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Abstract

We discuss the advantages of lexical-

ized tree-adjoining grammar as an al-

ternative to lexicalized PCFG for sta-

tistical parsing, describing the induction

of a probabilistic LTAG model from the

Penn Treebank and evaluating its pars-

ing performance. We �nd that this in-

duction method is an improvement over

the EM-based method of (Hwa, 1998),

and that the induced model yields re-

sults comparable to lexicalized PCFG.

1 Introduction

Why use tree-adjoining grammar for statisti-
cal parsing? Given that statistical natural lan-
guage processing is concerned with the proba-
ble rather than the possible, it is not because
TAG can describe constructions like arbitrar-
ily large Dutch verb clusters. Rather, what
makes TAG useful for statistical parsing are
the structural descriptions it assigns to bread-
and-butter sentences.
The approach of Chelba and Jelinek (1998)

to language modeling is illustrative: even
though the probability estimate of w appear-
ing as the kth word can be conditioned on the
entire history w1; : : : ; wk�1, the quantity of
available training data limits the usable con-
text to about two words|but which two? A
trigram model chooses wk�1 and wk�2 and
works quite well; a model which chose wk�7

and wk�11 would probably work less well. But
(Chelba and Jelinek, 1998) chooses the lexical
heads of the two previous constituents as de-
termined by a shift-reduce parser, and works
better than a trigram model. Thus the (vir-
tual) grammar serves to structure the history
so that the two most useful words can be cho-

sen, even though the structure of the problem
itself is entirely linear.

Similarly, nothing about the parsing prob-
lem requires that we construct any struc-
ture other than phrase structure. But be-
ginning with (Magerman, 1995) statistical
parsers have used bilexical dependencies with
great success. Since these dependencies are
not encoded in plain phrase-structure trees,
the standard approach has been to let the lex-
ical heads percolate up the tree, so that when
one lexical head is immediately dominated by
another, it is understood to be dependent on
it. E�ectively, a dependency structure is made
parasitic on the phrase structure so that they
can be generated together by a context-free
model.

However, this solution is not ideal. Aside
from cases where context-free derivations are
incapable of encoding both constituency and
dependency (which are somewhat isolated
and not of great interest for statistical pars-
ing) there are common cases where percola-
tion of single heads is not su�cient to encode
dependencies correctly|for example, relative
clause attachment or raising/auxiliary verbs
(see Section 3). More complicated grammar
transformations are necessary.

A more suitable approach is to employ
a grammar formalism which produces struc-
tural descriptions that can encode both con-
stituency and dependency. Lexicalized TAG
is such a formalism, because it assigns to
each sentence not only a parse tree, which
is built out of elementary trees and is inter-
preted as encoding constituency, but a deriva-
tion tree, which records how the various el-
ementary trees were combined together and
is commonly intepreted as encoding depen-
dency. The ability of probabilistic LTAG to
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Figure 1: Grammar and derivation for \John should leave tomorrow."

model bilexical dependencies was noted early
on by (Resnik, 1992).
It turns out that there are other pieces of

contextual information that need to be ex-
plicitly accounted for in a CFG by gram-
mar transformations but come for free in a
TAG. We discuss a few such cases in Sec-
tion 3. In Sections 4 and 5 we describe
an experiment to test the parsing accuracy
of a probabilistic TAG extracted automati-
cally from the Penn Treebank. We �nd that
the automatically-extracted grammar gives
an improvement over the EM-based induction
method of (Hwa, 1998), and that the parser
performs comparably to lexicalized PCFG
parsers, though certainly with room for im-
provement.
We emphasize that TAG is attractive not

because it can do things that CFG cannot,
but because it does everything that CFG can,
only more cleanly. (This is where the anal-
ogy with (Chelba and Jelinek, 1998) breaks
down.) Thus certain possibilities which were
not apparent in a PCFG framework or pro-
hibitively complicated might become simple
to implement in a PTAG framework; we con-
clude by o�ering two such possibilities.

2 The formalism

The formalism we use is a variant of lexical-
ized tree-insertion grammar (LTIG), which is
in turn a restriction of LTAG (Schabes and

Waters, 1995). In this variant there are three
kinds of elementary tree: initial, (predicative)
auxiliary, and modi�er, and three composi-
tion operations: substitution, adjunction, and
sister-adjunction.

Auxiliary trees and adjunction are re-
stricted as in TIG: essentially, no wrapping
adjunction or anything equivalent to wrap-
ping adjunction is allowed. Sister-adjunction
is not an operation found in standard de�ni-
tions of TAG, but is borrowed from D-Tree
Grammar (Rambow et al., 1995). In sister-
adjunction the root of a modi�er tree is added
as a new daughter to any other node. (Note
that as it stands sister-adjunction is com-
pletely unconstrained; it will be constrained
by the probability model.) We introduce this
operation simply so we can derive the at
structures found in the Penn Treebank. Fol-
lowing (Schabes and Shieber, 1994), multiple
modi�er trees can be sister-adjoined at a sin-
gle site, but only one auxiliary tree may be
adjoined at a single node.

Figure 1 shows an example grammar and
the derivation of the sentence \John should
leave tomorrow." The derivation tree encodes
this process, with each arc corresponding to a
composition operation. Arcs corresponding to
substitution and adjunction are labeled with
the Gorn address1 of the substitution or ad-

1A Gorn address is a list of integers: the root of a
tree has address �, and the jth child of the node with



junction site. An arc corresponding to the
sister-adjunction of a tree between the ith and
i+ 1th children of � (allowing for two imagi-
nary children beyond the leftmost and right-
most children) is labeled �; i.
This grammar, as well as the grammar used

by the parser, is lexicalized in the sense that
every elementary tree has exactly one termi-
nal node, its lexical anchor.
Since sister-adjunction can be simulated

by ordinary adjunction, this variant is, like
TIG (and CFG), weakly context-free and
O(n3)-time parsable. Rather than coin a new
acronym for this particular variant, we will
simply refer to it as \TAG" and trust that no
confusion will arise.
The parameters of a probabilistic TAG

(Resnik, 1992; Schabes, 1992) are:
X

�

Pi(�) = 1
X

�

Ps(� j �) = 1
X

�

Pa(� j �) + Pa(NONE j �) = 1

where � ranges over initial trees, � over aux-
iliary trees,  over modi�er trees, and � over
nodes. Pi(�) is the probability of beginning
a derivation with �; Ps(� j �) is the prob-
ability of substituting � at �; Pa(� j �) is
the probability of adjoining � at �; �nally,
Pa(NONE j �) is the probability of nothing
adjoining at �. (Carroll and Weir, 1997) sug-
gest other parameterizations worth exploring
as well.
Our variant adds another set of parameters:
X



Psa( j �; i; f) + Psa(STOP j �; i; f) = 1

This is the probability of sister-adjoining 

between the ith and i+ 1th children of � (as
before, allowing for two imaginary children
beyond the leftmost and rightmost children).
Since multiple modi�er trees can adjoin at the
same location, Psa() is also conditioned on a
ag f which indicates whether  is the �rst
modi�er tree (i.e., the one closest to the head)
to adjoin at that location.
The probability of a derivation can then be

expressed as a product of the probabilities of

address i has address i � j.

the individual operations of the derivation.
Thus the probability of the example deriva-
tion of Figure 1 would be

Pi(�2) � Pa(NONE j �2(�)) �

Ps(�1 j �2(1)) � Pa(� j �2(2)) �

Psa( j �2(2); 1; true) �

Psa(STOP j �2(2); 1; false) �

Psa(STOP j �2(�); 0; true) � : : :

where �(i) is the node of � with address i.
We want to obtain a maximum-likelihood

estimate of these parameters, but cannot es-
timate them directly from the Treebank, be-
cause the sample space of PTAG is the space
of TAG derivations, not the derived trees that
are found in the Treebank. One approach,
taken in (Hwa, 1998), is to choose some gram-
mar general enough to parse the whole corpus
and obtain a maximum-likelihood estimate by
EM. Another approach, taken in (Magerman,
1995) and others for lexicalized PCFGs and
(Neumann, 1998; Xia, 1999; Chen and Vijay-
Shanker, 2000) for LTAGs, is to use heuristics
to reconstruct the derivations, and directly es-
timate the PTAG parameters from the recon-
structed derivations. We take this approach
as well. (One could imagine combining the
two approaches, using heuristics to extract a
grammar but EM to estimate its parameters.)

3 Some properties of probabilistic

TAG

In a lexicalized TAG, because each compo-
sition brings together two lexical items, ev-
ery composition probability involves a bilex-
ical dependency. Given a CFG and head-
percolation scheme, an equivalent TAG can
be constructed whose derivations mirror the
dependency analysis implicit in the head-
percolation scheme.
Furthermore, there are some dependency

analyses encodable by TAGs that are not en-
codable by a simple head-percolation scheme.
For example, for the sentence \John should
have left," Magerman's rules make should and
have the heads of their respective VPs, so that
there is no dependency between left and its
subject John (see Figure 2a). Since nearly a
quarter of nonempty subjects appear in such
a con�guration, this is not a small problem.
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Figure 2: Bilexical dependencies for \John
should have left."

(We could make VP the head of VP instead,
but this would generate auxiliaries indepen-
dently of each other, so that, for example,
P (John leave) > 0.)

TAG can produce the desired dependencies
(b) easily, using the grammar of Figure 1. A
more complex lexicalization scheme for CFG
could as well (one which kept track of two
heads at a time, for example), but the TAG
account is simpler and cleaner.

Bilexical dependencies are not the only
nonlocal dependencies that can be used to
improve parsing accuracy. For example, the
attachment of an S depends on the presence
or absence of the embedded subject (Collins,
1999); Treebank-style two-level NPs are mis-
modeled by PCFG (Collins, 1999; Johnson,
1998); the generation of a node depends on
the label of its grandparent (Charniak, 2000;
Johnson, 1998). In order to capture such
dependencies in a PCFG-based model, they
must be localized either by transforming the
data or modifying the parser. Such changes
are not always obvious a priori and often
must be devised anew for each language or
each corpus.

But none of these cases really requires
special treatment in a PTAG model, be-
cause each composition probability involves
not only a bilexical dependency but a \biarbo-
real" (tree-tree) dependency. That is, PTAG
generates an entire elementary tree at once,
conditioned on the entire elementary tree be-
ing modi�ed. Thus dependencies that have to
be stipulated in a PCFG by tree transforma-
tions or parser modi�cations are captured for
free in a PTAG model. Of course, the price

that the PTAG model pays is sparser data;
the backo� model must therefore be chosen
carefully.

4 Inducing a stochastic grammar

from the Treebank

4.1 Reconstructing derivations

We want to extract from the Penn Tree-
bank an LTAG whose derivations mirror
the dependency analysis implicit in the
head-percolation rules of (Magerman, 1995;
Collins, 1997). For each node �, these rules
classify exactly one child of � as a head and
the rest as either arguments or adjuncts. Us-
ing this classi�cation we can construct a TAG
derivation (including elementary trees) from a
derived tree as follows:

1. If � is an adjunct, excise the subtree
rooted at � to form a modi�er tree.

2. If � is an argument, excise the subtree
rooted at � to form an initial tree, leaving
behind a substitution node.

3. If � has a right corner � which is an ar-
gument with the same label as � (and all
intervening nodes are heads), excise the
segment from � down to � to form an
auxiliary tree.

Rules (1) and (2) produce the desired re-
sult; rule (3) changes the analysis somewhat
by making subtrees with recursive arguments
into predicative auxiliary trees. It produces,
among other things, the analysis of auxiliary
verbs described in the previous section. It is
applied in a greedy fashion, with potential �s
considered top-down and potential �s bottom-
up. The complicated restrictions on � are sim-
ply to ensure that a well-formed TIG deriva-
tion is produced.

4.2 Parameter estimation and

smoothing

Now that we have augmented the training
data to include TAG derivations, we could
try to directly estimate the parameters of the
model from Section 2. But since the number of
(tree, site) pairs is very high, the data would
be too sparse. We therefore generate an ele-
mentary tree in two steps: �rst the tree tem-
plate (that is, the elementary tree minus its
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Figure 3: A few of the more frequently-occurring tree templates. � marks where the lexical
anchor is inserted.

anchor), then the anchor. The probabilities
are decomposed as follows:

Pi(�) = Pi1(��)Pi2(w� j ��)
Ps(� j �) = Ps1(�� j �)�

Ps2(w� j ��; t�; w�)
Pa(� j �) = Pa1(�� j �)�

Pa2(w� j ��; t�; w�)
Psa( j �; i; f) = Psa1(� j �; i; f)�

Psa2(w j � ; t�; w� ; f)

where �� is the tree template of �, t� is the
part-of-speech tag of the anchor, and w� is
the anchor itself.
The generation of the tree template has two

backo� levels: at the �rst level, the anchor
of � is ignored, and at the second level, the
POS tag of the anchor as well as the ag f

are ignored. The generation of the anchor has
three backo� levels: the �rst two are as before,
and the third just conditions the anchor on its
POS tag. The backed-o� models are combined
by linear interpolation, with the weights cho-
sen as in (Bikel et al., 1997).

5 The experiment

5.1 Extracting the grammar

We ran the algorithm given in Section 4.1 on
sections 02{21 of the Penn Treebank. The ex-
tracted grammar is large (about 73,000 trees,
with words seen fewer than four times re-
placed with the symbol *UNKNOWN*), but if we
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Figure 4: Frequency of tree templates versus
rank (log-log)

consider elementary tree templates, the gram-
mar is quite manageable: 3626 tree templates,
of which 2039 occur more than once (see Fig-
ure 4).
The 616 most frequent tree-template types

account for 99% of tree-template tokens in the
training data. Removing all but these trees
from the grammar increased the error rate by
about 5% (testing on a subset of section 00).
A few of the most frequent tree-templates are
shown in Figure 3.
So the extracted grammar is fairly com-

pact, but how complete is it? If we plot the
growth of the grammar during training (Fig-
ure 5), it's not clear the grammar will ever
converge, even though the very idea of a
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grammar requires it. Three possible explana-
tions are:

� New constructions continue to appear.

� Old constructions continue to be (erro-
neously) annotated in new ways.

� Old constructions continue to be com-
bined in new ways, and the extraction
heuristics fail to factor this variation out.

In a random sample of 100 once-seen ele-
mentary tree templates, we found (by casual
inspection) that 34 resulted from annotation
errors, 50 from de�ciencies in the heuristics,
and four apparently from performance errors.
Only twelve appeared to be genuine.

Therefore the continued growth of the
grammar is not as rapid as Figure 5 might
indicate. Moreover, our extraction heuristics
evidently have room to improve. The major-
ity of trees resulting from de�ciencies in the
heuristics involved complicated coordination
structures, which is not surprising, since co-
ordination has always been problematic for
TAG.

To see what the impact of this failure to
converge is, we ran the grammar extractor on
some held-out data (section 00). Out of 45082
tree tokens, 107 tree templates, or 0.2%, had
not been seen in training. This amounts to
about one unseen tree template every 20 sen-
tences. When we consider lexicalized trees,
this �gure of course rises: out of the same
45082 tree tokens, 1828 lexicalized trees, or
4%, had not been seen in training.

So the coverage of the grammar is quite
good. Note that even in cases where the parser
encounters a sentence for which the (fallible)
extraction heuristics would have produced an
unseen tree template, it is possible that the
parser will use other trees to produce the cor-
rect bracketing.

5.2 Parsing with the grammar

We used a CKY-style parser similar to the one
described in (Schabes andWaters, 1996), with
a modi�cation to ensure completeness (be-
cause foot nodes are treated as empty, which
CKY prohibits) and another to reduce useless
substitutions. We also extended the parser
to simulate sister-adjunction as regular ad-
junction and compute the ag f which dis-
tinguishes the �rst modi�er from subsequent
modi�ers.
We use a beam search, computing the score

of an item [�; i; j] by multiplying it by the
prior probability P (�) (Goodman, 1997); any
item with score less than 10�5 times that of
the best item in a cell is pruned.
Following (Collins, 1997), words occur-

ring fewer than four times in training were
replaced with the symbol *UNKNOWN* and
tagged with the output of the part-of-speech
tagger described in (Ratnaparkhi, 1996). Tree
templates occurring only once in training
were ignored entirely.
We �rst compared the parser with (Hwa,

1998): we trained the model on sentences of
length 40 or less in sections 02{09 of the Penn
Treebank, down to parts of speech only, and
then tested on sentences of length 40 or less in
section 23, parsing from part-of-speech tag se-
quences to fully bracketed parses. The metric
used was the percentage of guessed brackets
which did not cross any correct brackets. Our
parser scored 84.4% compared with 82.4% for
(Hwa, 1998), an error reduction of 11%.
Next we compared our parser against lex-

icalized PCFG parsers, training on sections
02{21 and testing on section 23. The results
are shown in Figure 6.
These results place our parser roughly in

the middle of the lexicalized PCFG parsers.
While the results are not state-of-the-art,
they do demonstrate the viability of TAG
as a framework for statistical parsing. With



� 40 words � 100 words
LR LP CB 0 CB � 2 CB LR LP CB 0 CB � 2 CB

(Magerman, 1995) 84.6 84.9 1.26 56.6 81.4 84.0 84.3 1.46 54.0 78.8
(Collins, 1996) 85.8 86.3 1.14 59.9 83.6 85.3 85.7 1.32 57.2 80.8
present model 86.9 86.6 1.09 63.2 84.3 86.2 85.8 1.29 60.4 81.8
(Collins, 1997) 88.1 88.6 0.91 66.5 86.9 87.5 88.1 1.07 63.9 84.6
(Charniak, 2000) 90.1 90.1 0.74 70.1 89.6 89.6 89.5 0.88 67.6 87.7

Figure 6: Parsing results. LR = labeled recall, LP = labeled precision; CB = average crossing
brackets, 0 CB = no crossing brackets, � 2 CB = two or fewer crossing brackets. All �gures
except CB are percentages.

improvements in smoothing and cleaner han-
dling of punctuation and coordination, per-
haps these results can be brought more up-
to-date.

6 Conclusion: related and future

work

(Neumann, 1998) describes an experiment
similar to ours, although the grammar he ex-
tracts only arrives at a complete parse for 10%
of unseen sentences. (Xia, 1999) describes a
grammar extraction process similar to ours,
and describes some techniques for automati-
cally �ltering out invalid elementary trees.
Our work has a great deal in common

with independent work by Chen and Vijay-
Shanker (2000). They present a more detailed
discussion of various grammar extraction pro-
cesses and the performance of supertagging
models (B. Srinivas, 1997) based on the ex-
tracted grammars. They do not report parsing
results, though their intention is to evaluate
how the various grammars a�ect parsing ac-
curacy and how k-best supertagging a�fects
parsing speed.
Srinivas's work on supertags (B. Srinivas,

1997) also uses TAG for statistical parsing,
but with a rather di�erent strategy: tree tem-
plates are thought of as extended parts-of-
speech, and these are assigned to words based
on local (e.g., n-gram) context.
As for future work, there are still possibili-

ties made available by TAG which remain to
be explored. One, also suggested by (Chen
and Vijay-Shanker, 2000), is to group elemen-
tary trees into families and relate the trees of
a family by transformations. For example, one
would imagine that the distribution of active

verbs and their subjects would be similar to
the distribution of passive verbs and their no-
tional subjects, yet they are treated as inde-
pendent in the current model. If the two con-
�gurations could be related, then the sparse-
ness of verb-argument dependencies would be
reduced.

Another possibility is the use of multiply-
anchored trees. Nothing about PTAG requires
that elementary trees have only a single an-
chor (or any anchor at all), so multiply-
anchored trees could be used to make, for
example, the attachment of a PP dependent
not only on the preposition (as in the cur-
rent model) but the lexical head of the prepo-
sitional object as well, or the attachment of
a relative clause dependent on the embed-
ded verb as well as the relative pronoun. The
smoothing method described above would
have to be modi�ed to account for multiple
anchors.

In summary, we have argued that TAG pro-
vides a cleaner way of looking at statisti-
cal parsing than lexicalized PCFG does, and
demonstrated that in practice it performs in
the same range. Moreover, the greater ex-
ibility of TAG suggests some potential im-
provements which would be cumbersome to
implement using a lexicalized CFG. Further
research will show whether these advantages
turn out to be signi�cant in practice.
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