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Abstract 
Reducing language model (LM) size is a 
critical issue when applying a LM to 
realistic applications which have memory 
constraints. In this paper, three measures 
are studied for the purpose of LM 
pruning. They are probability, rank, and 
entropy. We evaluated the performance of 
the three pruning criteria in a real 
application of Chinese text input in terms 
of character error rate (CER). We first 
present an empirical comparison, showing 
that rank performs the best in most cases. 
We also show that the high-performance 
of rank lies in its strong correlation with 
error rate. We then present a novel 
method of combining two criteria in 
model pruning. Experimental results 
show that the combined criterion 
consistently leads to smaller models than 
the models pruned using either of the 
criteria separately, at the same CER. 

1 Introduction 

Backoff n-gram models for applications such as 
large vocabulary speech recognition are typically 
trained on very large text corpora.  An 
uncompressed LM is usually too large for practical 
use since all realistic applications have memory 
constraints.  Therefore, LM pruning techniques are 
used to produce the smallest model while keeping 
the performance loss as small as possible.   

Research on backoff n-gram model pruning has 
been focused on the development of the pruning 
criterion, which is used to estimate the performance 
loss of the pruned model. The traditional count 
cutoff method (Jelinek, 1990) used a pruning 

criterion based on absolute frequency while recent 
research has shown that better pruning criteria can 
be developed based on more sophisticated measures 
such as perplexity.  

In this paper, we study three measures for 
pruning backoff n-gram models. They are 
probability, rank and entropy. We evaluated the 
performance of the three pruning criteria in a real 
application of Chinese text input (Gao et al., 2002) 
through CER. We first present an empirical 
comparison, showing that rank performs the best in 
most cases. We also show that the high-performance 
of rank lies in its strong correlation with error rate. 
We then present a novel method of combining two 
pruning criteria in model pruning. Our results show 
that the combined criterion consistently leads to 
smaller models than the models pruned using either 
of the criteria separately. In particular, the 
combination of rank and entropy achieves the 
smallest models at a given CER. 

The rest of the paper is structured as follows: 
Section 2 discusses briefly the related work on 
backoff n-gram pruning.  Section 3 describes in 
detail several pruning criteria. Section 4 presents an 
empirical comparison of pruning criteria using a 
Chinese text input system. Section 5 proposes our 
method of combining two criteria in model pruning. 
Section 6 presents conclusions and our future work. 

2 Related Work 

N-gram models predict the next word given the 
previous n-1 words by estimating the conditional 
probability P(wn|w1…wn-1). In practice, n is usually 
set to 2 (bigram), or 3 (trigram). For simplicity, we 
restrict our discussion to bigrams P(wn| wn-1), but our 
approaches can be extended to any n-gram. 

The bigram probabilities are estimated from the 
training data by maximum likelihood estimation 
(MLE). However, the intrinsic problem of MLE is 
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that of data sparseness: MLE leads to zero-value 
probabilities for unseen bigrams. To deal with this 
problem, Katz (1987) proposed a backoff scheme. 
He estimates the probability of an unseen bigram by 
utilizing unigram estimates as follows 
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where c(wi-1wi) is the frequency of word pair (wi-1wi) 
in the training data, Pd represents the Good-Turing 
discounted estimate for seen word pairs, and α(wi-1) 
is a normalization factor. 

Due to the memory limitation in realistic 
applications, only a finite set of word pairs have 
conditional probability P(wi|wi-1) explicitly 
represented in the model. The remaining word pairs 
are assigned a probability by backoff (i.e. unigram 
estimates). The goal of bigram pruning is to remove 
uncommon explicit bigram estimates P(wi|wi-1) from 
the model to reduce the number of parameters while 
minimizing the performance loss. 

The research on backoff n-gram model pruning 
can be formulated as the definition of the pruning 
criterion, which is used to estimate the performance 
loss of the pruned model. Given the pruning 
criterion, a simple thresholding algorithm for 
pruning bigram models can be described as follows: 

 
1. Select a threshold θ. 
2. Compute the performance loss due to 

pruning each bigram individually using the 
pruning criterion. 

3. Remove all bigrams with performance loss 
less than θ. 

4. Re-compute backoff weights. 
Figure 1: Thresholding algorithm for bigram 
pruning 

The algorithm in Figure 1 together with several 
pruning criteria has been studied previously 
(Seymore and Rosenfeld, 1996; Stolcke, 1998; Gao 
and Lee, 2000; etc). A comparative study of these 
techniques is presented in (Goodman and Gao, 
2000). 

In this paper, three pruning criteria will be 
studied: probability, rank, and entropy. Probability 
serves as the baseline pruning criterion. It is derived 
from perplexity which has been widely used as a LM 
evaluation measure. Rank and entropy have been 
previously used as a metric for LM evaluation in 
(Clarkson and Robinson, 2001). In the current paper, 
these two measures will be studied for the purpose of 
backoff n-gram model pruning. In the next section, 
we will describe how pruning criteria are developed 
using these two measures. 

3 Pruning Criteria  

In this section, we describe the three pruning criteria 
we evaluated. They are derived from LM evaluation 
measures including perplexity, rank, and entropy. 

The goal of the pruning criterion is to estimate the 
performance loss due to pruning each bigram 
individually. Therefore, we represent the pruning 
criterion as a loss function, denoted by LF below. 

3.1 Probability 
The probability pruning criterion is derived from 
perplexity. The perplexity is defined as 
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where N is the size of the test data. The perplexity 
can be roughly interpreted as the expected branching 
factor of the test document when presented to the 
LM. It is expected that lower perplexities are 
correlated with lower error rates. 

The method of pruning bigram models using 
probability can be described as follows: all bigrams 
that change perplexity by less than a threshold are 
removed from the model. In this study, we assume 
that the change in model perplexity of the LM can be 
expressed in terms of a weighted difference of the 
log probability estimate before and after pruning a 
bigram. The loss function of probability LFprobability, 
is then defined as 

)]|(log)|(')[log( 111 −−− −− iiiiii wwPwwPwwP , (3) 

where P(.|.) denotes the conditional probabilities 
assigned by the original model, P’(.|.) denotes the 
probabilities in the pruned model, and P(wi-1 wi) is a 
smoothed probability estimate in the original model.  

We notice that LFprobability of Equation (3) is very 
similar to that proposed by Seymore and Rosenfeld 
(1996), where the loss function is  

)]|(log)|(')[log( 111 −−− −− iiiiii wwPwwPwwN .  

Here N(wi-1wi) is the discounted frequency that 
bigram wi-1wi was observed in training. N(wi-1wi) is 
conceptually identical to P(wi-1 wi) in Equation (3). 

From Equations (2) and (3), we can see that lower 
LFprobability is strongly correlated with lower 
perplexity. However, we found that LFprobability is 
suboptimal as a pruning criterion, evaluated on CER 
in our experiments. We assume that it is largely due 
to the deficiency of perplexity as a LM performance 
measure. 

Although perplexity is widely used due to its 
simplicity and efficiency, recent researches show 
that its correlation with error rate is not as strong as 
once thought. Clarkson and Robinson (2001) 



analyzed the reason behind it and concluded that the 
calculation of perplexity is based solely on the 
probabilities of words contained within the test text, 
so it disregards the probabilities of alternative 
words, which will be competing with the correct 
word (referred to as target word below) within the 
decoder (e.g. in a speech recognition system). 
Therefore, they used other measures such as rank 
and entropy for LM evaluation. These measures are 
based on the probability distribution over the whole 
vocabulary. That is, if the test text is w1

n, then 
perplexity is based on the values of P(wi |wi-1), and 
the new measures will be based on the values of 
P(w|wi-1) for all w in the vocabulary. Since these 
measures take into account the probability 
distribution over all competing words (including the 
target word) within the decoder, they are, hopefully, 
better correlated with error rate, and expected to 
evaluate LMs more precisely than perplexity. 

3.2 Rank 
The rank of the target word w is defined as the 
word’s position in an ordered list of the bigram 
probabilities P(w|wi-1) where w∈V, and V is the 
vocabulary. Thus the most likely word (within the 
decoder at a certain time point) has the rank of one, 
and the least likely has rank |V|, where |V| is the 
vocabulary size. 

We propose to use rank for pruning as follows: all 
bigrams that change rank by less than a threshold 
after pruning are removed from the model. The 
corresponding loss function LFrank is defined as 
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where R(.|.) denotes the rank of the observed bigram 
P(wi|wi-1) in the list of bigram probabilities P(w|wi-1) 
where w∈V, before pruning, R’(.|.) is the new rank 
of it after pruning, and the summation is over all 
word pairs (wi-1wi).  k is a constant to assure that 

0)|(log])|(log[ 11 ≠−+′ −− iiii wwRkwwR . k is set to 
0.1 in our experiments. 

3.3 Entropy 
Given a bigram model, the entropy H of the 
probability distribution over the vocabulary V is 
generally given by 
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V
j ijiji wwPwwPwH 1 )|(log)|()( .  

We propose to use entropy for pruning as follows: 
all bigrams that change entropy by less than a 
threshold after pruning are removed from the model. 
The corresponding loss function LFentropy is defined 
as 
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where H is the entropy before pruning given history 
wi-1, H’ is the new entropy after pruning, and N is the 
size of the test data.  

The entropy-based pruning is conceptually 
similar to the pruning method proposed in (Stolcke, 
1998). Stolcke used the Kullback-Leibler divergence 
between the pruned and un-pruned model 
probability distribution in a given context over the 
entire vocabulary. In particular, the increase in 
relative entropy from pruning a bigram is computed 
by 
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where the summation is over all word pairs (wi-1wi).  

4 Empirical Comparison 

We evaluated the pruning criteria introduced in the 
previous section on a realistic application, Chinese 
text input.  In this application, a string of Pinyin 
(phonetic alphabet) is converted into Chinese 
characters, which is the standard way of inputting 
text on Chinese computers. This is a similar problem 
to speech recognition except that it does not include 
acoustic ambiguity. We measure performance in 
terms of character error rate (CER), which is the 
number of characters wrongly converted from the 
Pinyin string divided by the number of characters in 
the correct transcript. The role of the language 
model is, for all possible word strings that match the 
typed Pinyin string, to select the word string with the 
highest language model probability. 

The training data we used is a balanced corpus of 
approximately 26 million characters from various 
domains of text such as newspapers, novels, 
manuals, etc. The test data consists of half a million 
characters that have been proofread and balanced 
among domain, style and time.  

The back-off bigram models we generated in this 
study are character-based models. That is, the 
training and test corpora are not word-segmented. 
As a result, the lexicon we used contains 7871 single 
Chinese characters only. While word-based n-gram 
models are widely applied, we used character-based 
models for two reasons. First, pilot experiments 
show that the results of word-based and 
character-based models are qualitatively very 
similar. More importantly, because we need to build 
a very large number of models in our experiments as 
shown below, character-based models are much 
more efficient, both for training and for decoding. 



We used the absolute discount smoothing method 
for model training. 

None of the pruning techniques we consider are 
loss-less. Therefore, whenever we compare pruning 
criteria, we do so by comparing the size reduction of 
the pruning criteria at the same CER.  

Figure 2 shows how the CER varies with the 
bigram numbers in the models. For comparison, we 
also include in Figure 2 the results using count cutoff 
pruning. We can see that CER decreases as we keep 
more and more bigrams in the model. A steeper 
curve indicates a better pruning criterion.  

The main result to notice here is that the 
rank-based pruning achieves consistently the best 
performance among all of them over a wide range of 
CER values, producing models that are at 55-85% of 
the size of the probability-based pruned models with 
the same CER. An example of the detailed 
comparison results is shown in Table 1, where the 
CER is 13.8% and the value of cutoff is 1. The last 
column of Table 1 shows the relative model sizes 
with respect to the probability-based pruned model 
with the CER 13.8%.  

Another interesting result is the good 
performance of count cutoff, which is almost 
overlapping with probability-based pruning at larger 
model sizes 2 . The entropy-based pruning 
unfortunately, achieved the worst performance. 
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Figure 2: Comparison of pruning criteria 

Table 1: LM size comparison at CER 13.8% 

criterion # of bigram size (MB) % of prob

probability 774483 6.1 100.0% 

cutoff (=1) 707088 5.6 91.8% 

entropy 1167699 9.3 152.5% 

rank 512339 4.1 67.2% 

                                                      
2 The result is consistent with that reported in (Goodman 
and Gao, 2000), where an explanation was offered. 

We assume that the superior performance of 
rank-based pruning lies in the fact that rank (acting 
as a LM evaluation measure) has better correlation 
with CER. Clarkson and Robinson (2001) estimated 
the correlation between LM evaluation measures 
and word error rate in a speech recognition system. 
The related part of their results to our study are 
shown in Table 2, where r is the Pearson 
product-moment correlation coefficient, rs is the 
Spearman rank-order correlation coefficient, and T 
is the Kendall rank-order correlation coefficient. 

Table 2: Correlation of LM evaluation measures 
with word error rates (Clarkson and Robinson, 
2001) 

 r rs T 

Mean log rank 0.967 0.957 0.846

Perplexity 0.955 0.955 0.840

Mean entropy -0.799 -0.792 -0.602
Table 2 indicates that the mean log rank (i.e. 

related to the pruning criterion of rank we used) has 
the best correlation with word error rate, followed by 
the perplexity (i.e. related to the pruning criterion of 
probability we used) and the mean entropy (i.e. 
related to the pruning criterion of entropy we used), 
which support our test results. We can conclude that 
the LM evaluation measures which are better 
correlated with error rate lead to better pruning 
criteria. 

5 Combining Two Criteria 

We now investigate methods of combining pruning 
criteria described above. We begin by examining the 
overlap of the bigrams pruned by two different 
criteria to investigate which might usefully be 
combined. Then the thresholding pruning algorithm 
described in Figure 1 is modified so as to make use 
of two pruning criteria simultaneously. The problem 
here is how to find the optimal settings of the 
pruning threshold pair (each for one pruning 
criterion) for different model sizes. We show how an 
optimal function which defines the optimal settings 
of the threshold pairs is efficiently established using 
our techniques. 

5.1 Overlap 
From the abovementioned three pruning criteria, we 
investigated the overlap of the bigrams pruned by a 
pair of criteria. There are three criteria pairs. The 
overlap results are shown in Figure 3.  

We can see that the percentage of the number of 
bigrams pruned by both criteria seems to increase as 



the model size decreases, but all criterion-pairs have 
overlaps much lower than 100%. In particular, we 
find that the average overlap between probability 
and entropy is approximately 71%, which is the 
biggest among the three pairs. The pruning method 
based on the criteria of rank and entropy has the 
smallest average overlap of 63.6%. The results 
suggest that we might be able to obtain 
improvements by combining these two criteria for 
bigram pruning since the information provided by 
these criteria is, in some sense, complementary. 
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Figure 3: Overlap of selected bigrams between 
criterion pairs 

5.2 Pruning by two criteria 
In order to prune a bigram model based on two 
criteria simultaneously, we modified the 
thresholding pruning algorithm described in Figure 
1. Let lfi be the value of the performance loss 
estimated by the loss function LFi, θi be the 
threshold defined by the pruning criterion Ci. The 
modified thresholding pruning algorithm can be 
described as follows: 
 

1. Select a setting of threshold pair (θ1θ2) 
2. Compute the values of performance loss lf1 

and lf2 due to pruning each bigram 
individually using the two pruning criteria 
C1 and C2, respectively. 

3. Remove all bigrams with performance loss 
lf1 less than θ1, and lf2 less than θ2. 

4. Re-compute backoff weights. 

Figure 4: Modified thresholding algorithm for 
bigram pruning 

Now, the remaining problem is how to find the 
optimal settings of the pruning threshold pair for 
different model sizes. This seems to be a very 
tedious task since for each model size, a large 
number of settings (θ1θ2) have to be tried for finding 

the optimal ones. Therefore, we convert the problem 
to the following one: How to find an optimal 
function θ2=f(θ1) by which the optimal threshold θ2 

is defined for each threshold θ1. The function can be 
learned by pilot experiments described below. Given 
two thresholds θ1 and θ2 of pruning criteria C1 and 
C2, we try a large number of values of θ1, θ2, and 
build a large number of models pruned using the 
algorithm described in Figure 4. For each model 
size, we find an optimal setting of the threshold 
setting (θ1θ2) which results in a pruned model with 
the lowest CER. Finally, all these optimal threshold 
settings serve as the sample data, from which the 
optimal function can be learned. We found that in 
pilot experiments, a relatively small set of sample 
settings is enough to generate the function which is 
close enough to the optimal one. This allows us to 
relatively quickly search through what would 
otherwise be an overwhelmingly large search space. 

5.3 Results 
We used the same training data described in Section 
4 for bigram model training. We divided the test set 
described in Section 4 into two non-overlapped 
subsets. We performed testing on one subset 
containing 80% of the test set. We performed 
optimal function learning using the remaining 20% 
of the test set (referred to as held-out data below).  

Take the combination of rank and entropy as an 
example. An uncompressed bigram model was first 
built using all training data.  We then built a very 
large number of pruned bigram models using 
different threshold setting (θ rank θentropy), where the 
values θ rank, θentropy ∈  [3E-12, 3E-6]. By evaluating 
pruned models on the held-out data, optimal settings 
can be found. Some sample settings are shown in 
Table 3. 

Table 3: Sample optimal parameter settings for 
combination of criteria based on rank and entropy

# bigrams θ rank θentropy 
137987 8.00E-07 8.00E-09 

196809 3.00E-07 8.00E-09 

200294 3.00E-07 5.00E-09 

274434 3.00E-07 5.00E-10 

304619 8.00E-08 8.00E-09 

394300 5.00E-08 3.00E-10 

443695 3.00E-08 3.00E-10 

570907 8.00E-09 3.00E-09 

669051 5.00E-09 5.00E-10 

890664 5.00E-11 3.00E-10 



892214 5.00E-12 3.00E-10 

892257 3.00E-12 3.00E-10 

In experiments, we found that a linear regression 
model of Equation (6) is powerful enough to learn a 
function which is close enough to the optimal one.  

21 )log()log( αθαθ +×= rankentropy  (6) 

Here α1 and α2 are coefficients estimated from the 
sample settings. Optimal functions of the other two 
threshold-pair settings (θ rankθprobability) and (θ 

probabilityθentropy) are obtained similarly. They are 
shown in Table 4. 
 

Table 4. Optimal functions 

5.6)log(3.0)log( +×= rankentropy θθ  

2.6)log( =yprobabilitθ , for any rankθ  

5.3)log(7.0)log( +×= yprobabilitentropy θθ  
 

In Figure 5, we present the results using models 
pruned with all three threshold-pairs defined by the 
functions in Table 4. As we expected, in all three 
cases, using a combination of two pruning criteria 
achieves consistently better performance than using 
either of the criteria separately. In particular, using 
the combination of rank and entropy, we obtained 
the best models over a wide large of CER values. It 
corresponds to a significant size reduction of 
15-54% over the probability-based LM pruning at 
the same CER. An example of the detailed 
comparison results is shown in Table 5.  
 
 

 

Table 5: LM size comparison at CER 13.8% 

Criterion # of bigram size (MB) % of prob

Prob 1036627 8.2 100.0%

Entropy 1291000 10.2 124.4%

Rank 643411 5.1 62.2%

Prob + entropy 542124 4.28 52.2%

Prob + rank 579115 4.57 55.7%

rank + entropy 538252    4.25 51.9%
 
There are two reasons for the superior 

performance of the combination of rank and entropy. 
First, the rank-based pruning achieves very good 
performance as described in Section 4. Second, as 
shown in Section 5.1, there is a relatively small 
overlap between the bigrams chosen by these two 
pruning criteria, thus big improvement can be 
achieved through the combination. 

6 Conclusion 

The research on backoff n-gram pruning has been 
focused on the development of the pruning criterion, 
which is used to estimate the performance loss of the 
pruned model.  

This paper explores several pruning criteria for 
backoff n-gram model size reduction. Besides the 
widely used probability, two new pruning criteria 
have been developed based on rank and entropy. We 
have performed an empirical comparison of these 
pruning criteria. We also presented a thresholding 
algorithm for model pruning, in which two pruning 
criteria can be used simultaneously. Finally, we 
described our techniques of finding the optimal 
setting of the threshold pair given a specific model 
size. 

We have shown several interesting results. They 
include the confirmation of the estimation that the 
measures which are better correlated with CER for 
LM evaluation leads to better pruning criteria. Our 
experiments show that rank, which has the best 
correlation with CER, achieves the best performance 
when there is only one criterion used in bigram 
model pruning. We then show empirically that the 
overlap of the bigrams pruned by different criteria is 
relatively low. This indicates that we might obtain 
improvements through a combination of two criteria 
for bigram pruning since the information provided 
by these criteria is complementary. This hypothesis 
is confirmed by our experiments. Results show that 
using two pruning criteria simultaneously achieves 
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Figure 5: Comparison of combined pruning 
criterion performance 



better bigram models than using either of the criteria 
separately. In particular, the combination of rank 
and entropy achieves the smallest bigram models at 
the same CER. 

For our future work, more experiments will be 
performed on other language models such as 
word-based bigram and trigram for Chinese and 
English. More pruning criteria and their 
combinations will be investigated as well. 
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