
Immediate-Head Parsing for Language Models�

Eugene Charniak
Brown Laboratory for Linguistic Information Processing

Department of Computer Science
Brown University, Box 1910, Providence RI

ec@cs.brown.edu

Abstract

We present two language models based
upon an “immediate-head” parser —
our name for a parser that conditions
all events below a constituentc upon
the head ofc. While all of the most
accurate statistical parsers are of the
immediate-head variety, no previous
grammatical language model uses this
technology. The perplexity for both
of these models significantly improve
upon the trigram model base-line as
well as the best previous grammar-
based language model. For the better
of our two models these improvements
are 24% and 14% respectively. We also
suggest that improvement of the un-
derlying parser should significantly im-
prove the model’s perplexity and that
even in the near term there is a lot of po-
tential for improvement in immediate-
head language models.

1 Introduction

All of the most accurate statistical parsers [1,3,
6,7,12,14] arelexicalized in that they condition
probabilities on the lexical content of the sen-
tences being parsed. Furthermore, all of these

�This research was supported in part by NSF grant LIS
SBR 9720368 and by NSF grant 00100203 IIS0085980.
The author would like to thank the members of the Brown
Laboratory for Linguistic Information Processing (BLLIP)
and particularly Brian Roark who gave very useful tips on
conducting this research. Thanks also to Fred Jelinek and
Ciprian Chelba for the use of their data and for detailed com-
ments on earlier drafts of this paper.

parsers are what we will callimmediate-head
parsers in that all of the properties of the imme-
diate descendants of a constituentc are assigned
probabilities that are conditioned on the lexical
head ofc. For example, in Figure 1 the probability
that thevp expands intov np pp is conditioned on
the head of thevp, “put”, as are the choices of the
sub-heads under thevp, i.e., “ball” (the head of
thenp) and “in” (the head of thepp). It is the ex-
perience of the statistical parsing community that
immediate-head parsers are the most accurate we
can design.

It is also worthy of note that many of these
parsers [1,3,6,7] aregenerative— that is, for a
sentences they try to find the parse� defined by
Equation 1:

argmax�p(� j s) = argmax�p(�, s) (1)

This is interesting because insofar as they com-
putep(�, s) these parsers define a language-model
in that they can (in principle) assign a probability
to all possible sentences in the language by com-
puting the sum in Equation 2:

p(s) =
X

�

p(�, s) (2)

wherep(�, s) is zero if the yield of� 6= s. Lan-
guage models, of course, are of interest because
speech-recognition systems require them. These
systems determine the words that were spoken by
solving Equation 3:

argmaxsp(s j A) = argmaxsp(s)p(A j s) (3)

where A denotes the acoustic signal. The first
term on the right,p(s), is the language model, and
is what we compute via parsing in Equation 2.



put the ball in the box

verb/put det/the prep/in det/thenoun/ball noun/boxverb/put

np/box

pp/in
np/ball

vp/put

Figure 1: A tree showing head information

Virtually all current speech recognition sys-
tems use the so-calledtrigram language model in
which the probability of a string is broken down
into conditional probabilities on each word given
the two previous words. E.g.,

p(w0,n) =
Y

i=0,n�1

p(wi j wi�1, wi�2) (4)

On the other hand, in the last few years there
has been interest in designing language models
based upon parsing and Equation 2. We now turn
to this previous research.

2 Previous Work

There is, of course, a very large body of litera-
ture on language modeling (for an overview, see
[10]) and even the literature on grammatical lan-
guage models is becoming moderately large [4,
9,15,16,17]. The research presented in this pa-
per is most closely related to two previous efforts,
that by Chelba and Jelinek [4] (C&J) and that by
Roark [15], and this review concentrates on these
two papers. While these two works differ in many
particulars, we stress here the ways in which they
are similar, and similar in ways that differ from
the approach taken in this paper.

In both cases the grammar based language
model computes the probability of the next word
based upon the previous words of the sentence.
More specifically, these grammar-based models
compute a subset of all possible grammatical re-
lations for the prior words, and then compute

� the probability of the next grammatical situ-
ation, and

� the probability of seeing the next word given
each of these grammatical situations.

Also, when computing the probability of the next
word, both models condition on the two prior
heads of constituents. Thus, like a trigram model,
they use information about triples of words.

Neither of these models uses an immediate-
head parser. Rather they are both what we will
call strict left-to-right parsers. At each sentence
position in strict left-to-right parsing one com-
putes the probability of the next word given the
previous words (and does not go back to mod-
ify such probabilities). This is not possible in
immediate-head parsing. Sometimes the imme-
diate head of a constituent occurs after it (e.g,
in noun-phrases, where the head is typically the
rightmost noun) and thus is not available for con-
ditioning by a strict left-to-right parser.

There are two reasons why one might prefer
strict left-to-right parsing for a language model
(Roark [15] and Chelba, personal communica-
tion). First, the search procedures for guessing
the words that correspond to the acoustic signal
works left to right in the string. If the language
model is to offer guidance to the search procedure
it must do so as well.

The second benefit of strict left-to-right parsing
is that it is easily combined with the standard tri-
gram model. In both cases at every point in the
sentence we compute the probability of the next
word given the prior words. Thus one can inter-
polate the trigram and grammar probability esti-
mates for each word to get a more robust estimate.
It turns out that this is a good thing to do, as is
clear from Table 1, which gives perplexity results
for a trigram model of the data in column one, re-
sults for the grammar-model in column two, and
results for a model in which the two are interpo-



Model Perplexity
Trigram Grammar Interpolation

C&J 167.14 158.28 148.90
Roark 167.02 152.26 137.26

Table 1: Perplexity results for two previous
grammar-based language models

lated in column three.
Both the were trained and tested on the same

training and testing corpora, to be described in
Section 4.1. As indicated in the table, the trigram
model achieved a perplexity of 167 for the test-
ing corpus. The grammar models did slightly bet-
ter (e.g., 158.28 for the Chelba and Jelinek (C&J)
parser), but it is the interpolation of the two that
is clearly the winner (e.g., 137.26 for the Roark
parser/trigram combination). In both papers the
interpolation constants were 0.36 for the trigram
estimate and 0.64 for the grammar estimate.

While both of these reasons for strict-left-to-
right parsing (search and trigram interpolation)
are valid, they are not necessarily compelling.
The ability to combine easily with trigram models
is important only as long as trigram models can
improve grammar models. A sufficiently good
grammar model would obviate the need for tri-
grams. As for the search problem, we briefly re-
turn to this point at the end of the paper. Here
we simply note that while search requires that
a language model provide probabilities in a left
to right fashion, one can easily imagine proce-
dures where these probabilities are revised after
new information is found (i.e., the head of the
constituent). Note that already our search pro-
cedure needs to revise previous most-likely-word
hypotheses when the original guess makes the
subsequent words very unlikely. Revising the
associated language-model probabilities compli-
cates the search procedure, but not unimaginably
so. Thus it seems to us that it is worth finding
out whether the superior parsing performance of
immediate-head parsers translates into improved
language models.

3 The Immediate-Head Parsing Model

We have taken the immediate-head parser de-
scribed in [3] as our starting point. This parsing

model assigns a probability to a parse� by a top-
down process of considering each constituentc in
� and, for eachc, first guessing the pre-terminal
of c, t(c) (t for “tag”), then the lexical head ofc,
h(c), and then the expansion ofc into further con-
stituentse(c). Thus the probability of a parse is
given by the equation

p(�) =
Y

c2�

p(t(c) j l(c), H(c))

�p(h(c) j t(c), l(c), H(c))

�p(e(c) j l(c), t(c), h(c), H(c))

where l(c) is the label ofc (e.g., whether it is a
noun phrase (np), verb phrase, etc.) andH(c) is
the relevant history ofc — information outsidec
that our probability model deems important in de-
termining the probability in question. In [3]H(c)
approximately consists of the label, head, and
head-part-of-speech for the parent ofc: m(c), i(c),
andu(c) respectively. One exception is the distri-
butionp(e(c) j l(c), t(c), h(c), H(c)), whereH only
includesmandu.1

Whenever it is clear to which constituent we
are referring we omit the (c) in, e.g.,h(c). In this
notation the above equation takes the following
form:

p(�) =
Y

c2�

p(t j l, m, u, i) � p(h j t, l, m, u, i)

�p(e j l, t, h, m, u). (5)

Because this is a point of contrast with the parsers
described in the previous section, note that all
of the conditional distributions are conditioned
on one lexical item (eitheri or h). Thus only
p(h j t, l, m, u, i), the distribution for the head ofc,
looks at two lexical items (i andh itself), and none
of the distributions look at three lexical items as
do the trigram distribution of Equation 4 and the
previously discussed parsing language models [4,
15].

Next we describe how we assign a probabil-
ity to the expansione of a constituent. We break
up a traditional probabilistic context-free gram-
mar (PCFG) rule into a left-hand side with a label
l(c) drawn from the non-terminal symbols of our
grammar, and a right-hand side that is a sequence

1We simplify slightly in this section. See [3] for all the
details on the equations as well as the smoothing used.



of one or more such symbols. For each expansion
we distinguish one of the right-hand side labels as
the “middle” or “head” symbolM(c). M(c) is the
constituent from which the head lexical itemh is
obtained according to deterministic rules that pick
the head of a constituent from among the heads of
its children. To the left ofM is a sequence of one
or more left labelsLi(c) including the special ter-
mination symbol4, which indicates that there are
no more symbols to the left, and similarly for the
labels to the right,Ri(c). Thus an expansione(c)
looks like:

l !4Lm. . .L1MR1. . .Rn4. (6)

The expansion is generated by guessing firstM,
then in orderL1 throughLm+1 (=4), and similarly
for R1 throughRn+1.

In anticipation of our discussion in Section 4.2,
note that when we are expanding anLi we do not
know the lexical items to its left, but if we prop-
erly dovetail our “guesses” we can be sure of what
word, if any, appears to its right and beforeM, and
similarly for the word to the left ofRj. This makes
such words available to be conditioned upon.

Finally, the parser of [3] deviates in two places
from the strict dictates of a language model. First,
as explicitly noted in [3], the parser does not com-
pute the partition function (normalization con-
stant) for its distributions so the numbers it re-
turns are not true probabilities. We noted there
that if we replaced the “max-ent inspired” fea-
ture with standard deleted interpolation smooth-
ing, we took a significant hit in performance. We
have now found several ways to overcome this
problem, including some very efficient ways to
compute partition functions for this class of mod-
els. In the end, however, this was not neces-
sary, as we found that we could obtain equally
good performance by “hand-crafting” our inter-
polation smoothing rather than using the “obvi-
ous” method (which performs poorly).

Secondly, as noted in [2], the parser encourages
right branching with a “bonus” multiplicative fac-
tor of 1.2 for constituents that end at the right
boundary of the sentence, and a penalty of 0.8
for those that do not. This is replaced by explic-
itly conditioning the events in the expansion of
Equation 6 on whether or not the constituent is at
the right boundary (barring sentence-final punctu-

ation). Again, with proper attention to details, this
can be known at the time the expansion is taking
place. This modification is much more complex
than the multiplicative “hack,” and it is not quite
as good (we lose about 0.1% in precision/recall
figures), but it does allow us to compute true prob-
abilities.

The resulting parser strictly speaking defines
a PCFG in that all of the extra conditioning in-
formation could be included in the non-terminal-
node labels (as we did with the head information
in Figure 1). When a PCFG probability distribu-
tion is estimated from training data (in our case
the Penn tree-bank) PCFGs define a tight (sum-
ming to one) probability distribution over strings
[5], thus making them appropriate for language
models. We also empirically checked that our in-
dividual distributions (p(t j l, m, u, i), andp(h j
t, l, m, u, i) from Equation 5 andp(L j l, t, h, m, u),
p(M j l, t, h, m, u), and p(R j l, t, h, m, u) from
Equation 5) sum to one for a large, random, se-
lection of conditioning events2

As with [3], a subset of parses is computed with
a non-lexicalized PCFG, and the most probable
edges (using an empirically established thresh-
old) have their probabilities recomputed accord-
ing to the complete probability model of Equation
5. Both searches are conducted using dynamic
programming.

4 Experiments

4.1 The Immediate-Bihead Language Model

The parser as described in the previous section
was trained and tested on the data used in the pre-
viously described grammar-based language mod-
eling research [4,15]. This data is from the Penn
Wall Street Journal tree-bank [13], but modified
to make the text more “speech-like”. In particu-
lar:

1. all punctuation is removed,

2. no capitalization is used,

3. all symbols and digits are replaced by the
symbol N, and

2They should sum to one. We are just checking that there
are no bugs in the code.



Model Perplexity
Trigram Grammar Interpolation

C&J 167.14 158.28 148.90
Roark 167.02 152.26 137.26
Bihead 167.89 144.98 133.15

Table 2: Perplexity results for the immediate-
bihead model

4. all words except for the 10,000 most com-
mon are replaced by the symbol UNK.

As in previous work, files F0 to F20 are used for
training, F21-F22 for development, and F23-F24
for testing.

The results are given in Table 2. We refer to
the current model as the bihead model. “Bihead”
here emphasizes the already noted fact that in this
model probabilities involve at most two lexical
heads. As seen in Table 2, the immediate-bihead
model with a perplexity of 144.98 outperforms
both previous models, even though they use tri-
grams of words in their probability estimates.

We also interpolated our parsing model with
the trigram model (interpolation constant .36, as
with the other models) and this model outper-
forms the other interpolation models. Note, how-
ever, that because our parser doesnotdefine prob-
abilities for each word based upon previous words
(as with trigram) it is not possible to do the inte-
gration at the word level. Rather we interpolate
the probabilities of the entire sentences. This is a
much less powerful technique than the word-level
interpolation used by both C&J and Roark, but we
still observe a significant gain in performance.

4.2 The Immediate-Trihead Model

While the performance of the grammatical model
is good, a look at sentences for which the tri-
gram model outperforms it makes its limitations
apparent. The sentences in question have noun
phrases like “monday night football” that trigram
models eats up but on which our bihead parsing
model performs less well. For example, consider
the sentence “he watched monday night football”.
The trigram model assigns this a probability of
1. 9 � 10�5, while the grammar model gives it a
probability of 2. 77� 10�7. To a first approxima-
tion, this is entirely due to the difference in prob-

monday night football

nbar

np

Figure 2: A noun-phrase with sub-structure

ability of the noun-phrase. For example, the tri-
gram probabilityp(football j monday, night) =
0. 366, and would have been 1.0 except that
smoothing saved some of the probability for other
things it might have seen but did not. Because the
grammar model conditions in a different order,
the closest equivalent probability would be that
for “monday”, but in our model this is only con-
ditioned on “football” so the probability is much
less biased, only 0. 0306. (Penn tree-bank base
noun-phrases are flat, thus the head above “mon-
day” is “football”.)

This immediately suggests creating a second
model that captures some of the trigram-like
probabilities that the immediate-bihead model
misses. The most obvious extension would be to
condition upon not just one’s parent’s head, but
one’s grandparent’s as well. This does capture
some of the information we would like, partic-
ularly the case heads of noun-phrases inside of
prepositional phrases. For example, in “united
states of america”, the probability of “america”
is now conditioned not just on “of” (the head of
its parent) but also on “states”.

Unfortunately, for most of the cases where tri-
gram really cleans up this revision would do lit-
tle. Thus, in “he watched monday night football”
“monday” would now be conditioned upon “foot-
ball” and “watched.” The addition of “watched”
is unlikely to make much difference, certainly
compared to the boost trigram models get by, in
effect, recognizing the complete name.

It is interesting to note, however, that virtu-
ally all linguists believe that a noun-phrase like
“monday night football” has significant substruc-
ture — e.g., it would look something like Figure
2. If we assume this tree-structure the two heads
above “monday” are “night” and “football” re-
spectively, thus giving our trihead model the same
power as the trigram for this case. Ignoring some



of the conditioning events, we now get a proba-
bility p(h = monday j i = night,j = football),
which is much higher than the corresponding bi-
head versionp(h = mondayj i = football). The
reader may remember thath is the head of the cur-
rent constituent, whilei is the head of its parent.
We now definej to be the grandparent head.

We decided to adopt this structure, but to keep
things simple we only changed the definition of
“head” for the distributionp(h j t, l, m, u, i, j).
Thus we adopted the following revised definition
of head for constituents of base noun-phrases:

For a pre-terminal (e.g.,noun) con-
stituent c of a base noun-phrase in
which it is not the standard head (h) and
which has as its right-sister another pre-
terminal constituentd which is not it-
selfh, the head ofc is the head ofd. The
sole exceptions to this rule are phrase-
initial determiners and numbers which
retainh as their heads.

In effect this definition assumes that the sub-
structure of all base noun-phrases is left branch-
ing, as in Figure 2. This is not true, but Lauer
[11] shows that about two-thirds of all branching
in base-noun-phrases is leftward. We believe we
would get even better results if the parser could
determine the true branching structure.

We then adopt the following definition of a
grandparent-head featurej.

1. if c is a noun phrase under a prepositional
phrase, or is a pre-terminal which takes a
revised head as defined above, thenj is the
grandparent head ofc, else

2. if c is a pre-terminal and is not next (in the
production generatingc) to the head of its
parent (i) then j(c) is the head of the con-
stituent next toc in the production in the di-
rection of the head of that production, else

3. j is a “none-of-the-above” symbol.

Case 1 now covers both “united states of amer-
ica” and “monday night football” examples. Case
2 handles other flat constituents in Penn tree-bank
style (e.g., quantifier-phrases) for which we do
not have a good analysis. Case three says that this
feature is a no-op in all other situations.

Model Perplexity
Trigram Grammar Interpolation

C&J 167.14 158.28 148.90
Roark 167.02 152.26 137.26
Bihead 167.89 144.98 133.15
Trihead 167.89 130.20 126.07

Table 3: Perplexity results for the immediate-
trihead model

The results for this model, again trained on F0-
F20 and tested on F23-24, are given in Figure
3 under the heading ”Immediate-trihead model”.
We see that the grammar perplexity is reduced
to 130.20, a reduction of 10% over our first
model, 14% over the previous best grammar
model (152.26%), and 22% over the best of the
above trigram models for the task (167.02). When
we run the trigram and new grammar model in
tandem we get a perplexity of 126.07, a reduction
of 8% over the best previous tandem model and
24% over the best trigram model.

4.3 Discussion

One interesting fact about the immediate-trihead
model is that of the 3761 sentences in the test cor-
pus, on 2934, or about 75%, the grammar model
assigns a higher probability to the sentence than
does the trigram model. One might well ask what
went “wrong” with the remaining 25%? Why
should the grammar model ever get beaten? Three
possible reasons come to mind:

1. The grammar model is better but only by a
small amount, and due to sparse data prob-
lems occasionally the worse model will luck
out and beat the better one.

2. The grammar model and the trigram model
capture different facts about the distribution
of words in the language, and for some set of
sentences one distribution will perform bet-
ter than the other.

3. The grammar model is, in some sense, al-
ways better than the trigram model, but if the
parser bungles the parse, then the grammar
model is impacted very badly. Obviously the
trigram model has no such Achilles’ heel.



Sentence Group Num. Labeled Labeled
Precision Recall

All Sentences 3761 84.6% 83.7%
Grammar High 2934 85.7% 84.9%
Trigram High 827 80.1% 79.0%

Table 4: Precision/recall for sentences in which
trigram/grammar models performed best

We ask this question because what we should
do to improve performance of our grammar-based
language models depends critically on which of
these explanations is correct: if (1) we should col-
lect more data, if (2) we should just live with the
tandem grammar-trigram models, and if (3) we
should create better parsers.

Based upon a few observations on sentences
from the development corpus for which the tri-
gram model gave higher probabilities we hypoth-
esized that reason (3), bungled parses, is primary.
To test this we performed the following experi-
ment. We divide the sentences from the test cor-
pus into two groups, ones for which the trigram
model performs better, and the ones for which
the grammar model does better. We then collect
labeled precision and recall statistics (the stan-
dard parsing performance measures) separately
for each group. If our hypothesis is correct we ex-
pect the “grammar higher” group to have more ac-
curate parses than the trigram-higher group as the
poor parse would cause poor grammar perplexity
for the sentence, which would then be worse than
the trigram perplexity. If either of the other two
explanations were correct one would not expect
much difference between the two groups. The re-
sults are shown in Table 4. We see there that, for
example, sentences for which the grammar model
has the superior perplexity have average recall 5.9
(= 84. 9�79. 0) percentage points higher than the
sentences for which the trigram model performed
better. The gap for precision is 5.6. This seems to
support our hypothesis.

5 Conclusion and Future Work

We have presented two grammar-based language
models, both of which significantly improve upon
both the trigram model baseline for the task (by
24% for the better of the two) and the best pre-
vious grammar-based language model (by 14%).

Furthermore we have suggested that improve-
ment of the underlying parser should improve the
model’s perplexity still further.

We should note, however, that if we were deal-
ing with standard Penn Tree-bank Wall-Street-
Journal text, asking for better parsers would be
easier said than done. While there is still some
progress, it is our opinion that substantial im-
provement in the state-of-the-art precision/recall
figures (around 90%) is unlikely in the near fu-
ture.3 However, we arenot dealing with stan-
dard tree-bank text. As pointed out above, the
text in question has been “speechified” by re-
moving punctuation and capitalization, and “sim-
plified” by allowing only a fixed vocabulary of
10,000 words (replacing all the rest by the sym-
bol “UNK”), and replacing all digits and symbols
by the symbol “N”.

We believe that the resulting text grossly under-
represents the useful grammatical information
available to speech-recognition systems. First, we
believe that information about rare or even truly
unknown words would be useful. For example,
when run on standard text, the parser uses ending
information to guess parts of speech [3]. Even
if we had never encountered the word “show-
boating”, the “ing” ending tells us that this is
almost certainly a progressive verb. It is much
harder to determine this about UNK.4 Secondly,
while punctuation is not to be found in speech,
prosody should give us something like equiva-
lent information, perhaps even better. Thus sig-
nificantly better parser performance on speech-
derived data seems possible, suggesting that high-
performance trigram-less language models may
be within reach. We believe that the adaptation
of prosodic information to parsing use is a worthy
topic for future research.

Finally, we have noted two objections to
immediate-head language models: first, they
complicate left-to-right search (since heads are
often to the right of their children) and second,

3Furthermore, some of the newest wrinkles [8] use dis-
criminative methods and thus do not define language models
at all, seemingly making them ineligible for the competition
on a priori grounds.

4To give the reader some taste for the difficulties pre-
sented by UNKs, we encourage you to try parsing the fol-
lowing real example: “its supposedly unk unk unk a unk that
makes one unk the unk of unk unk the unk radical unk of
unk and unk and what in unk even seems like unk in unk”.



they cannot be tightly integrated with trigram
models.

The possibility of trigram-less language mod-
els makes the second of these objections without
force. Nor do we believe the first to be a per-
manent disability. If one is willing to provide
sub-optimal probability estimates as one proceeds
left-to-right and then amend them upon seeing the
true head, left-to-right processing and immediate-
head parsing might be joined. Note that one of the
cases where this might be worrisome, early words
in a base noun-phrase could be conditioned upon
a head which comes several words later, has been
made significantly less problematic by our revised
definition of heads inside noun-phrases. We be-
lieve that other such situations can be brought into
line as well, thus again taming the search prob-
lem. However, this too is a topic for future re-
search.

References

1. BOD, R. What is the minimal set of frag-
ments that achieves maximal parse accuracy.
In Proceedings of Association for Computa-
tional Linguistics 2001. 2001.

2. CHARNIAK , E. Tree-bank grammars. In Pro-
ceedings of the Thirteenth National Con-
ference on Artificial Intelligence. AAAI
Press/MIT Press, Menlo Park, 1996, 1031–
1036.

3. CHARNIAK , E. A maximum-entropy-
inspired parser. In Proceedings of the 2000
Conference of the North American Chapter of
the Association for Computational Linguistics.
ACL, New Brunswick NJ, 2000.

4. CHELBA, C. AND JELINEK, F. Exploiting
syntactic structure for language modeling. In
Proceedings for COLING-ACL 98. ACL, New
Brunswick NJ, 1998, 225–231.

5. CHI, Z. AND GEMAN, S. Estimation of
probabilistic context-free grammars.Computa-
tional Linguistics 242 (1998), 299–306.

6. COLLINS, M. J. Three generative lexicalized
models for statistical parsing. In Proceedings
of the 35th Annual Meeting of the ACL. 1997,
16–23.

7. COLLINS, M. J. Head-Driven Statistical
Models for Natural Language Parsing. Univer-
sity of Pennsylvania, Ph.D. Dissertation, 1999.

8. COLLINS, M. J. Discriminative reranking for
natural language parsing. In Proceedings of the
International Conference on Machine Learning
(ICML 2000). 2000.

9. GODDEAU, D. Using probabilistic shift-
reduce parsing in speech recognition systems.
In Proceedings of the 2nd International Confer-
ence on Spoken Language Processing. 1992,
321–324.

10. GOODMAN, J. Putting it all together: lan-
guage model combination. In ICASSP-2000.
2000.

11. LAUER, M. Corpus statistics meet the noun
compound: some empirical results. In Proceed-
ings of the 33rd Annual Meeting of the Associ-
ation for Computational Linguistics. 1995, 47–
55.

12. MAGERMAN, D. M. Statistical decision-tree
models for parsing. In Proceedings of the 33rd
Annual Meeting of the Association for Com-
putational Linguistics. 1995, 276–283.

13. MARCUS, M. P., SANTORINI, B. AND

MARCINKIEWICZ, M. A. Building a large
annotated corpus of English: the Penn tree-
bank. Computational Linguistics 19(1993),
313–330.

14. RATNAPARKHI , A. Learning to parse natural
language with maximum entropy models.Ma-
chine Learning 341/2/3 (1999), 151–176.

15. ROARK, B. Probabilistic top-down parsing
and language modeling.Computational Lin-
guistics (forthcoming).

16. STOLCKE, A. An efficient probabilistic
context-free parsing algorithm that computes
prefix probabilities.Computational Linguistics
21(1995), 165–202.

17. STOLCKE, A. AND SEGAL, J. Precise n-
gram probabilities from stochastic context-free
grammars. In Proceedings of the 32th Annual
Meeting of the Association for Computational
Linguistics. 1994, 74–79.


