.

	 We derive from this model a distance function
between two pairs of strings that is sensitive to
the properties of this transduction.



	 We store all of the observed pairs of strings.

	 Given a new word, we sample repeatedly from
the conditional distribution to get a set of pos-
sible outputs.

	 We select the output such that the input/output
pair is closest to one of the oberved pairs.

5 Experiments

5.1 Data Sets

The data sets used in the experiments are summa-
rized in Table 2. A few additional comments follow.

LING These are in UNIBET phonetic transcription.

EPT In SAMPA transcription. The training data
consists of all of the verbs with a non-zero
lemma spoken frequency in the 1.3 million
word CO-BUILD corpus. The test data consists
of all the remaining verbs. This is intended to
more accurately reflect the situation of an infant
learner.

GP This is a data set of pairs of German nouns
in singular and plural form prepared from the
CELEX lexical database.

NAKISA This is a data set prepared for (Plunkett
and Nakisa, 1997). Its consists of pairs of sin-
gular and plural nouns, in Modern Standard
Arabic, randomly selected from the standard
Wehr dictionary in a fully vocalized ASCII
transcription. It has a mixture of broken and
sound plurals, and has been simplified in the
sense that rare forms of the broken plural have
been removed.

5.2 Evaluation

Table 4 shows a comparison of the four possible fea-
ture sets on the Ling data. We used 10-fold cross
validation on all of these data sets apart from the
EPT data set, and the SLOVENE data set; in these
cases we averaged over 10 runs with different ran-
dom seeds. We compared the performance of the
models evaluated using them directly to model the
transduction using the conditional likelihood (CL)
and using the MBL approach with the unscaled con-
ditional features. Based on these results, we used

Unscaled Scaled

Joint 75.3 (3.5) 78.2 (3.6)
Conditional 85.8 (2.4) 23.8 (3.6)

Table 4: Comparison of different metrics on the
LING data set with 10 fold cross validation, 1 10-
state model trained with 10 iterations. Mean in %
with standard deviation in brackets.

the unscaled conditional features; subsequent exper-
iments confirmed that these performed best.

The results are summarized in Table 3. Run-times
for these experiments were from about 1 hour to 1
week on a current workstation. There are a few re-
sults to which these can be directly compared; on
the LING data set, (Mooney and Califf, 1995) re-
port figures of approximately 90% using a logic pro-
gram that learns decision lists for suffixes. For the
Arabic data sets, (Plunkett and Nakisa, 1997) do
not present results on modelling the transduction
on words not in the training set; however they re-
port scores of 63.8% (0.64%) using a neural network
classifier. The data is classified according to the type
of the plural, and is mapped onto a syllabic skele-
ton, with each phoneme represented as a bundle of
phonological features. for the data set SLOVENE,
(Manandhar et al., 1998) report scores of 97.4% for
FOIDL and 96.2% for CLOG. This uses a logic pro-
gramming methodology that specifically codes for
suffixation and prefixation alone. On the very large
and complex German data set, we score 70.6%; note
however that there is substantial disagreement be-
tween native speakers about the correct plural of
nonce words (Köpcke, 1988). We observe that the
MBL approach significantly outperforms the condi-
tional likelihood method over a wide range of ex-
periments; the performance on the training data is a
further difference, the MBL approach scoring close
to 100%, whereas the CL approach scores only a lit-
tle better than it does on the test data. It is certainly
possible to make the conditional likelihood method
work rather better than it does in this paper by pay-
ing careful attention to convergence criteria of the
models to avoid overfitting, and by smoothing the
models carefully. In addition some sort of model
size selection must be used. A major advantage of
the MBL approach is that it works well without re-



Label Language Source Description Total Size Train Test

LING English (Ling, 1994) Past tense 1394 1251 140
EPT English CELEX Past tense 5324 1957 3367
GP German CELEX noun plural 16970 15282 1706
NAKISA Arabic (Plunkett and Nakisa, 1997) plural 859 773 86
MCCARTHY Arabic (McCarthy and Prince, 1990) broken plural 3261 2633 293
SLOVENE Slovene (Manandhar et al., 1998) genitive nouns 921 608 313

Table 2: Summary of the data sets.

Data Set CV Models States Iterations CL MBLSS

LING 10 1 10 10 61.3 (4.0) 85.8 (2.4)
10 2 10 10 72.1 (2.0) 79.3 (3.3)

EPT No 1 10 10 59.5 (9.4) 93.1 (2.1)
NAKISA 10 1 10 10 0.6 (0.8) 15.4 (3.8)

10 5 10 10 9.2 (2.9) 31.0 (6.1)
10 5 10 50 11.3 (3.3) 35.0 (5.3)

GP1 10 1 10 10 42.5 (0.8) 70.6 (0.8)
MCCARTHY 10 5 10 10 1.6 (0.6) 16.7 (1.8)
SLOVENE No 1 10 10 63.6 (28.6) 98.9 (0.8)

Table 3: Results. CV is the degree of cross-validation, Models determines how many components there
are in the mixture, CL gives the percentage correct using the conditional likelihood evaluation and MBLSS,
using the Memory-based learning with sufficient statistics, with the standard deviation in brackets.

quiring extensive tuning of the parameters.
In terms of the absolute quality of the results, this

depends to a great extent on how phonologically
predictable the process is. When it is completely
predictable, as in SLOVENE the performance ap-
proaches 100%; similarly a large majority of the
less frequent words in English are completely regu-
lar, and accordingly the performance on EPT is very
good. However in other cases, where the morphol-
ogy is very irregular the performance will be poor.
In particular with the Arabic data sets, the NAKISA
data set is very small compared to the complexity
of the process being learned, and the MCCARTHY
data set is rather noisy, with a large number of er-
roneous transcriptions. With the German data set,
though it is quite irregular, and the data set is not
frequency-weighted, so the frequent irregular words
are not more likely to be in the training data, there is
a lot of data, so the algorithm performs quite well.

5.3 Cognitive Modelling

In addition to these formal evaluations we exam-
ined the extent to which this approach can account

for some psycho-linguistic data, in particular the
data collected by (Prasada and Pinker, 1993) on
the mild productivity of irregular forms in the En-
glish past tense. Space does not permit more than a
rather crude summary. They prepared six data sets
of 10 pairs of nonce words together with regular
and irregular plurals of them: a sequence of three
data sets that were similar to, but progressively fur-
ther away from sets of irregular verbs (prototypical-
intermediate- and distant- pseudoirregular – PPI IPI
and DPI), and another set that were similar to sets
of regular verbs (prototypical-, intermediate- and
distant- pseudoregular PPR, IPR and DPR). Thus
the first data sets contained words like spling which
would have a vowel change form of splung and a
regular suffixed form of splinged, and the second
data sets contained words like smeeb with regular
smeebed and irregular smeb. They asked subjects
for their opinions on the acceptabilities of the stems,
and of the regular (suffixed) and irregular (vowel
change) forms. A surprising result of this was that
subtracting the rating of the past tense form from
the rating of the stem form (in order to control for



the varying acceptability of the stem) gave differ-
ent results for the two data sets. With the pseudo-
irregular forms the irregular form got less acceptable
as the stems became less like the most similar irreg-
ular stems, but with the pseudo-regulars the regular
form got more acceptable. This was taken as evi-
dence for the presence of two qualitatively distinct
modules in human morphological processing.

In an attempt to see whether the models presented
here could account for these effects, we transcribed
the data into UNIBET transcription and tested it
with the models prepared for the LING data set. We
calculated the average negative log probability for
each of the six data sets in 3 ways: first we cal-
culated the probability of the stem alone to model
the acceptability of the stem; secondly we calcu-
lated the conditional probability of the regular (suf-
fixed form), and thirdly we calculated the condi-
tional probability of the irregular (vowel change)
form of the word. Then we calculated the differ-
ence between the figures for the appropriate past
tense form from the stem form. This is unjustifiable
in terms of probabilities but seems the most natu-
ral way of modelling the effects reported in (Prasada
and Pinker, 1993). These results are presented in Ta-
ble 5. Interestingly we observed the same effect: a
decrease in “acceptability” for irregulars, as they be-
came more distant, and the opposite effect for regu-
lars. In our case though it is clear why this happens
– the probability of the stem decreases rapidly, and
this overwhelms the mild decrease in the conditional
probability.

6 Discussion

The productivity of the regular forms is an emergent
property of the system. This is an advantage over
previous work using the EM algorithm with SFST,
which directly specified the productivity as a param-
eter.

6.1 Related work

Using the EM algorithm to learn stochastic transduc-
ers has been known for a while in the biocomputing
field as a generalization of edit distance (Allison et
al., 1992). The Fisher kernel method has not been
used in NLP to our knowledge before though we
have noted two recent papers that have some points

of similarity. First, (Kazama et al., 2001) derive a
Maximum Entropy tagger, by training a HMM and
using the most likely state sequence of the HMM as
features for the Maximum Entropy tagging model.
Secondly, (van den Bosch, 2000) presents an ap-
proach that is again similar since it uses rules, in-
duced using a symbolic learning approach as fea-
tures in a nearest-neighbour approach.

7 Conclusion

We have presented some algorithms for the super-
vised learning of morphology using the EM algo-
rithm applied to non-deterministic finite-state trans-
ducers.

We have shown that a novel Memory-based learn-
ing technique inspired by the Fisher kernel method
produces high performance in a wide range of lan-
guages without the need for fine-tuning of parame-
ters or language specific representations, and that it
can account for some psycho-linguistic data. These
techniques can also be applied to the unsupervised
learning of morphology, as described in (Clark,
2001b).
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