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Abstract

In this paper, we propose adding
long-term grammaticalinformation in
a Whole SentenceMaximun Entropy
Language Model (WSME) in order
to improve the performanceof the
model. The grammaticalinformation
wasaddedto theWSME modelasfea-
turesandwereobtainedfromaStochas-
tic Context-Freegrammar. Finally, ex-
perimentsusingapartof thePennTree-
bank corpuswere carriedout and sig-
nificantimprovementswereacheived.

1 Intr oduction

Languagemodelingis animportantcomponentin
computationalapplicationssuchasspeechrecog-
nition, automatic translation, optical character
recognition,information retrieval etc. (Jelinek,
1997; Borthwick, 1997). Statistical language
modelshave gainedconsiderableacceptancedue
to the efficiency demonstratedin the fields in
which they have beenapplied(Bahalet al., 1983;
Jelineket al., 1991; Ratnapharkhi,1998; Borth-
wick, 1999).

Traditional statisticallanguagemodelscalcu-
latetheprobabilityof asentence� usingthechain
rule:��� �	��
 �������������������� ��
 ����� � ���� ��� ��� � (1) 
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where �"� 
 ���#������� �$ � , which is usuallyknown
as the history of � � . The effort in the language
modelingtechniquesis usuallydirectedto thees-
timationof ���� ��� �"� � . Thelanguagemodeldefined
by the expression���� ��� �"� � is namedthe condi-
tional languagemodel. In principle, the deter-
mination of the conditionalprobability in (1) is
expensive, becausethe possiblenumberof word
sequencesis very great. Traditional conditional
languagemodelsassumethat the probability of
theword � � doesnotdependontheentirehistory,
andthehistory is limited by anequivalencerela-
tion % , and(1) is rewrittenas:

��� �	�&
 ���� � � � ������� � �&' ���(� � ���� � � % � � � ��� (2)

Themostcommonlyusedconditionallanguage
modelis then-grammodel.In then-grammodel,
the history is reduced(by the equivalencerela-
tion) to the last )+*-, words. The power of the
n-grammodelresidesin: its consistencewith the
trainingdata,its simpleformulation,andits easy
implementation. However, the n-gram model
only usesthe information provided by the last).*/, wordsto predictthenext wordandsoonly
makesuseof local information. In addition,the
valueof n mustbelow ( 021 ) becausefor )43-1
thereareproblemswith theparameterestimation.

Hybrid modelshave beenproposed,in an at-
tempt to supplementthe local information with
long-distanceinformation. They combine dif-
ferent typesof models,like n-grams,with long-
distanceinformation,generallyby meansof lin-
ear interpolation,as hasbeenshown in (Belle-



garda,1998; Chelbaand Jelinek,2000; Bened́ı
andSánchez,2000).

A formal framework to include long-distance
andlocal informationin thesamelanguagemodel
is based on the Maximum Entropy principle
(ME). Using the ME principle, we cancombine
information from a variety of sourcesinto the
samelanguagemodel(Bergeretal.,1996;Rosen-
feld, 1996).Thegoalof theME principle is that,
givenasetof features(piecesof desiredinforma-
tion containedin thesentence),a setof functions5 ��6������ 5	7 (measuringthe contribution of each
featureto themodel)andasetof constraints1, we
have to find theprobabilitydistribution thatsatis-
fiestheconstraintsandminimizestherelative en-
tropy (Divergenceof Kullback-Leibler)8 �9� �(� �;: � ,
with respectto thedistribution �;: .

ThegeneralMaximumEntropy probabilitydis-
tribution relative to aprior distribution � : is given
by theexpression:��� �<�&
 ,= �;:>� �<�@?BADCE9FHG	I EKJLENM(OQP (3)

where
=

is thenormalizationconstantand R � are
parametersto befound.The R � representthecon-
tribution of eachfeatureto thedistribution.

From (3) it is easy to derive the Maximum
Entropy conditionallanguagemodel(Rosenfeld,
1996): if S is the context spaceand T is the
vocabulary, then S x T is thestatesspace,andif�UV6�W �YXZS x T then:���W � U �[
 ,= �U � ?BADCE9F"GBI EKJLENM]\<^ _`P (4)

and
= �U � : ab�U �[
2c _ ?BADdE9F"GBI EJQEeM9\<^ _`P (5)

whereab�U � is thenormalizationconstantdepend-
ing on the context U . Although the conditional
ME languagemodelis moreflexible thann-gram
models,thereis an importantobstacleto its gen-
eraluse:conditionalME languagemodelshave a
high computationalcost (Rosenfeld,1996),spe-
cially theevaluationof thenormalizationconstant
(5).

1The constraintsusually involve the equality between
theoreticalexpectationand the empirical expectationover
thetrainingcorpus.

Althoughwecanincorporatelocal information
(like n-grams)and somekinds of long-distance
information(like triggers)within theconditional
ME model, the global information containedin
thesentenceis poorly encodedin theME model,
ashappenswith theotherconditionalmodels.

Thereis alanguagemodelwhich is ableto take
advantageof thelocalinformationandatthesame
time allows for theuseof theglobalpropertiesof
thesentence:theWholeSentenceMaximumEn-
tropy model(WSME) (Rosenfeld,1997).Wecan
include classical information such us n-grams,
distancen-gramsor triggersand global proper-
ties of the sentence,as featuresinto the WSME
framework. Besidesthe fact that the WSME
model training procedureis lessexpensive than
the conditional ME model, the most important
training stepis basedon well-developedstatisti-
cal samplingtechniques.In recentworks (Chen
andRosenfeld,1999a),WSMEmodelshavebeen
successfullytrainedusingfeaturesof n-gramsand
distancen-grams.

In thiswork, weproposeaddinginformationto
theWSMEmodelwhichis providedby thegram-
matical structureof the sentence.The informa-
tion is addedin the form of featuresby means
of a StochasticContext-FreeGrammar(SCFG).
The grammaticalinformation is combinedwith
featuresof n-gramsandtriggers.

In section2,wedescribetheWSMEmodeland
thetrainingprocedurein orderto estimatethepa-
rametersof the model. In section3, we define
thegrammaticalfeaturesandthewayof obtaining
themfrom the SCFG.Finally, section4 presents
the experimentscarried out using a part of the
Wall StreetJournalin orderevalutethebehavior
of thisproposal.

2 Whole SentenceMaximum Entropy
Model

ThewholesentenceMaximumEntropy modeldi-
rectly modelsthe probability distribution of the
completesentence2. TheWSME languagemodel
hastheform of (3).

In orderto simplify thenotationwe write f �#g? I E , anddefine:

2By sentence,we understandany sequenceof linguistic
unitsthatbelongsto acertainvocabulary.



h � �<�[
 7���� � f JLENMiOLP� (6)

so(3) is writtenas:��� �<�[
 ,= �;:j� �<� h � �	� (7)

where � is a sentenceandthe f � arenow thepa-
rametersto belearned.

Thetrainingprocedureto estimatetheparame-
tersof themodelis theImprovedIterativeScaling
algorithmn(IIS) (Della Pietraet al., 1995). IIS is
basedonthechangeof thelog-likelihoodoverthe
training corpus k , wheneachof the parameters
changesfrom R � to R �ml.n`� , n`� X.o . Mathematical
considerationsonthechangein thelog-likelihood
give thetrainingequation:

c O ��� �<� 5 � � �	�@?mp EKJrqVM(OQP * csVt<uwv��� �<� 5 � � �<�[
yx (8)

where
5{z � �<��
 A 7��� � 5 � � �<� . In eachiterationof

theIIS, we have to find thevalueof theimprove-
ment n � in theparameters,solving(8) with respect
to n`� for each|�
}, �����m6�~ .

Themain obstaclein theWSME training pro-
cessresidesin the calculationof the first sumin
(8). Thesumextendsover all thesentences� of
a given length. The greatnumberof suchsen-
tencesmakesit impossible,from computingper-
spective,to calculatethesum,evenfor amoderate
length3. Nevertheless,sucha sumis thestatisti-
calexpectedvalueof a functionof � with respect
to the distribution � : ����� 5 � ? p EKJ qV� . As is well
known, it could be estimatedusingthe sampling
expectationas:

����� 5 � ? p EJ q � ' ,� �c�`� � 5 � � � � �Q� Jrq�MiO��P� (9)

where � �#�����r6 � � is a randomsamplefrom � and� � 
�? p E .
Note that in (7) the constant

=
is unknown,

so direct sampling from � is not possible. In
samplingfrom suchtypesof probabilitydistribu-
tions, the Monte Carlo Markov Chain (MCMC)

3thenumberof sentences� of length � is � ��� �

samplingmethodshave beensuccessfullyused
whenthe distribition is not totally known (Neal,
1993). MCMC arebasedon the convergenceof
certainMarkov Chainsto a target distribution � .
In MCMC, a path of the Markov chain is ran
for a long time, afterwhich thevisitedstatesare
consideredasa samplingelement. The MCMC
samplingmethodshave beenusedin the param-
eter estimationof the WSME languagemodels,
specially the IndependenceMetropolis-Hasting
(IMH) andtheGibb’ssamplingalgorithms(Chen
and Rosenfeld,1999a; Rosenfeld,1997). The
bestresultshave beenobtaindedusingthe(IMH)
algorithm.

Although MCMC performswell, the distribu-
tion from which thesampleis obtainedis only an
approximation of thetargetsamplingdistribution.
Thereforesamplesobtainedfrom suchdistribu-
tions may producesomebias in samplestatis-
tics, like samplingmean.Recently, anothersam-
pling techniquewhich is also basedon Markov
Chainshasbeendevelopedby ProppandWilson
(ProppandWilson, 1996),the PerfectSampling
(PS) technique. PS is basedon the conceptof
Coupling From the Past. In PS,several pathsof
theMarkov chainarerunningfrom thepast(one
pathin eachstateof the chain). In all the paths,
the transitionrule of the Markov chain usesthe
samesetof randomnumbersto transit from one
stateto another. Thusif two pathscoincidein the
samestatein time � , they will remainin thesame
statestherestof thetime. In sucha case,we say
thatthetwo pathsarecollapsed.

Now, if all thepathscollapseatany giventime,
from that point in time, we aresurethat we are
samplingfrom the true targetdistribution � . The
CouplingFromthePastalgorithm,systematically
goesto the pastandthenrunspathsin all states
andrepeatsthisprocedureuntil a time � hasbeen
found. Once� hasbeenfound,thepathsthatbe-
gin in time *Y� all pathscollapseat time ��
�x .
Then we run a path of the chain from the state
at time ��
�*�� to the actualtime ( ��
�x ), and
the last statearrived is a samplefrom the target
distribution. The reasonfor going from pastto
currenttime is technical,andis detailedin (Propp
andWilson, 1996). If thestatespaceis huge(as
is the casewherethe statespaceis the setof all
sentences),wemustdefineastochasticorderover



thestatespaceandthenrun only two paths:one
beginning in the minimum stateandthe otherin
the maximumstate,following the samemecha-
nismdescribedabove for thetwo pathsuntil they
collapse. In this way, it is proved that we get a
samplefrom theexact target distribution andnot
from an approximate distribution as in MCMC
algorithms(ProppandWilson, 1996). Thus,we
hopethat in samplesgeneratedwith perfectsam-
pling, statisticalparameterestimatorsmaybeless
biasedthanthosegeneratedwith MCMC.

Recently(Amaya and Bened́ı, 2000), the PS
was successfullyused to estimatethe param-
eters of a WSME languagemodel . In that
work, a comparisonwasmadebetweenthe per-
formanceof WSMEmodelstrainedusingMCMC
andWSME modelstrainedusingPS.Featuresof
n-gramsandfeaturesof triggerswereusedIn both
kinds of models,and the WSME model trained
with PShadbetterperformance.We thenconsid-
eredit appropriateto usePSin thetrainingproce-
dureof theWSME.

Themodelparameterswerecompletedwith the
estimationof the global normalizationconstant=

. Using(7), wecandeducethat
= 
y���r�&� h � �<���

andthusestimate
=

usingthesamplingexpecta-
tion.

���r��� h � �<����' ,� �c�`� � h � � � �
where � � 6������m6 � � is a randomsamplefrom � : .
Becausewehavetotalcontroloverthedistribition�;: , is easyto samplefrom it in thetraditionalway.

3 The grammatical features

Themaingoalof thispaperis theincorporationof
gramaticalfeaturesto the WSME. Grammatical
information may be helpful in many aplications
of computationallinguistics. The grammatical
structureof the sentenceprovides long-distance
informationto themodel,therebycomplementing
theinformationprovidedby othersourcesandim-
proving theperformanceof themodel.Grammat-
ical featuresgive a betterweight to suchparam-
etersin grammaticallycorrectsentencesthan in
grammaticallyincorrectsentences,therebyhelp-
ing themodelto assignbetterprobabilitiesto cor-
rect sentencesfrom the languageof the applica-

tion. To capturethegrammaticalinformation,we
useStochasticContext-FreeGrammars(SCFG).

Over thelastdecade,therehasbeenanincreas-
ing interestin StochasticContext-FreeGrammars
(SCFGs) for use in different tasks (K., 1979;
Jelinek, 1991; Ney, 1992; Sakakibara,1990).
The reasonfor this can be found in the capa-
bility of SCFGsto model the long-termdepen-
denciesestablishedbetweenthe different lexical
units of a sentence,and the possibility to incor-
poratethe stochasticinformation that allows for
anadequatemodelingof thevariability phenom-
ena.Thus,SCFGshavebeensuccessfullyusedon
limited-domaintasksof low perplexity. However,
SCFGsworkpoorlyfor largevocabulary, general-
purposetasks,becausetheparameterlearningand
the computationof word transitionprobabilities
presentseriousproblemsfor complex realtasks.

To capturethelong-termrelationsandto solve
themainproblemderivedfrom theuseof SCFGs
in large-vocabulary complex tasks,weconsider
theproposalin (Bened́ı andSánchez,2000): de-
fine a category-basedSCFGand a probabilistic
modelof word distribution in thecategories.The
useof categoriesasterminalof the grammarre-
ducesthenumberof rulesto take into accountand
thus, the time complexity of the SCFGlearning
procedure.Theuseof theprobabilisticmodelof
word distribution in the categories,allows us to
obtainthe bestderivation of the sentencesin the
application.

Actually, we have to solve two problems:the
estimationof the parametersof the modelsand
their integrationto obtainthebestderivationof a
sentence.

The parametersof the two models are esti-
matedfrom a training sample.Eachword in the
trainingsamplehasapart-of-speechtag(POStag)
associatedto it. ThesePOStagsareconsideredas
word categoriesandarethe terminalsymbolsof
ourSCFG.

Givenacategory, theprobabilitydistributionof
a word is estimatedby meansof the relative fre-
quency of theword in thecategory, i.e. the rela-
tivefrequency whichtheword � hasbeenlabeled
with a POStag(a word � maybelongto different
categories).

To estimatethe SCFGparameters,several al-
gorithmshave beenpresented(K. andS.J.,1991;



Pereiraand Shabes,1992; Amaya et al., 1999;
SánchezandBened́ı, 1999). Taking into account
the goodresultsachieved on real tasks(Sánchez
and Bened́ı, 1999), we usedthem to learn our
category-basedSCFG.

To solve the integration problem,we usedan
algorithm that computesthe probability of the
bestderivation that generatesa sentence,given
the category-basedgrammarand the model of
word distribution into categories (Bened́ı and
Sánchez,2000). This algorithm is basedon the
well-known Viterbi-like schemefor SCFGs.

Once the grammaticalframework is defined,
we are in position to make useof the informa-
tion providedby theSCFG.In orderto definethe
grammaticalfeatures,wefirst introducesomeno-
tation.

A Context-Free Grammar G is a four-tuple�N� 6¢¡�6�£�6¢¤ � , where � is thefinite setof nonter-
minals, ¡ is afinite setof terminals( �}¥�¡}¦
�§>� ,¤ X � is theinitial symbolof thegrammarand £
is thefinite setof productionsor rulesof theform¨ª© «

where
¨ X � and

« X �N�¬®¡ �@¯ . We
consideronly context-freegrammarsin Chomsky
normal form, that is grammarswith rulesof the
form

¨°© ±�²
or
¨°© ³

where
¨ 6 ± 6 ² X �

and
³ X ¡ .

A Stochastic Context-Free Gramar ´ O is apair� ´ 6N� � wheré is acontext-freegrammarand� is
aprobabilitydistribution over thegrammarrules.

The grammaticalfeaturesare definedas fol-
lows: let �µ
 ���������¢��� , a sentenceof the train-
ing set.As mentionedabove,wecancomputethe
bestderivationof thesentence� , usingthedefined
SCFGandobtaintheparsetreeof thesentence.

Oncewehavetheparsetreeof all thesentences
in thetrainingcorpus,wecancollectthesetof all
theproductionrulesusedin thederivation of the
sentencesin thecorpus.

Formally: we define the set � � �	� 
¶ �NUV6�W·6�a � � a © UbW;¸ , whereUV6�W·6�a X ¡¹¬�� . � � �<�
is the set of all grammaticalrules used in the
derivation of � . To includethe rulesof the form¨y©º³

, wherë X � and
³ X ¡ , in theset � � �	� ,

we make useof a specialsymbol$ which is not
in theterminalsnor in thenon-terminals.If a rule
of the form

¨»©½¼
occursin thederivation tree

of � , thecorrespondingelementin � � �<� is written
as � ¨ 6 ¼ 6¢¾ � . Theset �¿
 ¬ O t<u � � �	� (where k is

thecorpus),is thesetof grammaticalfeatures.� is the set representationof the grammati-
cal informationcontainedin the derivation trees
of the sentencesandmay be incorporatedto the
WSME model by meansof the characteristic
functionsdefinedas:

5 M]\<^ _r^ À�P � �	�&
¿Á , if �U�6�W;6�a ��X.� � �	�x Othewise
(10)

Thus, whenever the WSME model processesa
sentence� , if it is looking for a specificgram-
matial feature,say �NÂ;6�ÃB6�Ä � , we get thederivation
treefor � andtheset � � �<� is calculatedfrom the
derivation tree. Finally, themodelasksif the the
tuple �NÂ;6�ÃB6�Ä � is an elementof � � �	� . If it is, the
featureis active; if not, the feature �NÂ;6�ÃB6�Ä � does
not contribute to thesentenceprobability. There-
fore,asentencemaybeagrammaticallyincorrect
sentence(relative to the SCFGused),if deriva-
tionswith low frequency appears.

4 Experimental Work

A part of the Wall StreetJournal(WSJ) which
hadbeenprocessedin thePennTreebanckProject
(Marcusetal.,1993)wasusedin theexperiments.
This corpuswasautomaticallylabelledandman-
ually checked.Thereweretwo kindsof labelling:
POStaglabelling and syntactic labelling. The
POStagvocabulary was composedof 45 labels.
The syntacticlabelsare14. The corpuswasdi-
videdinto sentencesaccordingto thebracketing.

We selected12 sectionsof the corpusat ran-
dom. Six wereusedastraining corpus,threeas
testsetandtheotherthreesectionswereusedas
held-outfor tuningthesmoothingWSMEmodel.
Thesetsaredescribedasfollow: thetrainingcor-
pushas11,201sentences;the test sethas6,350
sentencesand the held-out set has 5,796 sen-
tences.

A base-lineKatz back-off smoothedtrigram
model was trained using the CMU-Cambridge
statisticalLanguageModelingToolkit 4 andused
asprior distribution in (3) i.e. �;: . The vocabu-
lary generatedby the trigrammodelwasusedas
vocabulary of theWSME model. Thesizeof the
vocabulary was19,997words.

4Availableat:
http://svr-www.eng.cam.ac.uk/prc14/toolkit.html



Theestimationof theword-category probabil-
ity distribution was computedfrom the training
corpus.In orderto avoid null values,theunseen
events were labeledwith a special “unknown”
symbol which did not appearin the vocabulary,
sothat theprobabilitieof theunseenenventwere
positive for all thecategories.

TheSCFGhadthemaximumnumberof rules
which canbe composedof 45 terminalsymbols
(the number of POStags)and 14 non-terminal
symbols(the numberof syntacticlabels). The
initial probabilitieswererandomlygeneratedand
threedifferentseedsweretested.However, only
one of them is heregiven that the resultswere
very similar.

Thesizeof thesampleusedin theISSwases-
timatedby meansof an experimentalprocedure
andwasset at 10,000elements.The procedure
usedto generatethesamplemadeuseof the“di-
agnosisof convergence”(Neal, 1993),a method
by meansof which an inicial portionof eachrun
of the Markov chain of sufficient length is dis-
carded.Thus,thestatesin theremainingportion
comefrom the desiredequilibrium distribution.
In this work, a discardedportion of 3,000 ele-
mentswasestabliched.Thusin practice,we have
to generate13,000instancesof theMarkov chain.

During theIIS, every samplewastaggedusing
thegrammarestimatedabove,andthenthegram-
maticalfeatureswereextracted,beforecombining
themwith otherkinds of features.The adequate
numberof iterationsof theIIS wasestablishedex-
perimentallyin 13.

We trained several WSME modelsusing the
PerfectSamplingalgorithmin the IIS anda dif-
ferentsetof features(including the grammatical
features)for eachmodel. The different setsof
featuresusedin the modelswere: n-grams(1-
grams,2-grams,3-grams);triggers; n-gramsand
grammaticalfeatures;triggers and grammatical
feautres;n-grams,triggersandgrammaticalfea-
tures.

The ) -gram features,(N), was selected by
meansof its frequency in thecorpus.Weselectall
theunigrams,thebigramswith frequency greater
than 5 and the trigrams with frequency greater
than10,in orderto mantaintheproportionof each
typeof ) -gramin thecorpus.

The triggers,(T), weregeneratedusinga trig-

Feat. N T N+T

Without 143.197 145.432 129.639
With 125.912 122.023 116.42
% Improv. 12.10% 16.10% 10.2%

Table 1: Comparisonof the perplexity between
models with grammaticalfeaturesand models
without grammaticalfeaturesfor WSME mod-
els over part of the WSJ corpus. N meansfea-
turesof n-grams,T meansfeaturesof Triggers.
The perplexity of the trainedn-grammodelwas
PP=162.049

ger toolkit developedby Adam Berger 5. The
triggerswereselectedin acordancewith de mu-
tual information.Thetriggersselectedwerethose
with mutualinformationgreaterthan0.0001.

The grammaticalfeatures,(G), were selected
using the parsertree of all the sentencesin the
trainingcorpusto obtainthesets� �� � andtheir
union � asdefinedin section3.

The size of the initial set of featureswas:
12,023) -grams,39,428triggersand258gramati-
cal features,in total51,709features.At theendof
the trainingprocedure,thenumberof active fea-
tureswassignificantly reducedto 4,000features
on average.

During the training procedure,some of thef � ' x and, so, we smooth the model. We
smoothedit usinga gaussianprior technique.In
the gaussiantechnique,we assumedthat the f �
paramtershadagaussian(normal)prior probabil-
ity distribution (ChenandRosenfeld,1999b)and
found themaximumaposterioriparameterdistri-
bution. Theprior distributionwas f �#Å �Æ� x 6�Ç �� � ,
andwe usedthe held-outdatato find the Ç �� pa-
rameters.

Table 1 shows the experimentalresults: the
first row representsthesetof featuresused.The
secondrow shows the perplexity of the models
without using grammaticalfeatures. The third
row shows the perplexity of the models using
grammaticalfeaturesand the fourth row shows
the improvementin perplexity of eachmodelus-
ing grammaticalfeaturesover the corresponding
modelwithout grammaticalfeatures.As canbe
seenin Table1, all theWSME modelsperformed

5Availableat:
htpp://www.cs.cmu.edu/afs/cs/user/aberger/www/



betterthanthe ) -grammodel,however thatis nat-
ural because,in theworstcase(if all f � 
È, ), the
WSMEmodelsperformlike the ) -grammodel.

In Table 1, we see that all the models us-
ing grammaticalfeaturesperformbetterthanthe
modelsthatdo not useit. Sincethetrainingpro-
cedurewasthesamefor all themodelsdescribed
and since the only differencebetweenthe two
kindsof modelscomparedwerethegrammatical
features,thenwe concludethat the improvement
mustbedueto theinclusionof suchfeaturesinto
thesetof features.Theaveragepercentageof im-
provementwasabout13%.

Also, althoughthe model N+T performsbet-
ter thantheothermodelwithoutgrammaticalfea-
tures(N,T), it behavesworsethanall themodels
with grammaticalfeatures( N+G improved2.9%
andT+G improvd 5.9%overN+T).

5 Conclusionsand futur e work

In this work, we have sucessfullyaddedgram-
maticalfeaturesto a WSME languagemodelus-
ing a SCFGto extract the grammaticalinforma-
tion. We have shown that the the useof gram-
maticalfeaturesin a WSME modelimprovesthe
performanceof the model. Adding grammatical
featuresto the WSME model we have obtained
a reductionin perplexity of 13%on averageover
modelsthatdonotusegrammaticalfeatures.Also
a reductionin perplexity betweenapproximately
22% and 28% over the n-grammodel hasbeen
obtained.

Weareworkingontheimplementationof other
kindsof grammaticalfeatureswhicharebasedon
the POStagssentencesobtainedusingthe SCFG
thatwe have defined.Theprelimaryexperiments
have shown promisingresults.

We will alsobe working on the evaluationof
theword-errorrate(WER) of theWSME model.
In the caseof WSME model the WER may be
evaluatedin a typeof post-procesingusingthen-
bestutterances.
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