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Abstract

In a language generation system, a
content planner embodies one or more
“plans” that are usually hand–crafted,
sometimes through manual analysis of
target text. In this paper, we present a
system that we developed to automati-
cally learn elements of a plan and the
ordering constraints among them. As
training data, we use semantically an-
notated transcripts of domain experts
performing the task our system is de-
signed to mimic. Given the large degree
of variation in the spoken language of
the transcripts, we developed a novel al-
gorithm to find parallels between tran-
scripts based on techniques used in
computational genomics. Our proposed
methodology was evaluated two–fold:
the learning and generalization capabil-
ities were quantitatively evaluated us-
ing cross validation obtaining a level of
accuracy of 89%. A qualitative evalua-
tion is also provided.

1 Introduction

In a language generation system, a content plan-
ner typically uses one or more “plans” to rep-
resent the content to be included in the out-
put and the ordering between content elements.
Some researchers rely on generic planners (e.g.,
(Dale, 1988)) for this task, while others use plans
based on Rhetorical Structure Theory (RST) (e.g.,
(Bouayad-Aga et al., 2000; Moore and Paris,

1993; Hovy, 1993)) or schemas (e.g., (McKe-
own, 1985; McKeown et al., 1997)). In all cases,
constraints on application of rules (e.g., plan op-
erators), which determine content and order, are
usually hand-crafted, sometimes through manual
analysis of target text.

In this paper, we present a method for learn-
ing the basic patterns contained within a plan and
the ordering among them. As training data, we
use semantically tagged transcripts of domain ex-
perts performing the task our system is designed
to mimic, an oral briefing of patient status af-
ter undergoing coronary bypass surgery. Given
that our target output is spoken language, there is
some level of variability between individual tran-
scripts. It is difficult for a human to see patterns
in the data and thus supervised learning based on
hand-tagged training sets can not be applied. We
need a learning algorithm that can discover order-
ing patterns in apparently unordered input.

We based our unsupervised learning algorithm
on techniques used in computational genomics
(Durbin et al., 1998), where from large amounts
of seemingly unorganized genetic sequences, pat-
terns representing meaningful biological features
are discovered. In our application, a transcript is
the equivalent of a sequence and we are searching
for patterns that occur repeatedly across multiple
sequences. We can think of these patterns as the
basic elements of a plan, representing small clus-
ters of semantic units that are similar in size, for
example, to the nucleus-satellite pairs of RST.1

By learning ordering constraints over these ele-

1Note, however, that we do not learn or represent inten-
tion.



age, gender, pmh, pmh, pmh, pmh, med-preop,
med-preop, med-preop, drip-preop, med-preop,
ekg-preop, echo-preop, hct-preop, procedure,
. . .

Figure 2: The semantic sequence obtained from
the transcript shown in Figure 1.

ments, we produce a plan that can be expressed
as a constraint-satisfaction problem. In this pa-
per, we focus on learning the plan elements and
the ordering constraints between them. Our sys-
tem uses combinatorial pattern matching (Rigout-
sos and Floratos, 1998) combined with clustering
to learn plan elements. Subsequently, it applies
counting procedures to learn ordering constraints
among these elements.

Our system produced a set of 24 schemata
units, that we call “plan elements”2 , and 29 order-
ing constraints between these basic plan elements,
which we compared to the elements contained in
the orginal hand-crafted plan that was constructed
based on hand-analysis of transcripts, input from
domain experts, and experimental evaluation of
the system (McKeown et al., 2000).

The remainder of this article is organized as
follows: first the data used in our experiments
is presented and its overall structure and acqui-
sition methodology are analyzed. In Section 3
our techniques are described, together with their
grounding in computational genomics. The quan-
titative and qualitative evaluation are discussed
in Section 4. Related work is presented in Sec-
tion 5. Conclusions and future work are discussed
in Section 6.

2 Our data

Our research is part of MAGIC (Dalal et al., 1996;
McKeown et al., 2000), a system that is designed
to produce a briefing of patient status after un-
dergoing a coronary bypass operation. Currently,
when a patient is brought to the intensive care
unit (ICU) after surgery, one of the residents who
was present in the operating room gives a brief-
ing to the ICU nurses and residents. Several of
these briefings were collected and annotated for
the aforementioned evaluation. The resident was

2These units can be loosely related to the concept of mes-
sages in (Reiter and Dale, 2000).

equipped with a wearable tape recorder to tape
the briefings, which were transcribed to provide
the base of our empirical data. The text was sub-
sequently annotated with semantic tags as shown
in Figure 1. The figure shows that each sentence
is split into several semantically tagged chunks.
The tag-set was developed with the assistance of
a domain expert in order to capture the different
information types that are important for commu-
nication and the tagging process was done by two
non-experts, after measuring acceptable agree-
ment levels with the domain expert (see (McK-
eown et al., 2000)). The tag-set totalled over 200
tags. These 200 tags were then mapped to 29 cat-
egories, which was also done by a domain expert.
These categories are the ones used for our current
research.

From these transcripts, we derive the sequences
of semantic tags for each transcript. These se-
quences constitute the input and working material
of our analysis, they are an average length of 33
tags per transcript (min = 13, max = 66, σ =
11.6). A tag-set distribution analysis showed that
some of the categories dominate the tag counts.
Furthermore, some tags occur fairly regularly to-
wards either the beginning (e.g., date-of-birth) or
the end (e.g., urine-output) of the transcript, while
others (e.g., intraop-problems) are spread more or
less evenly throughout.

Getting these transcripts is a highly expensive
task involving the cooperation and time of nurses
and physicians in the busy ICU. Our corpus con-
tains a total number of 24 transcripts. Therefore,
it is important that we develop techniques that can
detect patterns without requiring large amounts of
data.

3 Methods

During the preliminary analysis for this research,
we looked for techniques to deal with analysis of
regularities in sequences of finite items (semantic
tags, in this case). We were interested in devel-
oping techniques that could scale as well as work
with small amounts of highly varied sequences.

Computational biology is another branch of
computer science that has this problem as one
topic of study. We focused on motif detection
techniques as a way to reduce the complexity of
the overall setting of the problem. In biological



He is 58-year-old
age

male
gender

. History is significant for Hodgkin’s disease
pmh

, treated

with . . . to his neck, back and chest. Hyperspadias
pmh

, BPH
pmh

, hiatal hernia
pmh

and

proliferative lymph edema in his right arm
pmh

. No IV’s or blood pressure down in the left

arm. Medications — Inderal
med-preop

, Lopid
med-preop

, Pepcid
med-preop

, nitroglycerine
drip-preop

and heparin
med-preop

. EKG has PAC’s
ekg-preop

.

His Echo showed AI, MR of 47 cine amps with hypokinetic basal and anterior apical region.
echo-preop

Hematocrit 1.2
hct-preop

, otherwise his labs are unremarkable. Went to OR for what was felt to be

2 vessel CABG off pump both mammaries
procedure

. . . . . .

Figure 1: An annotated transcription of an ICU briefing (after anonymising).

terms, a motif is a small subsequence, highly con-
served through evolution. From the computer sci-
ence standpoint, a motif is a fixed-order pattern,
simply because it is a subsequence. The problem
of detecting such motifs in large databases has
attracted considerable interest in the last decade
(see (Hudak and McClure, 1999) for a recent sur-
vey). Combinatorial pattern discovery, one tech-
nique developed for this problem, promised to
be a good fit for our task because it can be pa-
rameterized to operate successfully without large
amounts of data and it will be able to iden-
tify domain swapped motifs: for example, given
a–b–c in one sequence and c–b–a in another.
This difference is central to our current research,
given that order constraints are our main focus.
TEIRESIAS (Rigoutsos and Floratos, 1998) and
SPLASH (Califano, 1999) are good representa-
tives of this kind of algorithm. We used an adap-
tation of TEIRESIAS.

The algorithm can be sketched as follows: we
apply combinatorial pattern discovery (see Sec-
tion 3.1) to the semantic sequences. The obtained
patterns are refined through clustering (Section
3.2). Counting procedures are then used to es-
timate order constraints between those clusters
(Section 3.3).

3.1 Pattern detection

In this section, we provide a brief explanation of
our pattern discovery methodology. The explana-
tion builds on the definitions below:

〈L,W 〉 pattern. Given that Σ represents the se-
mantic tags alphabet, a pattern is a string of

the form Σ(Σ|?)∗ Σ, where ? represents a
don’t care (wildcard) position. The 〈L,W 〉
parameters are used to further control the
amount and placement of the don’t cares:
every subsequence of length W, at least L
positions must be filled (i.e., they are non-
wildcards characters). This definition entails
that L ≤ W and also that a 〈L,W 〉 pattern
is also a 〈L,W + 1〉 pattern, etc.

Support. The support of pattern p given a set of
sequences S is the number of sequences that
contain at least one match of p. It indicates
how useful a pattern is in a certain environ-
ment.

Offset list. The offset list records the matching
locations of a pattern p in a list of sequences.
They are sets of ordered pairs, where the first
position records the sequence number and
the second position records the offset in that
sequence where p matches (see Figure 3).

Specificity. We define a partial order relation on
the pattern space as follows: a pattern p is
said to be more specific than a pattern q
if: (1) p is equal to q in the defined posi-
tions of q but has fewer undefined (i.e., wild-
cards) positions; or (2) q is a substring of p.
Specificity provides a notion of complexity
of a pattern (more specific patterns are more
complex). See Figure 4 for an example.

Using the previous definitions, the algorithm re-
duces to the problem of, given a set of sequences,
L, W , a minimum windowsize, and a support



pattern: AB?D
0 1 2 3 4 5 6 7 8 . . . ← offset

seqα: A B C D F A A B F D . . .
seqβ : F C A B D D F F . . . . . .

...

offset list: {(α, 0); (α, 6); (β, 2); . . .}

Figure 3: A pattern, a set of sequences and an
offset list.

ABC??DF

ABCA?DF ABC??DFG
H

H
Hj

�
�

��

less specific than

Figure 4: The specificity relation among patterns.

threshold, finding maximal 〈L,W 〉-patterns with
at least a support of support threshold. Our im-
plementation can be sketched as follows:

Scanning. For a given window size n, all the pos-
sible subsequences (i.e., n-grams) occurring
in the training set are identified. This process
is repeated for different window sizes.

Generalizing. For each of the identified subse-
quences, patterns are created by replacing
valid positions (i.e., any place but the first
and last positions) with wildcards. Only
〈L,W 〉 patterns with support greater than
support threshold are kept. Figure 5 shows
an example.

Filtering. The above process is repeated increas-
ing the window size until no patterns with
enough support are found. The list of iden-
tified patterns is then filtered according to
specificity: given two patterns in the list, one
of them more specific than the other, if both
have offset lists of equal size, the less spe-
cific one is pruned3 . This gives us the list
of maximal motifs (i.e. patterns) which are
supported by the training data.

3Since they match in exactly the same positions, we
prune the less specific one, as it adds no new information.

A B C D E F ← subsequence

AB?DEF ABCD?F ← patterns. . .
H

H
Hj

�
�

��

Figure 5: The process of generalizing an existing
subsequence.

3.2 Clustering

After the detection of patterns is finished, the
number of patterns is relatively large. Moreover,
as they have fixed length, they tend to be pretty
similar. In fact, many tend to have their support
from the same subsequences in the corpus. We are
interested in syntactic similarity as well as simi-
larity in context.

A convenient solution was to further cluster the
patterns, according to an approximate matching
distance measure between patterns, defined in an
appendix at the end of the paper.

We use agglomerative clustering with the dis-
tance between clusters defined as the maximum
pairwise distance between elements of the two
clusters. Clustering stops when no inter-cluster
distance falls below a user-defined threshold.

Each of the resulting clusters has a single pat-
tern represented by the centroid of the cluster.
This concept is useful for visualization of the
cluster in qualitative evaluation.

3.3 Constraints inference

The last step of our algorithm measures the fre-
quencies of all possible order constraints among
pairs of clusters, retaining those that occur of-
ten enough to be considered important, accord-
ing to some relevancy measure. We also discard
any constraint that it is violated in any training
sequence. We do this in order to obtain clear-cut
constraints. Using the number of times a given
constraint is violated as a quality measure is a
straight-forward extension of our framework. The
algorithm proceeds as follows: we build a table
of counts that is updated every time a pair of pat-
terns belonging to particular clusters are matched.
To obtain clear-cut constraints, we do not count
overlapping occurrences of patterns.

From the table of counts we need some rele-



vancy measure, as the distribution of the tags is
skewed. We use a simple heuristic to estimate
a relevancy measure over the constraints that are
never contradicted. We are trying to obtain an es-
timate of

Pr (A ≺precedes B)

from the counts of

c = A ≺̃preceded B

We normalize with these counts (where x ranges
over all the patterns that match before/after A or
B):

c1 = A ≺̃preceded x

and
c2 = x ≺̃preceded B

The obtained estimates, e1 = c/c1 and e2 = c/c2,
will in general yield different numbers. We use
the arithmetic mean between both, e = (e1+e2)

2 ,
as the final estimate for each constraint. It turns
out to be a good estimate, that predicts accuracy
of the generated constraints (see Section 4).

4 Results

We use cross validation to quantitatively evaluate
our results and a comparison against the plan of
our existing system for qualitative evaluation.

4.1 Quantitative evaluation

We evaluated two items: how effective the pat-
terns and constraints learned were in an unseen
test set and how accurate the predicted constraints
were. More precisely:

Pattern Confidence. This figure measures the
percentage of identified patterns that were
able to match a sequence in the test set.

Constraint Confidence. An ordering constraint
between two clusters can only be checkable
on a given sequence if at least one pattern
from each cluster is present. We measure
the percentage of the learned constraints that
are indeed checkable over the set of test se-
quences.

Constraint Accuracy. This is, from our perspec-
tive, the most important judgement. It mea-
sures the percentage of checkable ordering

Table 1: Evaluation results.

Test Result

pattern confidence 84.62%
constraint confidence 66.70%
constraint accuracy 89.45%

constraints that are correct, i.e., the order
constraint was maintained in any pair of
matching patterns from both clusters in all
the test-set sequences.

Using 3-fold cross-validation for computing these
metrics, we obtained the results shown in Ta-
ble 1 (averaged over 100 executions of the exper-
iment). The different parameter settings were de-
fined as follows: for the motif detection algorithm
〈L,W 〉 = 〈2, 3〉 and support threshold of 3. The
algorithm will normally find around 100 maximal
motifs. The clustering algorithm used a relative
distance threshold of 3.5 that translates to an ac-
tual treshold of 120 for an average inter-cluster
distance of 174. The number of produced clusters
was in the order of the 25 clusters or so. Finally, a
threshold in relevancy of 0.1 was used in the con-
straint learning procedure. Given the amount of
data available for these experiments all these pa-
rameters were hand-tunned.

4.2 Qualitative evaluation

The system was executed using all the available
information, with the same parametric settings
used in the quantitative evaluation, yielding a set
of 29 constraints, out of 23 generated clusters.

These constraints were analyzed by hand and
compared to the existing content-planner. We
found that most rules that were learned were val-
idated by our existing plan. Moreover, we gained
placement constraints for two pieces of semantic
information that are currently not represented in
the system’s plan. In addition, we found minor
order variation in relative placement of two differ-
ent pairs of semantic tags. This leads us to believe
that the fixed order on these particular tags can
be relaxed to attain greater degrees of variability
in the generated plans. The process of creation
of the existing content-planner was thorough, in-
formed by multiple domain experts over a three
year period. The fact that the obtained constraints



mostly occur in the existing plan is very encour-
aging.

5 Related work

As explained in (Hudak and McClure, 1999), mo-
tif detection is usually targeted with alignment
techniques (as in (Durbin et al., 1998)) or with
combinatorial pattern discovery techniques such
as the ones we used here. Combinatorial pattern
discovery is more appropriate for our task because
it allows for matching across patterns with permu-
tations, for representation of wild cards and for
use on smaller data sets.

Similar techniques are used in NLP. Align-
ments are widely used in MT, for example
(Melamed, 1997), but the crossing problem is a
phenomenon that occurs repeatedly and at many
levels in our task and thus, this is not a suitable
approach for us.

Pattern discovery techniques are often used for
information extraction (e.g., (Riloff, 1993; Fisher
et al., 1995)), but most work uses data that con-
tains patterns labelled with the semantic slot the
pattern fills. Given the difficulty for humans in
finding patterns systematically in our data, we
needed unsupervised techniques such as those de-
veloped in computational genomics.

Other stochastic approaches to NLG normally
focus on the problem of sentence generation,
including syntactic and lexical realization (e.g.,
(Langkilde and Knight, 1998; Bangalore and
Rambow, 2000; Knight and Hatzivassiloglou,
1995)). Concurrent work analyzing constraints on
ordering of sentences in summarization found that
a coherence constraint that ensures that blocks of
sentences on the same topic tend to occur together
(Barzilay et al., 2001). This results in a bottom-
up approach for ordering that opportunistically
groups sentences together based on content fea-
tures. In contrast, our work attempts to automati-
cally learn plans for generation based on semantic
types of the input clause, resulting in a top-down
planner for selecting and ordering content.

6 Conclusions

In this paper we presented a technique for extract-
ing order constraints among plan elements that
performs satisfactorily without the need of large

corpora. Using a conservative set of parameters,
we were able to reconstruct a good portion of a
carefully hand-crafted planner. Moreover, as dis-
cussed in the evaluation, there are several pieces
of information in the transcripts which are not
present in the current system. From our learned
results, we have inferred placement constraints of
the new information in relation to the previous
plan elements without further interviews with ex-
perts.

Furthermore, it seems we have captured order-
sensitive information in the patterns and free-
order information is kept in the don’t care model.
The patterns, and ordering constraints among
them, provide a backbone of relatively fixed struc-
ture, while don’t cares are interspersed among
them. This model, being probabilistic in nature,
means a great deal of variation, but our gener-
ated plans should have variability in the right po-
sitions. This is similar to findings of floating posi-
tioning of information, together with oportunistic
rendering of the data as used in STREAK (Robin
and McKeown, 1996).

6.1 Future work

We are planning to use these techniques to revise
our current content-planner and incorporate infor-
mation that is learned from the transcripts to in-
crease the possible variation in system output.

The final step in producing a full-fledged
content-planner is to add semantic constraints on
the selection of possible orderings. This can be
generated through clustering of semantic input to
the generator.

We also are interested in further evaluating the
technique in an unrestricted domain such as the
Wall Street Journal (WSJ) with shallow seman-
tics such as the WordNet top-category for each
NP-head. This kind of experiment may show
strengths and limitations of the algorithm in large
corpora.
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operation 11.11%
drip 33.33%
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total-meds-anesthetics 22.22%
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Appendix - Definition of the distance mea-
sure used for clustering.

An approximate matching measure is de-
fined for a given extended pattern. The ex-
tended pattern is represented as a sequence of
sets; defined positions have a singleton set,
while wildcard positions contain the non-zero
probability elements in their don’t care model
(e.g. given intraop-problems, intraop-problems, {drip 10%,intubation

90%}, drip we model this as [{intraop-problems}; {intraop-

problems}; {drip, intubation}; {drip}}]).
Consider p to be such a pattern, o an offset and

S a sequence, the approximate matching is de-
fined by

m̂(p, o, S) =

∑length(p)
i=0 match(p[i], S[i + o])

length(p)

where the match(P, e) function is defined as 0 if
e ∈ P , 1 otherwise, and where P is the set at

position i in the extended pattern p and e is the
element of the sequence S at position i + o.

Our measure is normalized to [0, 1]. Using
this function, we define the approximate match-
ing distance measure (one way) between a pattern
p1 and a pattern p2 as the sum (averaged over the
length of the offset list of p1) of all the approxi-
mate matching measures of p2 over the offset list
of p1. This is, again, a real number in [0, 1]. To
ensure symmetry, we define the distance between
p1 and p2 as the average between the one way dis-
tance between p1 and p2 and between p2 and p1.


