

Computational Linguistics and Chinese Language Processing

Vol. 13, No. 4, December 2008, pp. 387-404 387ʳ

 The Association for Computational Linguistics and Chinese Language Processing

[Received August 31, 2008; Revised February 23, 2009; Accepted February 16, 2009]

Feature Weighting Random Forest for Detection of

Hidden Web Search Interfaces

Yunming YeϠ, Hongbo LiϠ, Xiaobai DengϠ and

Joshua Zhexue HuangЀ

Abstract

Search interface detection is an essential task for extracting information from the
hidden Web. The challenge for this task is that search interface data is represented
in high-dimensional and sparse features with many missing values. This paper
presents a new multi-classifier ensemble approach to solving this problem. In this
approach, we have extended the random forest algorithm with a weighted feature
selection method to build the individual classifiers. With this improved random
forest algorithm (IRFA), each classifier can be learned from a weighted subset of
the feature space so that the ensemble of decision trees can fully exploit the useful
features of search interface patterns. We have compared our ensemble approach
with other well-known classification algorithms, such as SVM, C4.5, Naïve Bayes,
and original random forest algorithm (RFA). The experimental results have shown
that our method is more effective in detecting search interfaces of the hidden Web.

Keywords: Search Interface Detection, Random Forest, Hidden Web, Form
Classification

1. Introduction

Hidden Web refers to the Web pages that are dynamically generated from searchable
structured or unstructured databases. Different from the Publicly Indexable Web that is
accessible through static hyperlinks, the pages in a hidden Web can only be obtained through
queries submitted via the search interface to the databases containing data about the hidden
Web. Search interfaces are usually encoded as HTML forms that need to be filled out and

Ϡ Shenzhen Graduate School, Harbin Institute of Technology, China
E-mail: yeyunming@hit.edu.cn; {wave118, dawndeng}@gmail.com

Ѐ E-Business Technolgy Institute, The University of Hong Kong, Pokfulam Road, Hong Kong
 E-mail: jhuang@eti.hku.hk

388 Yunming Ye et al.

submitted by users to obtain information. On the Web, there are many different HTML forms,
and many of them are not search interfaces (He, Patel, Zhang, & Chang, 2007). To extract
useful information from hidden Web pages, effectively detecting the search interfaces is an
essential step since the interface is the only entrance to the hidden Web. Therefore, we first
need to find the entrance to the hidden database. The entrance (i.e., search forms) is mixed
with lots of non-search forms in HTML pages. Thus, it is very important to distinguish the two
types of forms in order to enable the Hidden Web crawler to locate the entrance and extract
information further.

Information extraction from the hidden Web has been a hot research
topic (BrightPlanet.com, 2000) since the term �“Hidden Web�” was first coined (Florescu, Levy,
& Mendelzon, 1998). Most previous work, however, has been focused on the problems of
automatic query generation (Ntoulas, Zerfos, & Cho, 2005), form filling (Cavelee, Liu, &
Probe, 2004), and wrapper generation for extracting structured information (Wang &
Lochovsky, 2003), where detecting search interface was performed manually or by some
heuristic methods. Using heuristic rules to find search forms is the simplest and most effective
method (Raghavan & Garcia-Molina, 2001; Lage, Silva, Golgher, & Laender, 2004). As
hidden Web sites adopt different search forms, though, it is time-consuming to compose
different rules for different search forms. Employing machine learning and information
retrieval techniques to learn classification models from the content of search forms and using
the models to classify different forms automatically is a more desirable approach with respect
to scalability and robustness. This approach regards search interface detection as a two-class
classification problem. One example of this is using decision trees to build form classification
models to detect search interface (Cope, Craswell, & Hawking, 2003).

Automatic search interface detection was first explored by Raghavan and Garcia-Molina
in their hidden Web crawler HiWE (Hidden Web Exposer) (Raghavan & Garcia-Molina,
2001). Their crawling system used heuristic rules to detect the search entrance to the hidden
database. Juliano P. Lage (Lage, Silva, Golgher, & Laender, 2004) used two heuristic rules to
perform detection tasks. The first heuristic was the same as HiWE. The second one was to
check whether the form contains the �“password�” HTML element or not. The disadvantage of
this method, however, lies in that it does not have auto-leaning capability. Moreover, it is not
robust and scalable to diverse hidden Web databases because the rules are too simple to match
different form structures.

Cope et al. (2003)used a decision tree classification algorithm to detect search interfaces.
This method usually generates long rules due to the large size of the feature space in the
training set (the number of training samples is too small compared to the number of features).
Therefore, it is prone to overfitting, and the classification precision is not satisfying.

Zhang et al. (2004) presented a best-effort parsing framework to address the problem of

 Feature Weighting Random Forest for Detection of 389

Hidden Web Search Interfaces

understanding Web search interfaces. The authors transformed search interfaces into a visual
language under the hypothesis that automatic construction of search interfaces is guided by a
hidden syntax. This hypothesis enables parsing as a principled framework to understand the
semantic model of the visual language. The experimental results testified the effectiveness of
their approach.

To summarize, little previous work has addressed the special characteristics of the search
interface detection domain, for instance, large and diverse features, small size of training
samples with many missing values, etc. The high dimension and sparse data of search
interfaces present a tricky problem for the traditional single classifier approach. As collecting
training samples (i.e., HTML forms) is costly, the training data set is usually small, while the
number of features in the learning space is relatively large, due to multi-type features existing
in forms. It�’s difficult for a single classifier to fully exploit the rich feature space (very sparse
in the data matrix). For many classification methods, the single classifier tends to be
overfitting. To attack this problem, we propose a multi-classifier ensemble approach in this
paper.

Our method is based on the random forest algorithm. A random forest model consists of
a set of decision trees that are constructed by bootstrapping the training data. In our approach,
we develop a weighted feature selection method to select a subset of features for each decision
tree in the tree induction process. Classification is made by aggregating predictions of
individual decision trees in the forest. Since each classifier is learned from a subset of the
feature space, the ensemble approach can fully exploit the useful features in search forms. We
have conducted experiments on several real data sets. The experimental results have shown
that our random forest approach improves the classification accuracy in search interface
detection.

The contributions of this paper can be summarized as follows:

1. We explored the random forest approach to attacking the problem of detecting search
interfaces from the sparse feature space of hidden Webs where specific feature extraction
and representation techniques were used.

2. We extended the random forest algorithm with a weighted feature selection method to select
a subset of features for each decision tree. The new algorithm can automatically remove the
noisy features in search forms so that decision tree classifiers can be learned from more
representative subsets of the feature space.

3. We conducted experiments on real data sets to compare the improved random forest
algorithm with other well-known classification algorithms, such as SVM and C4.5. The
experimental results have shown that the new method is more effective in detecting search
interfaces of the hidden Web.

390 Yunming Ye et al.

The rest of this paper is organized as follows. In Section 2, we formalize the detecting
search interface problem as a form classification problem and present the feature extraction
techniques. Section 3 describes the improved random forest algorithm for form classification.
Experimental results and analysis are presented in Section 4. Section 5 concludes this paper
and presents our future work.

2. Feature Extraction for Form Classification

Search interface detection is a process of distinguishing the search forms of the hidden Web
from non-search forms. It is a two-class classification problem in machine learning. This
section describes how to extract form features from HTML pages and discusses the
characteristics of the data matrix for form classification.

2.1 Feature Extraction Rules
An HTML form usually begins with the tag FORM and ends with the tag FORM .
According to this rule, HTML forms can be extracted by searching the FORM tag in
HTML pages. Each extracted form is a sample in the training set. The features of each form
are generated by parsing the corresponding FORM HTML block.

HTML forms contain two kinds of features: one is the attributes of forms and elements,
and the other is the statistics of those attributes. A form mainly contains four kinds of
elements, that is, �“INPUT�”, �“SELECT�”, �“LABEL�” and �“TEXTAREA�”, which are the children
elements of �“FORM�” element. Element �“INPUT�” contains several types, such as �“text�”,
�“hidden�”, etc. The hierarchy of a form is shown in Figure 1. All of these elements contain a set
of attributes, such as �“name�”, �“value�”, �“size�”, etc. The attributes of �“form�” elements are
�“method�”, �“action�”, and �“name�”. Attribute �“method�” indicates the method for the form to
submit query data, such as �“POST�” or �“GET�”. Attribute �“action�” indicates the address of the
corresponding server of the form, and attribute �“name�” indicates the name of the form. Some
elements and attributes can be removed because they are not useful for form classification, for
instance �“option�”, �“size�”, �“width�”, etc. Besides, the statistics about the number of elements or
attributes in each element can also be computed as important features.

Figure 1. The hierarchy of form elements

 Feature Weighting Random Forest for Detection of 391

Hidden Web Search Interfaces

Figure 2 shows an example of a search form. The form contains three elements: one
�“SELECT�” element and two �“INPUT�” elements. There are three attributes in the �“SELECT�”
element : �“name�” with value �“and�”, �“size�” with value �“1�”, and �“width�” with value �“50�”. It also
contains several �“OPTION�” elements. The �“size�” and �“width�” attributes, along with the
�“OPTION�” elements are not useful for form classification, so they can be removed. The
corresponding HTML codes are shown in Figure 3.

Figure 2. A search form

Figure 3. The HTML codes of the form in Figure 2

Figure 4 shows an example of a non-search form. The corresponding HTML codes are
shown in Figure 5. According the feature extraction rules, the useful form elements in this
form include �“INPUT�”, �“LABEL�”, and �“FORM�”, which can be used to compose the feature
space. Elements �“TABEL�”, �“FONT�”, and �“TR�” can be removed because they are not useful.

Figure 4. A non-search form

392 Yunming Ye et al.

Figure 5. The HTML codes of the form in Figure 4

There are some important differences between the features of search form and non-search
form. First, the number of �“INPUT�”, �“SELECT�”, and �“TEXTAREA�” elements in search
forms is larger than that in non-search forms. Second, the value of the �“method�” attribute in
�“FORM�” elements is always set as �“POST�” in search forms, while it is always set as �“GET�” in
non-search forms. Moreover, the elements�’ values of search forms often contain some
keywords such as �“search�”, �“find�”, or other words that have the same meaning as �“search�”.
These differences, however, are not the only decisive factors. There are other features that can
be explored by classification algorithms.

According to the major differences, six kinds of rules are used in the feature extraction
process as follows:

1. Extract the �“name�” attribute values from �“input�”, �“select�”, �“textarea�”, and �“label�”
elements;

2. Extract the �“value�” attribute value from �“input�”, �“textarea�”, and �“label�” elements;

3. Extract the �“name�” and �“method�” attribute values from �“form�” elements;

4. Extract the words that appear between slashes(/) in the �“action�” attributes of the �“form�”
elements;

5. Extract the words that appear between slashes(/) in the �“src�” and �“alt�” attributes of the
�“input-image�” element;

6. Calculate the number of �“input�”, �“select�”, �“label�”, and �“textarea�” elements in each form.

The next step is to standardize the value of the features that are extracted from the forms.

 Feature Weighting Random Forest for Detection of 393

Hidden Web Search Interfaces

First, all strings are transformed into lowercases; then the string type values are aggregated
and mapped to specific enumerating values. For instance, the values of �“search�”, �“find�”, or
�“srch�” are mapped to �“search�”.

2.2 The Sparse Data Matrix
The extracted features and the labels of forms are used to compose the data matrix for the
classification algorithm. The formalized data matrix is shown in Table 1.

Table 1. The data matrix for form classification

class 1t 2t it mt

1c 11a 12a 1ia 1ma

jc 1ja 2ja jia jma

nc 1na 2na nia nma

The set 1 2 mT t t t in Table 1 represents the names of the form features. For form
classification, the label of a form is represented as an element in the set C yes no , while
�“yes�” indicates that the form is a search interface of hidden Web and �“no�” indicates a
non-search interface. Each row is a sample form. jia represents the value of feature it in
the j th form, and jc indicates the class of the j th form. Table 2 illustrates two examples
of a search form and a non-search form as shown in Figure 2 and Figure 4.

The expression of it is a four-tuple of �“element name�”-�“type�”-�“attribute
name�”-�“sequence number�”. The �“element name�” contains six values: �“FORM�”, �“SELECT�”,
�“INPUT�”, �“TEXT AREA�”, �“LABEL�”, and their statistics. For element, �“INPUT�”, the value of
�“type�” can be �“text�”, �“hidden�”, and so on. �“attribute name�” has six options: �“name�”, �“value�”,
�“src�”, �“alt�”, �“method�”, and �“action�”. Sequence number represents the sequence of the features
in the form.

As illustrated in Table 2, the combination of �“element name�”,�“type�”,�“attribute name�”,
and �“sequence number�” has many unique alternatives. This will result in a high-dimensional
feature space for form classification. Furthermore, since each form has just a few features, the
data matrix for classification is very sparse and there are many missing values and noisy
features. This problem presents a big challenge for search form detection.

Table 2. Two examples of form vectors
class form-action-1 form-action-2 form-action-3 input-text-number input-submit-number

yes www.thearda.com cgi-bin search 1 1

no servlet login ? 3 0

394 Yunming Ye et al.

3. Feature Weighting Random Forest Algorithm

This section presents an improved random forest algorithm, which extends the classical
random forest method with a feature weighting technique. We describe the basic random
forest classification approach in Subsection 3.1 and our new algorithm in Subsection 3.2.

3.1 Random Forest Algorithm
Random Forest (RFA) (Ho, 1998; Breiman, 2001) is an ensemble of unpruned classification or
regression trees, which is induced from bootstrapping samples of the training set, using
random feature selection in the tree induction process. Prediction is made by aggregating the
predictions of the ensemble. Random Forest grows many classification trees. To classify a
new object from an input vector, it passes the sample vector to each of the trees in the forest.
Each tree gives a classification decision. All the classification results of individual trees are
combined to choose the classification having the most votes over all the classification trees in
the forest.

Random forest generally exhibits a substantial performance improvement over single tree
classifiers, such as CART (Breiman, Friedman, & Olshen, 1984) and C4.5 (Quinlan, 1993). It
presents a good solution for classification of sparse data sets. Since basic RFA selects features
randomly, it�’s easy to select unimportant or noisy features, especially when there are many
noisy features in the training data. This may lead to bad classification results. As discussed in
previous sections, the data matrix for form classification contains many missing values. It�’s
necessary to enhance basic RFA so that the performance can be improved in search form
classification.

3.2 Improved Random Forest with Weighted Feature Selection
Due to the sparse feature space, there are a lot of missing values in the training data set. The
features with too many missing values become less important and can be treated as noisy
features. Random selection of features often obtains many unimportant or noisy features,
which leads to bad trees in the forest. To avoid this, we extend basic RFA, using a weighting
scheme in feature selection to replace random selection. We use 2 statistic to measure the
importance of features (Larson, 1982). The 2 statistic of a feature A against the class
feature is computed as follows.

222

1 1

()m ij ij

i j ij

o e
e

 (1)

where

 Feature Weighting Random Forest for Detection of 395

Hidden Web Search Interfaces

- m is the number of values in feature A

- ijo is the count of joint event ()i jA C , defined as:
()ij i jo count A a C c (2)

- ije is the expected value of joint event ()i jA C , defined as:

() ()i j
ij

count A a count C c
e

N
 (3)

where N is the number of the samples in the training data, ()icount A a is the number
of samples whose value of feature A is ia , and ()jcount C c is the number of samples
whose value of the class feature is jc .

An 2 statistic weight is calculated for each feature. From the weights, we select only
different subsets of features with high weights to build individual decision trees.

Given a set of decision trees built from different subsets of features, we use a probability
estimation technique to combine the results of individual classifiers. Assume x is a test
instance and is given to each classifier (1)jh j k for deciding a possible class ic . The
output of an individual classifier can be computed as (())i jP I x c h . The final classification
result is achieved by combining the probability values as:

1

1(()) (())
k

i i j
j

P I x c P I x c h
k

 (4)

If class ic has the highest probability, ic is the class of x . Kittler has provided a more
profound explanation of this method (Kittler, Hatef, Duin, & Matas, 1998). The pseudo-code
of the new algorithm (IRFA) is given in 1Algorithm .

Step 1 is to compute a weight for each feature according to (1). Step 2 sorts the features
in descending order of feature weights. Step 3 selects n features from the entire feature set
according to a given feature selection rate . Step 4 learns individual classifiers from the
selected training samples (and selected features). Selection of training samples employs the
bootstrapping method. The method of sampling without replacement is used to select t
features from n features, where 2log 1t n . After each iteration, the learned decision
tree classifier will be added to forest M . After forest M is grown, Step 5 classifies the
unlabeled instances based on (4).

396 Yunming Ye et al.

Algorithm 1 The pseudo-code of the feature weighting random forest algorithm

Input:
- D : the training database (its number is d),
- N : the features of the forms (its number is n),

- C : the target class attribute C yes no ,

- k : the number of decision trees,
- : the selection rate of features.

Output: the decision forest M .
Process:
1. Compute the weight W based on Formula (1);
2. Sort N on the descending order of weight W ;

3. Let n n , and select n features with larger weights as the training samples;

4. for 1i to k do
(a) Select d samples from the training samples by bootstrapping;

(b) Randomly select t features; where 2log 1t n and the selection is biased towards
the features with larger weights;

(c) Build a decision tree from the d samples with selected features;

(d) Add the learned decision tree to M ;
endfor

5. Using M to do classification based on Formula (4).

3.3 The computational complexity
The computational complexity of RFA (Breiman, 2001) is (log)O ktd d , where k is the
number of decision trees, t is the number of attributes, d is the number of training samples.
In IRFA, the enumerating number of the feature attribute is constant (Formula (1)). The
computational complexity of all feature weights is ()O n . Using the bucket sorting method,
the weights can be sorted in linear time. Therefore, the computational complexity of the IRFA
is (log)O ktd d n , where 2log 1t n . Therefore, the computational complexity of
IRFA is very close to the complexity of RFA.

The computational cost depends on three factors: the number of decision trees k , the
number of features n , and the number of training samples d . We will discuss how to select
the number of decision trees k and the number of features n to balance between
classification accuracy and computational cost in Section 4.

 Feature Weighting Random Forest for Detection of 397

Hidden Web Search Interfaces

4. Experiments

4.1 Data Sets
We used two Web page collections in our experiments. One was taken from project
Metaquerier1, and the other was created by crawling the website Search Engine Guide2 with a
Web crawler implemented in Java. The two collections represent a pseudo-random crawling of
the Web. A HTML parser was developed to extract the HTML forms and their context
features from these two collections. The extracted forms were used to compose the final data
sets for experiments.

Table 3. The three data sets used in the experiments
 search non-search features content of data sets

Data set 1 46 43 198
Extracted from the website
collection crawled from Search
Engine Guide by crawler

Data Set 2 65 116 208
Extracted from artificial
website collection of
Metaquerier project

Data Set 3 51 96 202 The forms are selected from
data set 1 and data set 2.

Figure 6. The domain distribution of non-search forms

We manually classified the extracted forms into search forms (i.e., real search interface
of hidden Web) and non-search forms. Three classification data sets were constructed from the
classified forms, as shown in Table 3. The three data sets have a variety of sample
distributions. Data set 1 and Data set 2 cover different domains, while Data set 3 is a mixture

1http://metaquerier.cs.uiuc.edu/repository/ training data set
2http://www.searchengineguide.com

398 Yunming Ye et al.

of the two domains. The three data sets also have different feature types and feature numbers.
The average number of features in the data sets is over 200, while the average number of
samples is less than 140. The matrices of the three data sets were quite sparse, and the number
of features was quite large.

To further test the robustness of our method, the non-search forms in the data sets were
made of a variety of forms, including registration forms, login forms, network investigation
forms, etc. Figure 6 shows the distribution of different non-search forms.

4.2 Comparison Experiments
We first carried out experiments to compare our random forest method with four well-known
classification algorithms, i.e., Support Vector Machine (SVM), C4.5, Naïve Bayes,and
Random Forest Algorithm (RFA) implemented in Weka3. We also implemented our algorithm
(IRFA) as a plug-in of Weka and conducted all experiments in this environment to make a fair
comparison. We conducted the standard 10-fold classification experiments on the three data
sets. The evaluation metrics used were precision and computation time. The number of trees
was set to 100 for IRFA and parameter set to 0.5 . The final experimental results are
shown in Table 4.

Table 4. The results of comparison experiments

 Bayes C4.5 Decision Tree SVM RFA IRFA

Data Set 1 Precision
Time Cost(s)

82.02%
0.005

80.90%
0.05

79.78%
0.52

88.76%
3.16

91.01%
7.08

Data Set 2 Precision
Time Cost(s)

83.43%
0.005

88.40%
0.03

82.87%
0.88

91.71%
5.22

92.27%
17.86

Data Set 3 Precision
Time Cost(s)

84.35%
0.005

89.79%
0.02

85.71%
0.88

91.84%
3.58

93.88%
15.13

We can see that IRFA showed significant improvement over the other four algorithms.
The result of C4.5 was better than SVM and Naïve Bayes. This was due to the fact that there
were a lot of missing values in the data sets and SVM and Naïve Bayes did not perform well
in this kind of sparse data. The high dimensionality in the training sets, however, causes an
overfitting problem to C4.5 because the single decision tree could become very complex. RFA
and IRFA can avoid this problem by selecting different subsets of features to build individual
decision trees. Compared with RFA, IRFA uses features that are more correlated to the class
label feature, so the accuracy of each individual tree is improved. Therefore, our method got
better performance than RFA. Since IRFA needed to compute the 2 values for features, it

3http://www.cs.waikato.ac.nz/ml/weka/

 Feature Weighting Random Forest for Detection of 399

Hidden Web Search Interfaces

took more computational time. This extra overhead, however, is worthwhile and acceptable in
real applications because the training process is offline and not executed frequently.

4.3 Selection of the Number of Features
When building each decision tree, IRFA only selects a subset of the original features. The
number of selected features is controlled by the selection rate . Different selection rates
result in different classification precisions and computational costs. We carried out
experiments on the three data sets with 0.1, 0.2, , 1.0 . Figure 7 plots selection rate
against precision, while Figure 8 is against computational cost.

Figure 7 shows that when 0.5 , the precision increases greatly as the selection rate
increases. The reason is that a larger selection rate increases the number of features to be
selected. When 0.5 0.8 , the classification performance becomes relatively stable. This
means that the forest has selected enough discriminative features. When 0.8 , the
precision will decrease as the selection rate increases. This can be explained by the idea that
having too large a selection rate will increase the possibility of selecting noisy features. Most
experiments have shown that 0.5 was a good setting.

Figure 8 shows that the computational time of IRFA increases linearly as the feature
selection rate increases. This property indicates that IRFA is scalable to large
high-dimensional data.

 Figure 7. Influence of the number of features on precision

Figure 8. Influence of the number of features on time cost

400 Yunming Ye et al.

4.4 Selection of the Number of Trees
Another interesting issue is whether the performance of IRFA highly depends on the size of a
forest (number of decision trees in the forest). Since a large number of trees lead to a
considerable computational cost, we need to find a good tradeoff between classification
precision and computational cost. We performed experiments on the three data sets with
different tree numbers (10,25,50,75,100,125,150,200)k . The feature selection rate was
set to 0.5 in all experiments. The experimental results are shown in Figure 9 and Figure 10.

Figure 9 plots the precision against the number of trees k . The results show that if the
number of trees is too small, the classification performance of the forest will be unstable. If
the number of trees is too large, however, the computational cost for generating a forest will
be very high. The classification precision becomes stable when 75 150k . The
near-optimal precision can be obtained when k is set to 100. Moreover, as shown in
Figure 10, with the increase of the number of trees, the computational time increases linearly
as well. Therefore, in most situations, 100k is a good balance between classification
accuracy and computational cost.

 Figure 9. Influence of the number of trees on precision

Figure 10. Influence of the number of trees on time cost

 Feature Weighting Random Forest for Detection of 401

Hidden Web Search Interfaces

4.5 Comparison in Different Domains
The representation of search forms in different domains varies, so it is necessary to investigate
if the performance of IRFA can be consistent in different domains. An experiment was
designed to classify search interfaces from four different domains. We used the Web
collection provided by Metaquerier4, which contains the information about Books, Movies,
Airfares, and Jobs. The number of trees for IRFA was set to 100, and parameter was set to
0.5.

The experimental results are shown in Table 5. We can see the obvious variance of
accuracy with regard to different domains. The detection accuracies for Books and Jobs
domains are higher than those of Movies and Airfares. This was due to the different HTML
structures of the search interfaces, as the search interfaces of Movies and Airfares domains are
more complex and some of them require more than one step to get the content. The results
imply that more formalized and simpler interfaces are more easily recognized. From the
results, we also observe that the classification performance of IRFA was very stable in various
domains. Even though the precision of SVM on the Movies data set was a little better than
IRFA, it became the worst in other domains. Compared with other algorithms, IRFA was the
most stable.

 Table 5. Results of comparison experiments on different domains
 Dataset Size Bayes C4.5 SVM RFA IRFA

Books 251 92.83% 96.41% 89.24% 92.03% 96.81%

Movies 126 91.27% 91.27% 92.06% 87.30% 91.27%

Airfares 265 89.06% 90.94% 87.92% 91.69% 91.70%

Jobs 104 88.46% 94.23% 78.85% 96.15% 96.15%

4.6 Comparison with Different Feature Selection Schemes
We conducted experiments to demonstrate the performance of IRFA with different feature
selection schemes. In this section, we used four commonly used feature selection functions
mentioned in (Dash & Liu, 1997).

1. Random selection, which randomly selects the features using sampling without replacement,
is the simplest feature selection method. Random feature selection is the method used in the
original random forest (Breiman, 2001).

2. Information gain is defined as the difference between the original information requirement
and the new requirement (Han & Kamber, 2007). The information gain value of a feature X

4http://metaquerier.cs.uiuc.edu/repository/training data set

402 Yunming Ye et al.

is attained by computing the difference between the prior uncertainty and expected posterior
uncertainty using X . Feature X is preferred to feature Y if the information gain from
feature X is greater than that from feature Y (Dash & Liu, 1997). In this experiment, the
information gain from feature X is set to feature X as its weight instead of Chi-square
value in IRFA.

3. Gain Ratio is an extension of information gain. It attempts to overcome the problem that the
information gain measure is biased toward tests with many outcomes (i.e., it prefers to select
attributes having a large number of values) (Han & Kamber, 2007). The process of
embedding gain ratio into IRFA is similar to information gain in our experiment.

4. Chi-square 2 that has been explained in Section 3.2. The experiments in the prior sections
were all based on this feature selection method.

Table 6. Comparison with different feature selection schemes

 Random Information Gain Gain Ratio Chi-square 2

Data Set 1 88.76% 88.76% 89.89% 91.01%

Data Set 2 91.71% 91.16% 92.27% 92.27%

Data Set 3 91.84% 93.20% 93.20% 93.88%

We implemented the four feature selection methods in Weka�’s random forest package,
and carried out experiments on the data sets described in Section 4.1. The results are shown in
Table 6. From the results, we can see that the Chi-square method is better than the others. The
reason that Information Gain and Gain Ratio scheme did not attain better performance can be
explained as follows: since both of them use the same feature evaluation criterion in feature
sampling and tree construction (for node splitting), the information of features cannot be fully
exploited.

5. Conclusions

This paper has proposed IRFA, an improved random forest algorithm, for detecting search
interfaces of the hidden Web. We extend the original random forest algorithm with a weighted
feature selection method to automatically select a more representative subset of features for
building each decision tree. The new method can overcome the problem of classifying
high-dimensional and sparse search interface data through the ensemble of decision trees, each
learned from a different subset of the original feature space. We have implemented the new
algorithm and compared it with SVM, C4.5, Naïve Bayes, and original random forest
algorithm (RFA). The experimental results have shown that our method is more accurate and
robust. We have also observed that the new method is scalable to high dimensional data.

 Feature Weighting Random Forest for Detection of 403

Hidden Web Search Interfaces

In the future, we plan to investigate more feature weighting methods for construction of
random forests. Currently, we just use the features in the search forms. It is expected that
using contextual information near the search forms may improve detection performance.

Acknowledgements
This research is supported in part by NSFC under grant No.60603066 and China National
High-tech Program under grants No.2007AA01Z436 and No.2006AA01A124. Part of Joshua
Huang�’s research was supported by the 863 project matching fund from The University of
Hong Kong.

References
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Breiman, L., Friedman, J. H., & Olshen, R. A. (1984). Classification and regression trees.

New York: Chapman & Hall.
BrightPlanet.com (2000). The deep web: Surfacing hidden value.

URL http://www.brightplanet.com
Caverlee, J., Liu, L., & Probe, D. B. (2004). Cluster and discover: focused extraction of

qa-pagelets from the deep web. Proceeding of the 20th International Conference of Data
Engineering.

Cope, J., Craswell, N., & Hawking, D. (2003). Automated discovery of search nterfaces on the
web. Fourteenth Australasian Database Conference. Adelaide, Australia: Fourteenth
Australasian Database Conference.

Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data nalysis, 1(3),
131-156.

Florescu, D., Levy, A. Y., & Mendelzon, A. O. (1998). Database techniques for the world
wide web: A survey. SIGMOD Record, 27(3), 59-74.

Han, J., & Kamber, M. (2007). Data Mining: Concepts and Techniques(2nd version). China
Machine Press.

He, B., Patel, M., Zhang, Z., & Chang, K. C. (2007). Accessing the deep web.
Communications Of The ACM, 50(5).

Ho, T. K. (1998). The random subspace method of constructing decision forests. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 20(8), 832-844.

Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998). On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20, 226-239.

Lage, J. P., Silva, D., Golgher, P. B., & Laender, A. H. F. (2004). Automatic generation of
agents for collecting hidden web pages for data extraction. Data and Knowledge
Engineering, 49, 177-196.

404 Yunming Ye et al.

Larson, H. J. (1982). Introduction to probability theory and statistical inference. New York:
Wiley, 3 ed.

Ntoulas, A., Zerfos, P., & Cho, J. (2005). Downloading textual hidden web content through
keyword queries.

Quinlan, J. R. (1993). C4.5: Programs for Machine LearningMachine Learning. Morgan
Kaufmann.

Raghavan, S., & Garcia-Molina, H. (2001). Crawling the hidden web. Proceedings of the 27th
International Conference on Very Large Data Bases. Roma, Italy.

Wang, J., & Lochovsky, F. (2003). Data extraction and label assignment for web databases.
Proceedings of the 12th International World Wide Web Conference. Budapest, Hungary.

Zhang, Z., He, B., & Chang, K. C. (2004). Understanding web query interfaces: best-effort
parsing with hidden syntax. Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data. Paris, France.

Computational Linguistics and Chinese Language Processing

Vol. 13, No. 4, December 2008, pp. 405-420 405ʳ

 The Association for Computational Linguistics and Chinese Language Processing

[Received September 11, 2008; Revised February 3, 2009; Accepted February 5, 2009]

Corpus Cleanup of Mistaken Agreement Using

Word Sense Disambiguation

Liang-Chih YuϠ, Chung-Hsien WuЀ, Jui-Feng YehϞ, and Eduard Hovy̚

Abstract

Word sense annotated corpora are useful resources for many text mining
applications. Such corpora are only useful if their annotations are consistent. Most
large-scale annotation efforts take special measures to reconcile inter-annotator
disagreement. To date, however, nobody has investigated how to automatically
determine exemplars in which the annotators agree but are wrong. In this paper, we
use OntoNotes, a large-scale corpus of semantic annotations, including word senses,
predicate-argument structure, ontology linking, and coreference. To determine the
mistaken agreements in word sense annotation, we employ word sense
disambiguation (WSD) to select a set of suspicious candidates for human
evaluation. Experiments are conducted from three aspects (precision,
cost-effectiveness ratio, and entropy) to examine the performance of WSD. The
experimental results show that WSD is most effective in identifying erroneous
annotations for highly-ambiguous words, while a baseline is better for other cases.
The two methods can be combined to improve the cleanup process. This procedure
allows us to find approximately 2% of the remaining erroneous agreements in the
OntoNotes corpus. A similar procedure can be easily defined to check other
annotated corpora.

Ϡ Department of Information Management, Yuan-Ze University, Chung-Li, Taiwan, R.O.C.
 E-mail: lcyu@saturn.yzu.edu.tw
Ѐ Department of Computer Science and Information Engineering, National Cheng Kung University,

Tainan, Taiwan, R.O.C.
E-mail: chwu@csie.ncku.edu.tw

Ϟ Department of Computer Science and Information Engineering, National Chiayi University, Chiayi,
Taiwan, R.O.C.
E-mail: ralph@mail.ncyu.edu.tw

‡ Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Marina del
Rey, CA 90292, U.S.A.
E-mail: hovy@isi.edu

406 Liang-Chih Yu et al.

Keywords: Corpus Cleanup, Word Sense Disambiguation, Semantic Analysis,
Entropy

1. Introduction

Word sense annotated corpora are useful resources for many text mining applications, such as
thesaurus construction (Tseng, 2002; Yeh, 2004; 2008), paraphrase extraction (Zhao et al.,
2008; Bhaget & Ravichandran, 2008), opinion mining (Ku & Chen, 2007; Kim & Hovy, 2007),
and medical information extraction (Wu et al., 2005; Yu et al., 2008). Various machine
learning algorithms can then be trained on these corpora to improve the applications’
effectiveness. Lately, many such corpora have been developed in different languages,
including SemCor (Miller et al., 1993), LDC-DSO (Ng & Lee, 1996), Hinoki (Kasahara et al.,
2004), and the sense annotated corpora with the help of Web users (Chklovski & Mihalcea,
2002). The SENSEVAL1 (Kilgarriff & Palmer, 2000; Kilgarriff, 2001; Mihalcea & Edmonds,
2004) and SemEval-20072 evaluations have also created large amounts of sense tagged data
for word sense disambiguation (WSD) competitions.

The OntoNotes (Pradhan et al., 2007a; Hovy et al., 2006) project has created a
multilingual corpus of large-scale semantic annotations, including word senses,
predicate-argument structure, ontology linking, and coreference3. In word sense creation,
sense creators generate sense definitions by grouping fine-grained sense distinctions obtained
from WordNet and dictionaries into more coarse-grained senses. There are two reasons for
using this grouping instead of using WordNet senses directly. First, people have trouble
distinguishing many of the WordNet-level distinctions in real text and make inconsistent
choices; thus, the use of coarse-grained senses can improve inter-annotator agreement (ITA)
(Palmer et al., 2004; 2006). Second, improved ITA enables machines to more accurately learn
to perform sense tagging automatically. Sense grouping in OntoNotes has been calibrated to
ensure that ITA averages at least 90%. Table 1 shows the OntoNotes sense tags and
definitions for the word arm (noun sense). The OntoNotes sense tags have been used for many
applications, including the SemEval-2007 evaluation (Pradhan et al., 2007b), sense merging
(Snow et al., 2007), sense pool verification (Yu et al., 2007), and class imbalance problems
(Zhu & Hovy, 2007).

1 http://www.senseval.org
2 http://nlp.cs.swarthmore.edu/semeval
3 Year 1 and Year 2 of the OntoNotes corpus has been released by Linguistic Data Consortium (LDC)

(http://www.ldc.upenn.edu) in 2007 and 2008, respectively.

 Corpus Cleanup of Mistaken Agreement Using 407

Word Sense Disambiguation

Table 1. OntoNotes sense tags and definitions. The WordNet version is 2.1.

Sense Tag Sense Definition WordNet sense

arm.01 The forelimb of an animal WN.1

arm.02 A weapon WN.2

arm.03 A subdivision or branch of an organization WN.3

arm.04 A projection, a narrow extension of a structure
WN.4
WN.5

In creating Onto Notes, each word sense annotation involves two annotators and an
adjudicator. First, all sentences containing the target word along with its sense distinctions are
presented independently to two annotators for sense annotation. If the two annotators agree on
the same sense for the target word in a given sentence, then their selection is stored in the
corpus. Otherwise, this sentence is double-checked by the adjudicator for the final decision.
The major problem of the above annotation scheme is that only the instances where the two
annotators disagree are double-checked, while those showing agreement are stored directly
without any adjudication. Therefore, if the annotators happen to agree but are both wrong, the
corpus becomes polluted by the erroneous annotations. Table 2 shows an actual occurrence of
an erroneous instance (sentence) for the target word management. In this example sentence,
the actual sense of the target word is management.01, but both of our annotators made a
decision of management.02. (Note that there is no difficulty in making this decision; the joint
error might have occurred due to annotator fatigue, habituation after a long sequence of
management.02 decisions, etc.)

Table 2. Example sentence for the target word management along with its sense
definitions.

Example sentence:

The 45-year-old Mr. Kuehn, who has a background in crisis management, succeeds Alan D.
Rubendall, 45.

management.01: Overseeing or directing. Refers to the act of managing something.

He was given overall management of the program.
I'm a specialist in risk management.
The economy crashed because of poor management.

management.02: The people in charge. The ones actually doing the managing.

Management wants to start downsizing.
John was promoted to Management.
I spoke to their management, and they're ready to make a deal.

408 Liang-Chih Yu et al.

Although most annotations in OntoNotes are correct, there is still a small (but unknown)
fraction of erroneous annotations in the corpus. Therefore, a cleanup procedure is necessary to
produce a high-quality corpus. It is, however, impractical for human experts to evaluate the
whole corpus for cleanup. Given that we are focusing on word senses, this study proposes the
use of WSD to facilitate the corpus cleanup process. WSD has shown promising accuracy in
recent SENSEVAL and SemEval-2007 evaluations.

The rest of this work is organized as follows. Section 2 describes the corpus cleanup
procedure. Section 3 presents the features for WSD. Section 4 summarizes the experimental
results. Conclusions are drawn in Section 5.

2. Corpus Cleanup Procedure

Figure 1 shows the cleanup procedure (dashed lines) for the OntoNotes corpus. As mentioned
earlier, each word, along with its sentence instances, is annotated by two annotators. The
annotated corpus, thus, can be divided into two parts according to the annotation results. The
first part includes the annotation with disagreement among the two annotators, which is
double-checked by the adjudicator. The final decisions made by the adjudicator are stored into
the corpus. Since this part is double-checked by the adjudicator, it will not be evaluated by the
cleanup procedure.

Figure 1. Corpus cleanup procedure.

 Corpus Cleanup of Mistaken Agreement Using 409

Word Sense Disambiguation

The second part of the corpus is the focus of the cleanup procedure. The WSD system
evaluates each instance in the second part. If the output of the WSD system disagrees with the
two annotators, the instance is considered to be a suspicious candidate, otherwise it is
considered to be clean and is stored into the corpus. The set of suspicious candidates is
collected and subsequently evaluated by the adjudicator to identify erroneous annotations.

3. Word Sense Disambiguation

This study takes a supervised learning approach to build a WSD system from the OntoNotes
corpus. The feature set used herein is similar to several state-of-the-art WSD systems (Lee &
Ng, 2002; Ando, 2006; Tratz et al., 2007; Cai et al., 2007; Agirre & Lopez de Lacalle, 2007;
Specia et al., 2007), which is further integrated into a Naïve Bayes classifier (Lee & Ng, 2002;
Mihalcea, 2007). In addition, a new feature, predicate-argument structure, provided by the
OntoNotes corpus is integrated as well. The feature set includes:

Part-of-Speech (POS) tags: This feature includes the POS tags in the positions (P-3, P-2, P-1, P0,
P1, P2, P3), relative to the POS tag of the target word. For instance, the POS sequence of the
constituent “…mediator in an attempt to break the…” is “NN NN IN DT TO VB DT”.

Local Collocations: This feature includes single words and multi-word n-grams. The single
words include (W-3, W-2, W-1, W0, W1, W2, W3), relative to the target word W0. Similarly, the
multi-word n-grams include (W-2,-1, W-1,1, W1,2, W-3,-2,-1, W-2,-1,1, W-1,1,2, W1,2,3). For instance, the
multi-word n-grams of the above example constituent include {in_an, an_to, to_break,
mediator_in_an, in_an_to, an_to_break, to_break_the}.

Bag-of-Words: This feature can be considered as a global feature, consisting of 5 words prior to
and after the target word, without regard to position.

Predicate-Argument Structure: The predicate-argument structure captures the semantic
relations between the predicates and their arguments within a sentence. Consider the following
example sentence.

[Arg0 The New York arm of the London-based firm] auctioned off [Arg1 the estate of John
T. Dorrance Jr., the Campbell's Soup Co. heir,] [ArgM-TMP last week].

The argument label Arg0 is usually assigned to the agent, causer, and experiencer, while Arg1
is usually assigned to the patient. The ArgM-TMP represents a temporal modifier
(Babko-Malaya, 2006; Palmer et al., 2005). The predicate-argument structure of the above
sentence is illustrated in Figure 2. The semantic relations can be either direct or indirect. A
direct relation is used to model a verb-noun (VN), whereas an indirect relation is used to
model a noun-noun (NN) relation. Additionally, an NN-relation can be built from the

410 Liang-Chih Yu et al.

combination of two VN-relations with the same predicate. Table 3 presents some examples.
For instance, NN1 can be built by combining VN1 and VN2. Therefore, the two features, VN1
and NN3, can be used to disambiguate the noun arm 4.

Figure 2. Example of predicate-argument structure.

Table 3. VN and NN-relations. <DATE> is a named entity identified by the
IdentiFiner.

Relation Type Example

VN relation

NV
ARG1

VN1: (auction.01, Arg0, arm.03)
VN2: (auction.01, Arg1, estate.01)
VN3: (auction.01, ArgM-TMP, <DATE>)

NN relation:

V

N

ARG 0 ARG1

N

NN1: (arm.03, Arg0-Arg1, estate.01)
NN2: (estate.01, Arg1-ArgM-TMP, <DATE>)
NN3: (arm.03, Arg0-ArgM-TMP, <DATE>)

4. Experimental Results

4.1 Experiment Setup
The experiment data used herein consisted of the 35 nouns from the SemEval-2007 English
Lexical Sample Task (Pradhan et al., 2007b). All sentences containing the 35 nouns were
selected from the OntoNotes corpus, resulting in a set of 16,329 sentences. This data set was

4 Our WSD system does not include the sense identifier (except for the target word) for word-level
training and testing.

 Corpus Cleanup of Mistaken Agreement Using 411

Word Sense Disambiguation

randomly split into training and test sets using different proportions (1:9 to 9:1, 10%
increments). The WSD systems (described in Section 3) were then built from the different
portions of the training set, called WSD_1 to WSD_9, respectively, and applied to their
corresponding test sets. In each test set, the instances with disagreement among the annotators
were excluded, since they have already been double-checked by the adjudicator. A baseline
system was also implemented using the principle of most frequent sense (MFS), where each
word sense distribution was retrieved from the OntoNotes corpus. Table 4 shows the accuracy
of the baseline and WSD systems.

Table 4. Accuracy of the baseline and WSD systems with different training portions.

Baseline
(MFS)

WSD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy 0.696 0.751 0.798 0.809 0.819 0.822 0.824 0.831 0.836 0.832

The output of WSD may agree or disagree with the annotators. The instances with
disagreement were selected from each WSD system as suspicious candidates. This experiment
randomly selected at most 20 suspicious instances for each noun then unified these instances
to form a suspicious set of 687 instances. An adjudicator who is a linguistic expert then
evaluated the suspicious set, and agreed in 42 instances with the WSD systems, indicating
about 6% (42/687) truly erroneous annotations. This corresponds to 2.6% (42/16329)
erroneous annotations in the corpus as a whole, which we verified by an independent random
spot check.

In the following sections, we examine the performance of WSD from three aspects:
precision, cost-effectiveness ratio, and entropy. In addition, we summarize a general cleanup
procedure for other sense-annotated corpora.

4.2 Cleanup Precision Analysis
The cleanup precision for a single WSD system can be defined as the number of erroneous
instances identified by the WSD system, divided by the number of suspicious candidates
selected by the WSD system. An erroneous instance refers to an instance where the annotators
agree with each other but disagree with the adjudicator. Table 5 lists the cleanup precision of
the baseline and WSD systems. The experimental results show that WSD_7 (trained on 70%
training data) identified 17 erroneous instances out of 120 selected suspicious candidates, thus
yielding the highest precision of 0.142. Another observation is that the upper bound of
WSD_7 was 0.35 (42/120) under the assumption that it identified all erroneous instances. This
low precision discourages the use of WSD to automatically correct erroneous annotations.

412 Liang-Chih Yu et al.

Table 5. Cleanup precision of the baseline and WSD systems with different training
portions.

Baseline
(MFS)

WSD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Prec
0.090

(17/188)
0.113

(20/177)
0.112

(16/143)
0.113

(17/150)
0.124

(16/129)
0.123

(15/122)
0.127

(16/126)
0.142

(17/120)
0.130

(14/108)
0.125

(14/112)

4.3 Cleanup Cost-Effectiveness Analysis
The cleanup procedure used herein is a semi-automatic process; that is, WSD is applied in the
first stage to select suspicious candidates for human evaluation in the later stage. Obviously,
we would like to minimize the number of candidates the adjudicator has to examine. Thus, we
use the metric cost-effectiveness (CE) ratio, which is defined as effectiveness divided by cost,
to measure the performance of WSD. The cost rate is defined as the number of suspicious
instances selected by a single WSD system, divided by the total number of suspicious
instances in the suspicious set. The effectiveness rate is defined as the number of erroneous
instances identified by a single WSD system, divided by the total number of erroneous
instances in the suspicious set. On the other hand, the missing rate can be defined as
1-effectiveness rate. In this experiment, the baseline value of the cost-effectiveness ratio is 1,
which means that the human expert needs to evaluate all 687 instances in the suspicious set to
identify the 42 erroneous instances. Figure 3 illustrates the CE ratio of the WSD systems. The
most cost-effective WSD system was WSD_7. The CE ratios of the baseline and WSD_7 are
listed in Table 6. The experimental results indicate that 17.5% of all suspicious instances were
required to be evaluated to identify about 40% of the erroneous annotations when using
WSD_7.

Figure 3. CE ratio of WSD systems with different training portions.

 Corpus Cleanup of Mistaken Agreement Using 413

Word Sense Disambiguation

Table 6. CE ratio of the baseline and WSD_7.
 Cost Effectiveness CE Ratio

Baseline
(MFS)

0.274
(188/687)

0.405
(17/42) 1.48

WSD_7 0.175
(120/687)

0.405
(17/42) 2.31

4.4 Entropy Analysis
So far, the experimental results show that the best WSD system can help human experts
identify about 40% erroneous annotations, but it still missed the other 60%. To improve
performance, we conducted experiments to analyze the effect of word entropy with respect to
WSD performance on identifying erroneous annotations.

For the SemEval 35 nouns used in this experiment, some words are very ambiguous and
some words are not. This property of ambiguity may affect the performance of WSD systems
in identifying erroneous annotation. To this end, this experiment used entropy to measure the
ambiguity of words (Melamed, 1997). The entropy of a word can be computed by the word
sense distribution, defined as:

2() () log (),
i

i i
ws W

H W P ws P ws (1)

where ()H W denotes the entropy of a word W, and P(iws) denotes the probability of a word
sense. A high entropy value indicates a high ambiguity level. For instance, the noun defense
has 7 senses (see Table 8) in the OntoNotes corpus, occurring with the distribution
{.14, .18, .19, .08, .04, .28, .09}, thus yielding a relative high entropy value (2.599).
Conversely, the entropy of the noun rate is low (0.388), since it has only two senses with very
skewed distribution {.92, .08}.

Consider the two groups of the SemEval nouns: the nouns for which at least one (Group
1) or none (Group 2) of their erroneous instances can be identified by the machine. The use of
the criteria “at least one” and “none” is to distinguish whether or not the machine can identify
the erroneous instances in these two groups of nouns. The average entropy of these two groups
of nouns was computed, as shown in Table 7. An independent t-test was then used to
determine whether or not the difference of the average entropy among these two groups was
statistically significant. The experimental results show that WSD_7 was more effective on
identifying erroneous annotations occurring in highly-ambiguous words (p<0.05), while the
baseline system has no such tendency (p=0.368).

Table 7. Average entropy of two groups of nouns for the baseline and WSD_7.
 Group 1 Group 2 Difference p-value

Baseline (MFS) 1.226 1.040 0.186 0.368

WSD_7 1.401 0.932 0.469* 0.013

*p<0.05

414 Liang-Chih Yu et al.

Table 8 shows the detailed analysis of WSD performance on different words. As
indicated, WSD_7 identified the erroneous instances (7/7) occurring in the two top-ranked
highly-ambiguous nouns, i.e., defense and position, but missed all those (0/12) occurring in
the two most unambiguous words, i.e., move and rate. The major reason is that the sense
distribution of unambiguous words is often skewed, thus, WSD systems built from such
imbalanced data tend to suffer from the over-fitting problem; that is, they tend to over-fit the
predominant sense class and ignore small sense classes (Zhu & Hovy, 2007). Fortunately, the
over-fitting problem can be greatly reduced when the entropy of words exceeds a certain
threshold (e.g., the dashed line in Table 8), since the word sense has become more evenly
distributed.

Table 8. Entropy of words versus WSD performance. The dashed line denotes a
cut-point for the combination of the baseline and WSD_7.

Noun #sense
Major
Sense

Entropy #err.
instances WSD_7 MFS WSD_7+

MFS

defense 7 0.28 2.599 5 5 4 5

position 7 0.30 2.264 2 2 2 2

base 6 0.35 2.023 1 1 0 1

system 6 0.54 1.525 2 1 0 1

chance 4 0.49 1.361 1 1 1 1

order 8 0.72 1.348 4 1 0 1

part 5 0.70 1.288 1 1 1 1

power 3 0.51 1.233 3 1 3 3

area 3 0.72 1.008 2 1 2 2

management 2 0.62 0.959 2 1 0 0

condition 3 0.71 0.906 1 0 1 1

job 3 0.78 0.888 1 0 0 0

state 4 0.83 0.822 1 0 0 0

hour 4 0.85 0.652 1 1 1 1

value 3 0.90 0.571 2 1 1 1

plant 3 0.88 0.556 1 0 0 0

move 4 0.93 0.447 6 0 0 0

rate 2 0.92 0.388 6 0 1 1

Total — — — 42 17 17 21

Nouns without erroneous instances: authority, bill, capital, carrier, development, drug, effect,
exchange, future, network, people, point, policy, president, share, source, space

 Corpus Cleanup of Mistaken Agreement Using 415

Word Sense Disambiguation

4.5 Combination of WSD and MFS
Another observation from Table 8 is that WSD_7 identified more erroneous instances when
the word entropy exceeded the cut-point, since the over-fitting problem was reduced.
Conversely, MFS identified more instances when the word entropy was below the cut-point.
This finding encourages the use of a combination of WSD_7 and MFS for corpus cleanup; that
is, different strategies can be used with different entropy intervals. For this experimental data,
MFS and WSD_7 can be applied below and above the cut-point, respectively, to select the
suspicious instances for human evaluation. Therefore, the final suspicious set can be generated
by combining the suspicious instances suggested by MFS and WSD_7. As illustrated in Figure
4, when the entropy of words increased, the accumulated effectiveness rates of both WSD_7
and MFS increased accordingly, since more erroneous instances were identified. Additionally,
the difference of the accumulated effect rate of MFS and WSD_7 increased gradually from the
beginning until the cut-point, since MFS identified more erroneous instances than WSD_7 did
in this stage. When the entropy exceeded the cut-point, WSD_7 was more effective and, thus,
its effectiveness rate kept increasing, while that of MFS increased slowly, thus, their
difference was decreased with the rise of the entropy. For the combination of MFS and
WSD_7, its effectiveness rate before the cut-point was the same as that of MFS, since MFS
was used in this stage to select the suspicious set. When WSD was used after the cut-point, the
effectiveness rate of the combination system increased continuously, and finally reached 0.5
(21/42).

Figure 4. Effectiveness rate against word entropy.

416 Liang-Chih Yu et al.

Figure 5. CE ratio against word entropy.

Based on the above experimental results, the most cost-effective method for corpus
cleanup is to use the combination method and begin with the most ambiguous words, since the
WSD system in the combination method is more effective in identifying erroneous instances
occurring in highly-ambiguous words and these words are also more important for many
applications. Figure 5 shows the curve of the CE ratios of the combination method by starting
with the most ambiguous word. The results indicate that the CE ratio of the combination
method decreased gradually after more words with lower entropy were involved in the cleanup
procedure. Additionally, the CE ratio of the combination method was improved by using MFS
after the cut-point and finally reached 2.50, indicating that 50% (21/42) erroneous instances
can be identified by double-checking 20% (137/687) of the suspicious set. This CE ratio was
better than 2.31 and 1.48, reached by WSD_7 and MFS, respectively.

The proposed cleanup procedure can be applied to other sense annotated corpora by the
following steps:

 Build the baseline (MFS) and WSD systems from the corpus.

 Create a suspicious set from the WSD systems.

 Calculate the entropy for each word in terms of it sense distribution in the corpus.

 Choose a cut-point value. Select a small portion of words with entropy within a certain
interval (e.g., 1.0 ~ 1.5 in Table 8) for human evaluation to decide an appropriate cut-point
value. The cut-point value should not be too low or too high, since WSD systems may suffer
from the over-fitting problem if the value is too low, and the performance would be
dominated by the baseline system if the value is too high.

 Corpus Cleanup of Mistaken Agreement Using 417

Word Sense Disambiguation

 Combine the baseline and best single WSD system through the cut-point.

 Start the cleanup procedure in the descending order of word entropy until the CE ratio is
below a predefined threshold.

5. Conclusion

This study has presented a cleanup procedure to identify incorrect sense annotation in a corpus.
The cleanup procedure incorporates WSD systems to select a set of suspicious instances for
human evaluation. The experiments are conducted from three aspects: precision,
cost-effectiveness ratio, and entropy, to examine the performance of WSD. The experimental
results show that the WSD systems are more effective on highly-ambiguous words.
Additionally, the most cost-effective cleanup strategy is to use the combination method and
begin with the most ambiguous words. The incorrect sense annotations found in this study can
be used for SemEval-2007 to improve the accuracy of WSD evaluation.

The absence of related work on (semi-) automatically determining cases of erroneous
agreement among annotators in a corpus is rather surprising. Variants of the method described
here, replacing WSD for whatever procedure is appropriate for the phenomenon annotated in
the corpus (sentiment recognition for a sentiment corpus, etc.), are easy to implement and may
produce useful results for corpora in current use. Future work will focus on devising an
algorithm to perform the cleanup procedure iteratively on the whole corpus.

References
Agirre, E., & Lopez de Lacalle, O. (2007). UBC-ALM: Combining k-NN with SVD for WSD.

In Proc. of the 4th International Workshop on Semantic Evaluations (SemEval-2007) at
ACL-07, 342-345.

Ando, R.K. (2006). Applying Alternating Structure Optimization to Word Sense
Disambiguation. In Proc. of CoNLL, 77-84.

Babko-Malaya, O. (2006). PropBank Annotation Guidelines.
Bhagat, R., & Ravichandran, D. (2008). Large Scale Acquisition of Paraphrases for Learning

Surface Patterns. In Proc. of the 46th Annual Meeting of the Association of
Computational Linguistics (ACL-08), 574-682.

Cai, J.F., Lee, W.S., & The, Y.W. (2007). Improving Word Sense Disambiguation Using
Topic Features. In Proc. of EMNLP-CoNLL, 1015-1023.

Chklovski, T., & Mihalcea, R. (2002). Building a Sense Tagged Corpus with Open Mind
Word Expert. In Proc. of the Workshop on Word Sense Disambiguation: Recent
Successes and Future Directions at ACL-02, 116-122.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press.

418 Liang-Chih Yu et al.

Hovy, E.H., Marcus, M., Palmer, M., Ramshaw, L., & Weischedel, R. (2006). OntoNotes: The
90% Solution. In Proc. of HLT/NAACL-06, 57-60.

Kasahara, K., Sato, H., Bond, F., Tanaka, T., Fujita, S., Kanasugi, T., et al. (2004).
Construction of a apanese Semantic Lexicon: Lexeed. In IPSG SIG: 2004-NLC-159,
Tokyo, 75-82.

Kilgarriff, A. (2001). English Lexical Sample Task Description. In Proc. of the SENSEVAL-2
Workshop, 17-20.

Kilgarriff, A., & Palmer, M. editors. (2000). SENSEVAL: Evaluating Word Sense
Disambiguation Programs, Computer and the Humanities, 34(1-2),1-13.

Kim, S.M., & Hovy, E.H. (2007). CRYSTAL: Analyzing Predictive Opinions on the Web. In
Proc. of EMNLP-CoNLL, Prague, Czech Republic.

Ku, L.W., & Chen, H.H. (2007). Mining Opinions from the Web: Beyond Relevance Retrieval.
Journal of American Society for Information Science and Technology, 58(12),
1838-1850.

Lee, Y.K., & Ng, H.T. (2002). An Empirical Evaluation of Knowledge Sources and Learning
Algorithms for Word Sense Disambiguation. In Proc. of EMNLP, 41-48.

Melamed, I.D. (1997). Measuring Semantic Entropy. In Proc. of ACL-SIGLEX Workshop,
41-46.

Mihalcea, R. (2007). Using Wikipedia for AutomaticWord Sense Disambiguation. In Proc. of
NAACL/HLT-07, 196-203.

Mihalcea, R., & Edmonds, P. editors. (2004). In Proc. of SENSEVAL-3.
Miller, G., Leacock, C., Tengi, R., & Bunker, R. (1993). A Semantic Concordance. In Proc. of

the 3rd DARPA Workshop on Human Language Technology, 303-308.
Ng, H.T., & Lee, H.B. (1996). Integrating Multiple Knowledge Sources to Disambiguate

Word Sense: An Exemplar-based Approach. In Proc. of the 34th Meeting of the
Association for Computational Linguistics (ACL-96), 40-47.

Palmer, M., Babko-Malaya, O., & Dang, H.T. (2004). Different Sense Granularities for
Different Applications. In Proc. of the 2nd International Workshop on Scalable Natural
Language Understanding at HLT/NAACL-04.

Palmer, M., Dang, H.T., & Fellbaum, C. (2006). Making Fine-grained and Coarse-grained
Sense Distinctions, Both Manually and Automatically. Journal of Natural Language
Engineering, 13, 137-163.

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The Proposition Bank: An Annotated Corpus
of Semantic Roles. Computational Linguistics, 31(1), 71-106.

Pradhan, S., Hovy, E.H., Marcus, M., Palmer, M., Ramshaw, L., & Weischedel, R. (2007a).
OntoNotes: A Unified Relational Semantic Representation. In Proc. of the First IEEE
International Conference on Semantic Computing (ICSC-07), 517-524.

Pradhan, S., Loper, E., Dligach, D., & Palmer, M. (2007b). SemEval-2007 Task 17: English
Lexical Sample, SRL and All Words. In Proc. of the 4th International Workshop on

 Corpus Cleanup of Mistaken Agreement Using 419

Word Sense Disambiguation

Semantic Evaluations (SemEval-2007) at ACL-07, 87-92.
Tseng, Y.S. (2002). Automatic Thesaurus Generation for Chinese Documents. Journal of the

American Society for Information Science and Technology, 53(13), 1130-1138.
Snow, R., Prakash, S., Jurafsky, D., & Ng, A.Y. (2007). Learning to Merge Word Senses. In

Proc. of EMNLP-CoNLL, 1005-1014.
Specia, L., Stevenson, M., &. das Gracas V. Nunes, M. (2007). Learning Expressive Models

for Word Sense Disambiguation. In Proc. of the 45th Annual Meeting of the Association
of Computational Linguistics (ACL-07), 41-48.

Tratz, S., Sanfilippo, A., Gregory, M., Chappell, A., Posse, C., & Whitney, P. (2007). PNNL:
A Supervised Maximum Entropy Approach to Word Sense Disambiguation. In Proc. of
the 4th International Workshop on Semantic Evaluations (SemEval-2007) at ACL-07,
264-267.

Wu, C.H., Yu, L.C., & Jang, F.L. (2005). Using Semantic Dependencies to Mine Depressive
Symptoms from Consultation Records. IEEE Intelligent Systems, 20(6), 50-58.

Yeh, J.F., Wu, C.H., Chen, M.J., & Yu, L.C. (2004). Automated Alignment and Extraction of
Bilingual Domain Ontology for Cross-Language Domain-Specific Applications. In Proc.
of the 20th COLING, 1140-1146.

Yeh, J.F., Wu, C.H., & Chen, M.J. (2008). Ontology-based Speech Act Identification in a
Bilingual Dialog System Using Partial Pattern Trees. Journal of the American Society
for Information Science and Technology, 59(5), 684-694.

Yu, L.C., Wu, C.H., Philpot, A., & Hovy, E.H. (2007). OntoNotes: Sense Pool Verification
Using Google N-gram and Statistical Tests. In Proc. of the OntoLex Workshop at the 6th
International Semantic Web Conference (ISWC 2007).

Yu, L.C., Wu, C.H., Yeh, J.F., & Jang, F.L. (2008). HAL-based Evolutionary Inference for
Pattern Induction from Psychiatry Web Resources. IEEE Trans. Evolutionary
Computation, 12(2), 160-170.

Zhao, S., Wang, H., Liu, T., & Li, S. (2008). Pivot Approach for Extracting Paraphrase
Patterns from Bilingual Corpora. In Proc. of the 46th Annual Meeting of the Association
of Computational Linguistics (ACL-08), 780-788.

Zhu, J., & Hovy, E.H. (2007). Active Learning for Word Sense Disambiguation with Methods
for Addressing the Class Imbalance Problem. In Proc. of EMNLP-CoNLL, 783-790.

420 Liang-Chih Yu et al.

Computational Linguistics and Chinese Language Processing

Vol. 13, No. 4, December 2008, pp. 421-442 421ʳ

 The Association for Computational Linguistics and Chinese Language Processing

[Received September 12, 2008; Revised December 11, 2008; Accepted February 19, 2009]

Hierarchical Taxonomy Integration Using Semantic

Feature Expansion on Category-Specific Terms

Cheng-Zen Yang*, Ing-Xiang Chen*, Cheng-Tse Hung*, and

Ping-Jung Wu*

Abstract

In recent years, the hierarchical taxonomy integration problem has obtained
considerable attention in many research studies. Many types of implicit information
embedded in the source taxonomy are explored to improve the integration
performance. The semantic information embedded in the source taxonomy,
however, has not been discussed in previous research. In this paper, an enhanced
integration approach called SFE (Semantic Feature Expansion) is proposed to
exploit the semantic information of the category-specific terms. From our
experiments on two hierarchical Web taxonomies, the results show that the
integration performance can be further improved with the SFE scheme.

Keywords: Hierarchical Taxonomy Integration, Semantic Feature Expansion,
Category-Specific Terms, Hierarchical Thesauri Information

1. Introduction

In many daily information processing tasks, merging two classified information sources to
create a larger taxonomy with abundant information is in great demand. For example, an
e-commerce service provider may merge various catalogs from other vendors into its local
catalog to provide customers with versatile contents. A Web user may also want to integrate
different blog catalogs from Web 2.0 portals to organize a personal information management
library. In these examples, people may need an efficient automatic integration approach to
process the huge amount of information.

In recent years, the taxonomy integration problem has obtained much attention in many
research studies (e.g. Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003;

* Dept. of Computer Sci. and Eng., Yuan Ze University, 135 Yuan-Tung Rd., Chungli, 320, Taiwan.
Tel.: +886-3-4638800 ext: 2361 Fax: +886-3-4638850.
E-mail: {czyang,sean,chris,pjwu}@syslab.cse.yzu.edu.tw

422 Cheng-Zen Yang et al.

Zhang & Lee, 2004a; Zhang & Lee, 2004b; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang,
2005; Wu, Tsai, & Hsu, 2005; Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007; Cheng &
Wei, 2008; Wu, Tsai, Lee, & Hsu, 2008). As pointed out in these studies, the integration work
is more subtle than traditional classification work because the integration accuracy can be
further improved with different kinds of implicit information embedded in the source or
destination taxonomy. A taxonomy, or catalog, usually contains a set of objects divided into
several categories according to some classified characteristics. In the taxonomy integration
problem, the objects in a taxonomy, the source taxonomy S, are integrated into another
taxonomy, the destination taxonomy D. As shown in earlier research, this problem is more
than a traditional document classification problem because different kinds of implicit
information in the source taxonomy are explored to greatly help integrate source documents
into the destination taxonomy. For example, a Naive Bayes classification approach (Agrawal
& Srikan, 2001) with the classification relationship information implicitly existing in the
source catalog can achieve integration accuracy improvement. Several SVM (Support Vector
Machines) approaches (Chen, Ho, & Yang, 2005) can also have similar improvement with
other implicit source information.

The implicit source information studied in previous enhanced approaches generally
includes the following features: (1) co-occurrence relationships of source objects (Agrawal &
Srikan, 2001; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2005), (2) latent
source-destination mappings (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004b;
Cheng & Wei, 2008), (3) inter-category centroid information (Zhang & Lee, 2004a), and (4)
parent-children relationships in the source hierarchy (Wu, Tsai, & Hsu, 2005; Ho, Chen, &
Yang, 2006; Wu, Tsai, Lee, & Hsu, 2008). In our survey, however, the semantic information
embedded in the source taxonomy has not been discussed. Since different applications have
shown that the semantic information can benefit the task performance (Krikos, Stamou,
Kokosis, Ntoulas, & Christodoulakis, 2005; Hsu, Tsai, & Chen, 2006), such information
should be able to achieve similar improvements for taxonomy integration. In addition, we
further study the hierarchical taxonomy integration problem because many taxonomies, such
as Web catalogs, existing in the real world are hierarchical.

In this paper, we propose an enhanced integration approach by exploiting the implicit
semantic information in the source taxonomy with a semantic feature expansion (SFE)
mechanism. The basic idea behind SFE is that some semantically related terms can be found to
represent a source category, and these representative terms can be further viewed as the
additional common category labels for all documents in the category. Augmented with these
additional semantic category labels, the source documents should be more precisely integrated
into the correct destination category. The semantic expanding scheme, however, needs to
consider the polysemy situation to avoid introducing many topic-irrelevant features. Therefore,

 Hierarchical Taxonomy Integration Using 423

Semantic Feature Expansion on Category-Specific Terms

SFE employs an efficient correlation coefficient method to select representative
semantically-related terms.

To study the effectiveness of SFE, we implemented it based on a hierarchical taxonomy
integration approach (EHCI) proposed in Ho et al. (2006) and Chen et al. (2007) with the
Maximum Entropy (ME) model classifiers. We have conducted experiments with real-world
Web catalogs from Yahoo! and Google, and measured the integration performance with
precision, recall, and F1 measures. The results show that the SFE mechanism consistently can
improve the integration performance of the EHCI approach.

The rest of the paper is organized as follows. Section 2 describes the problem definition
and Section 3 reviews previous related research. Section 4 elaborates the proposed semantic
feature expansion approach and the hierarchical integration process. Section 5 presents the
experimental results, and discusses the factors that influence the experiments. Section 6
concludes the paper and discusses some future directions of our work.

2. Problem Statement

Following the definitions in Ho et al. (2006), we assume that two homogeneous hierarchical
taxonomies, the source taxonomy S and the destination taxonomy D, participate in the
integration process. The taxonomies are said to be homogeneous if the topics of the two
taxonomies are similar. In addition, the taxonomies under consideration are required to
overlap with a significant number of common documents. For example, in our experimental
data sets, 20.6% of the total documents (436/2117) in the Autos directory of Yahoo! also
appear in the corresponding Google directory.

The source taxonomy S has a set of m categories, or directories, S1, S2, …, Sm. These
categories may have subcategories, such as S1,1 and S2,1. Similarly, the destination catalog D
has a set of n categories. The integration process is to directly decide the destination category

S1

S1,1

S

…
Sm D1

D1,1

D

…
DnD2

D2,2D2,1

Source Taxonomy Destination Taxonomy

S1,2

1
xd

S1

S1,1

S

…
Sm D1

D1,1

D

…
DnD2

D2,2D2,1

Source Taxonomy Destination Taxonomy

S1,2

1
xd

Figure 1. A typical integration scenario for two hierarchical taxonomies.

424 Cheng-Zen Yang et al.

in D for each document dx in S. In this study, we allow that dx can be integrated into multiple
destination categories because a document commonly appears in several different directories
in a real-world taxonomy.

Figure 1 depicts a typical scenario of the integration process on two hierarchical
taxonomies. For illustration, we assume that the source category S1,1 has a significant number
of overlapped documents with the destination categories D1,1 and D2,2. This means that the
documents appearing in S1,1 should have similar descriptive information as the documents in
D1,1 and D2,2. Therefore, a non-overlapped document 1

xd in category S1,1 should be
intensively integrated into both two destination categories D1,1 and D2,2.

3. Previous Work

3.1 Integration Techniques
In previous studies, different sorts of implicit information embedded in the source taxonomy
are explored to help the integration process. These implicit source features can be mainly
categorized into four types: (1) co-occurrence relationships of source objects, (2) latent
source-destination mappings, (3) inter-category centroid information, and (4) parent-children
relationships in the source hierarchy. The co-occurrence relationships of source objects are
first studied to enhance a Naive Bayes classifier based on the concept that if two documents
are in the same source category, they are more likely to be in the same destination category
(Agrawal & Srikan, 2001). The enhanced Naïve Bayes classifier (ENB) is shown to have more
than 14% accuracy improvement on average. The work in Chen et al. (2005) also has the
similar concept in its iterative pseudo relevance feedback approach. As reported in Chen et al.
(2005), the enhanced SVM classifiers consistently achieve improvement.

Latent source-destination mappings are explored in Sarawagi et al. (2003) and Zhang and
Lee (2004b). The cross-training (CT) approach (Sarawagi, Chakrabarti, & Godbole, 2003)
extracts the mappings from the first semi-supervised classification phase using the source
documents as the training sets. Then, the destination documents are augmented with the latent
mappings for the second semi-supervised classification phase to complete the integration. The
co-bootstrapping (CB) approach (Zhang & Lee, 2004b) exploits the predicted
source-destination mappings to repeatedly refine the classifiers. The experimental results
show that both CT and CB outperform ENB (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang
& Lee, 2004b).

In Zhang and Lee (2004a), a cluster shrinkage (CS) approach, in which the feature
weights of all objects in a document category are shrunk toward the category centroid, is
proposed. Therefore, the cluster-binding relationships among all documents of a category are
strengthened. The experimental results show that the CS-enhanced Transductive SVMs give

 Hierarchical Taxonomy Integration Using 425

Semantic Feature Expansion on Category-Specific Terms

significant improvement to the original T-SVMs and consistently outperform ENB.

In Wu et al. (2005) and Ho et al. (2006), the parent-children information embedded in
hierarchical taxonomies is intentionally extracted. Based on the hierarchical characteristics,
Wu et al. extend the CS and CB approach to improve the integration performance. In Ho et al.
(2006), an enhanced approach called EHCI is proposed to further extract the hierarchical
relationships as a conceptual thesaurus. Their results show that the implicit hierarchical
information can be effectively used to boost the accuracy performance.

The semantic information embedded in the source taxonomy has not been discussed in
past studies. This observation motivates us to study the embedded taxonomical semantic
information and its effectiveness.

3.2 Overview of the Maximum Entropy Model Classifiers
In our proposed SFE scheme, we use the Maximum Entropy (ME) model classifiers to
perform the main integration task. Here, we provide a brief overview of the ME model as the
background of our work. More details can be found in Berger et al. (1996). In ME, the entropy

()H p for a conditional distribution (|)p y x is used to measure the uniformity of (|)p y x ,
where y is an instance of all outcomes Y in a random process and x denotes a contextual
environment of the contextual space X, or the history space. To express the relationship
between x and y, we can have an indicator function (,)f x y (usually known as feature
function) defined as:

1 if () has the defined relationship
(,)

0 else
x, y

f x y (1)

The entropy ()H p is defined by:
() (|) log (|)

x X
H p p y x p y x (2)

The Maximum Entropy Principle is to find a probability model *p C such that:
* arg max ()

p C
p H p (3)

where C is a set of allowed conditional probabilities. There are, however, two constraints:
{ } { }p pE f E f (4)

and
(|) 1

y Y
p y x (5)

where { }pE f is the expected value of f with the empirical distribution (,)p x y as defined in
Equation 6 and { }pE f is the observed expectation of f with the observed distribution ()p x
from the training data as defined in Equation 7.

426 Cheng-Zen Yang et al.

,
{ } (,) (,)p

x y
E f p x y f x y (6)

,
{ } () (|) (,)p

x y
E f p x p y x f x y (7)

As indicated in [10], the conditional probability (|)p y x can be computed by:

1(|) exp (,)
() i i

i
p y x f x y

z x
 (8)

where i is the Lagrange multiplier for feature if , and ()z x is defined as

() exp (,)i i
y i

z x f x y (9)

With the improved iterative scaling (IIS) algorithm (Darroch & Ratcliff, 1972; Berger, Pietra,
& Pietra, 1996), the i values can be estimated. Then, the classifiers are built according to
the ME model and the training data.

3.3 Hierarchical Taxonomy Integration
Previous integration research for hierarchal taxonomy integration mainly can be classified into
two categories: clustering-based (Cheng & Wei, 2008) and classification-based (Ho, Chen, &
Yang, 2006; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2007). The clustering-based
approach has the advantage in handling manifold taxonomies which may even have small
overlaps and in performing integration without a priori training work. Therefore, the
application of the clustering-based approach is much more general. The effectiveness of the
clustering-based approach, however, depends on the clustering parameters. For inexperienced
users, finding optimal clustering parameters will be very challenging.

Although the classification-based approach is more appropriate for handling taxonomies
which have significant overlaps, it cannot handle the subtle relationships embedded in
categories. For example, CatRelate uses five types of hierarchical relationships in a taxonomy
to help catalog integration (Zhu, Yang, & Lam, 2004), and an integration scheme called EHCI
uses a hierarchical weighting mechanism to strengthen the integration effectiveness (Ho, Chen,
& Yang, 2006; Chen, Ho, & Yang, 2007). Nonetheless, CatRelate only discusses the
hierarchical relationships on a category basis with a set of simple rules. It may suffer from
complicated hierarchical relationships when handling large taxonomies. In contrast, EHCI’s
hierarchical weighting mechanism considers the influences of category labels of more
comprehensive neighboring levels on a document basis. The experimental results reported in
Ho et al. (2006) and Chen et al. (2007) also show that EHCI is effective for handling large
taxonomies. Therefore, we use EHCI as our baseline to study the effectiveness of the proposed
SFE approach. The following gives a brief overview for EHCI.

 Hierarchical Taxonomy Integration Using 427

Semantic Feature Expansion on Category-Specific Terms

In EHCI, the conceptual relationships (category labels) are first extracted from the
hierarchical taxonomy structure as a thesaurus (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang,
2007). Then, the features of each document are extended with the thesaurus by adding the
weighted label features. A weighting formula is designed to control the impact of the semantic
concepts of each hierarchical level. Equation 10 calculates the EHCI feature weight ,

e
x df of

each term x in document d, where Li is the relevant label weight assigned as 1 2i with an
i-level depth, ,x df is the original weight, and is used to control the magnitude relation.
The weight ,x df is assigned by x iTF TF , where xTF is the term frequency of x, and i
denotes the number of the stemmed terms in each document. The label weight Li of each
thesaurus is exponentially decreased and accumulated based on the increased levels.

, ,
0

(1)e x
x d x dn

ii

L
f f

L
 (10)

Table 1 shows the label weights of different levels, where L0 is the document level, L1 is
one level upper, and so on to Ln for n levels upper. The label weighting scheme uses a
power-law distribution to avoid over-emphasis on the least related hierarchical levels. To
build the enhanced classifiers for destination categories, the same enhancement on hierarchical
label information is also applied to the destination taxonomy to strengthen the discriminative
power of the classifiers.

Although the EHCI approach employs only the embedded hierarchical information with a
simple power-law distribution, the integration accuracy performance can be effectively
improved. As reported in Chen et al. (2007), the EHCI approach outperforms a
straightforward classification scheme that does not employ any embedded information to help
hierarchical taxonomy integration.

Table 1. The label weights assigned for different levels.
Hierarchical Level Label Weight

Document Level (L0) 1/20

One Level Upper (L1) 1/21

Two Levels Upper (L2) 1/22

… …

n Levels Upper (Ln) 1/2n

428 Cheng-Zen Yang et al.

4. Hierarchical Taxonomy Integration with Semantic Feature Expansion

The proposed semantic feature expansion (SFE) approach is to use extracted representative
terms of a category as the implicit semantic information to help the corresponding integration
process. In the following, the overall processing flow of SFE is presented first. Related
approaches incorporated in the integration process are then described. Finally, the SFE
approach is elaborated.

4.1 Integration Process
To apply SFE to hierarchical taxonomies, a hierarchical taxonomy integration approach
(EHCI) (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) is considered as the baseline.
Currently, classifiers based on the Maximum Entropy (ME) model are used because of its
prominent performance in many tasks, such as natural language processing (Berger, Pietra, &
Pietra, 1996) and flattened taxonomy integration (Wu, Tsai, & Hsu, 2005). Figure 2 shows the
entire integration process flow of the SFE approach.

Destination
Hierarchical

Catalog

Web Pages Crawler
Document Parsing

and Feature Extraction

Hypernyms in
InfoMap Extraction

Integrate EHCI
Features and
SFE Features

Document
Transferring and

ME Training

Document
Transferring and

ME Training

ME Model
Integrated

Results

Source
Hierarchical

Catalog

Web Pages Crawler
Document Parsing

and Feature Extraction

Hypernyms in
InfoMap Extraction

Integrate EHCI
Features and
SFE Features

Document
Transferring and

ME Testing

Figure 2. The processing flow for hierarchical taxonomy integration with
semantic feature expansion.

 Hierarchical Taxonomy Integration Using 429

Semantic Feature Expansion on Category-Specific Terms

4.2 Semantic Feature Expansion
To further improve the integration performance, the semantic information of inter-taxonomy
documents is explored in the proposed approach to perform semantic feature expansion (SFE).
The main idea is to augment the feature space of each document with representative topic
words. As noted in Tseng et al. (2006), the hypernyms of documents can be considered as the
candidates of the representative topic words for the documents. Hereby, SFE adopts a similar
approach to Tseng et al. (2006) to first select important term features from the documents and
then decide the representative topic terms from hypernyms.

Since feature expansion with hypernyms intends to introduce features that are not related
to the document topic, these irrelevant features need to be filtered out before the final
integration work. From the aspect of improving integration accuracy, the expanded features
that have little discriminative power among categories are considered to be removed.
According to previous studies (Ng, Goh, & Low, 1997; Yang & Pedersen, 1997; Tseng, Lin,
Chen, & Lin, 2006), although the 2 -test (chi-square) method is very effective in feature
selection for text classification, it cannot differentiate negatively related terms from positively
related ones. For a term t and a category c, their 2 measure is defined as:

2
2 ()

(,) T T F F

T F F T T F F T

N N N N N
t c

N N N N N N N N
 (11)

where N is the total number of the documents, TN (FN) is the number of the documents of
category c (other categories) containing the term t, and TN (FN) is the number of the
documents of category c (other categories) not containing the term t.

Therefore, the correlation coefficient (CC) method is suggested to filter out the
negatively related terms (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006). Since N is
the same for each term, we can omit it and get the following equation to calculate the CC
value for each term:

()
(,) T T F F

T F F T T F F T

N N N N
CC t c

N N N N N N N N
 (12)

Since the categories in a taxonomy are in a hierarchical relationship, SFE only considers the
categories of the same parent in the CC method.

Then, the five terms with the highest CC values are selected to perform semantic feature
expansion. As indicated by (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006), the
terms selected with CC are highly representative for a category. The category-specific terms
of a source category, however, may not be topic-genetic to the corresponding destination
category. Therefore, SFE uses them as the basis to find more topic-indicative terms for each
category.

430 Cheng-Zen Yang et al.

Some lexical dictionaries, such as InfoMap (http://infomap.stanford.edu/) and WordNet
(http://wordnet.princeton.edu/), can be used to extract the hypernyms of the category-specific
terms to get the topic indicative features of a category. For example, if a category has the
following five category-specific terms: output, signal, circuit, input, and frequency, SFE gets
the following hypernyms from InfoMap: signal, signaling, sign, communication, abstraction,
relation, etc. These hypernyms are more topic-generic than the category specific terms. Then,
SFE calculates the weight xHW of each extracted hypernym x by:

1

x
x n

ii

HF
HW

HF
 (13)

where xHF is the term frequency of x, and i denotes the number of the hypernyms in each
category.

For each document kd , its SFE feature vector ksf is changed by extending Equation
10 as follows:

(1) (1)k k k ksf l h f (14)

where kl denotes the feature vector of the hierarchical thesaurus information computed from
the left term of Equation 10, kh denotes the feature vector of the topic-generic terms of the
category computed from Equation 13, and kf denotes the original feature vector of the
document derived from the right term of Equation 10.

5. Experimental Analysis

We have conducted experiments with real-world catalogs from Yahoo! and Google to study
the performance of the SFE scheme with a Maximum Entropy classification tool from
Edinburgh University (ver. 20041229) (Zhang, 2004). Two integration procedures were
implemented. The baseline is ME with EHCI (EHCI-ME), and the other is ME with EHCI and
SFE (SFE-ME). We measured three scores with different and values: precision, recall, and
F1 measures. Both integration directions were evaluated: from Google to Yahoo! and from
Yahoo! to Google. The experimental results show that SFE-ME can effectively improve the
integration performance. For recall measures, SFE-ME outperforms EHCI-ME in more than
60% of all cases. For precision measures, SFE-ME outperforms EHCI-ME in more than 90%
of all cases. SFE-ME can also achieve the best recall and precision performance. For F1
measures, SFE-ME outperforms EHCI-ME in nearly 95% of all the cases. The experimental
results are detailed in the following.

 Hierarchical Taxonomy Integration Using 431

Semantic Feature Expansion on Category-Specific Terms

5.1 Data Sets
In the experiments, five directories from Yahoo! and Google were extracted to form two
experimental taxonomies (Y and G). Table 2 shows these directories and the number of the
extracted documents after ignoring the documents that could not be retrieved. As in previous
studies (Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; Ho, Chen, &
Yang, 2006), the documents appearing in only one category were used as the training data
(|Y-G| and |G-Y|), and the common documents were used as the testing data (|Y Test| and |G
Test|). Since some documents may appear in more than one category in a taxonomy, |Y Test| is
slightly different from |G Test|. For simplicity consideration, the level of each hierarchy was
controlled to be at most three in the experiments. If the number of the documents of a certain
subcategory was less than 10, the subcategory would be merged upward to its parent category.

Table 2. The experimental categories and the numbers of documents.
Category Google |G-Y| |G Class| |G Test| Yahoo! |Y-G| |Y Class| |Y Test|
Autos /autos/… 1096 12 427 /automotive/… 1681 24 436
Movies /movies/… 5188 26 1422 /movies_Film/… 7255 27 1344
Outdoors /outdoors/… 2396 16 208 /outdoors/… 1579 19 210
Photo /photography/… 615 9 235 /photography/… 1304 23 218
Software /software/… 5829 27 641 /software/… 1876 25 691
Total ʳ 15124 90 2932 ʳ 13695 108 2918

Before the integration, we used the stopword list in Frakes and Baeza-Yates (1992) to
remove the stopwords, and the Porter algorithm (Porter, 1980) for stemming. In the integration
process, we allow that each source document xd can be integrated into multiple destination
categories (one-to-many) as we find in real-world taxonomies. Different values from 0.1
to 1.0 were applied to the source taxonomy (s) and the destination taxonomy (d). To both
taxonomies, the same value ranging from 0.1 to 1.0 was applied for semantic feature
expansion. The lexical dictionary used in the experiments was InfoMap to get hypernyms. As
reported in Tseng et al. (2006), we believe that WordNet will result in similar hypernym
performance.

In the experiments, we measured the integration performance of EHCI-ME and SFE-ME
in six scores: macro-averaged recall (MaR), micro-averaged recall (MiR), macro-averaged
precision (MaP), micro-averaged precision (MiP), macro-averaged F1 measure (MaF), and
micro-averaged F1 measure (MiF). The standard F1 measure is defined as the harmonic mean
of recall and precision: 1 2F rp r p , where recall is computed as

 correctly integrated documents
all test documents

r and precision is computed as

 correctly integrated documents
all predicted positive documents

p . The micro-averaged scores were measured by

432 Cheng-Zen Yang et al.

computing the scores globally over all categories in five directories. The macro-averaged
scores were measured by first computing the scores for each individual category, then
averaging these scores. The recall measures are used to reflect the traditional performance
measurements on integration accuracy. The precision measures show the degrees of false
integration. The standard F1 measures show the compromised scores between recall and
precision.

5.2 Experimental Results and Discussion
Although we have measured the integration performance with different values, this paper
only lists part of the results in five different d values, which are 0.1, 0.3, 0.5, 0.7, and 0.9.
Considering , we have also measured the integration performance with different values
ranging from 0.1 to 1.0. When is between 0.1 and 0.4, SFE-ME is superior to EHCI-ME. For
different integration directions, we found that the optimal value may be also different. Here,
we only report two cases, = 0.4 for integrating documents from Google to Yahoo! and =
0.1 for integrating documents from Yahoo! to Google, in which the SFE approach can show
its effectiveness.

Table 3 and Table 4 show the macro-averaged and micro-averaged recall results of
EHCI-ME and SFE-ME. The macro-averaged and micro-averaged precision results of
EHCI-ME and SFE-ME are listed in Table 5 and Table 6. In Table 7 and Table 8, the
macro-averaged and micro-averaged F1 measure results of EHCI-ME and SFE-ME are listed,
respectively.

From Table 3 (a), we can notice that SFE-ME is superior to EHCI-ME in more than 75%
of all MaR scores for the integrations from Google to Yahoo!. Although Table 3 (b) shows
that SFE-ME can only achieve nearly 40% improvements for the integration from Yahoo! to
Google, SFE-ME has consistent MaR performance. Two reasons cause this
lower-than-average MaR performance. First, the recall performance of SFE-ME is not as good
as EHCI-ME for categories with few positive examples in the Y G integration process. This
can be justified from the superior MiR performance of SFE-ME. Second, the d weight
increasingly mitigates the improvements of SFE in the MaR measures of SFE-ME in a
consistent way in the Y G integration process. The MiR performance of SFE-ME also has
the similar mitigation.

From Table 3, we can also notice that SFE-ME achieves the best MaR of 0.8935 when

s = 0.1 and d = 0.1 for the G Y integration process. Although Table 3 (b) shows that
EHCI-ME achieves the best MaR for the Y G integration process, SFE-ME indeed achieves
higher MaR of 0.9501 in our experiment while s = 0.1, d = 0.1, and = 0.4.

 Hierarchical Taxonomy Integration Using 433

Semantic Feature Expansion on Category-Specific Terms

Table 3. The macro-averaged recall (MaR) measures of EHCI-ME and SFE-ME.
 EHCI-ME SFE-ME (= 0.4)

d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.8023 0.7419 0.7320 0.7334 0.7175 0.8935 0.8618 0.8500 0.8489 0.8678

0.20 0.7636 0.7342 0.7274 0.7331 0.7192 0.7867 0.7845 0.7769 0.7742 0.7950

0.30 0.7481 0.7336 0.7315 0.7333 0.7210 0.7347 0.7501 0.7511 0.7476 0.7539

0.40 0.7422 0.7329 0.7283 0.7313 0.7197 0.7185 0.7367 0.7403 0.7374 0.7398

0.50 0.7362 0.7299 0.7272 0.7301 0.7204 0.7085 0.7310 0.7340 0.7337 0.7346

0.60 0.7317 0.7261 0.7262 0.7292 0.7207 0.7081 0.7284 0.7338 0.7338 0.7338

0.70 0.7262 0.7242 0.7233 0.7263 0.7191 0.6941 0.7227 0.7333 0.7338 0.7338

0.80 0.7231 0.7205 0.7232 0.7253 0.7235 0.6922 0.7208 0.7277 0.7304 0.7338

0.90 0.7192 0.7205 0.7191 0.7262 0.7243 0.6922 0.7146 0.7224 0.7275 0.7304

1.00 0.7186 0.7200 0.7181 0.7216 0.7211 0.7020 0.7138 0.7214 0.7223 0.7243

(a) The results of the integration from Google to Yahoo!

 EHCI-ME SFE-ME (= 0.1)

d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.9022 0.7937 0.8287 0.8312 0.8290 0.8833 0.8285 0.8165 0.8079 0.8059

0.20 0.8798 0.7817 0.8205 0.8258 0.8242 0.8514 0.8261 0.8138 0.8124 0.8069

0.30 0.8294 0.7787 0.8185 0.8254 0.8228 0.8394 0.8240 0.8138 0.8117 0.8059

0.40 0.8256 0.7777 0.8177 0.8269 0.8214 0.8357 0.8237 0.8144 0.8121 0.8079

0.50 0.8200 0.7769 0.8169 0.8226 0.8201 0.8350 0.8237 0.8141 0.8124 0.8090

0.60 0.8180 0.7761 0.8169 0.8223 0.8217 0.8357 0.8233 0.8141 0.8127 0.8097

0.70 0.8165 0.7771 0.8198 0.8212 0.8204 0.8350 0.8233 0.8144 0.8127 0.8100

0.80 0.8162 0.7768 0.8157 0.8205 0.8189 0.8350 0.8233 0.8151 0.8131 0.8107

0.90 0.8161 0.7735 0.8103 0.8184 0.8157 0.8340 0.8230 0.8151 0.8138 0.8117

1.00 0.8202 0.8585 0.8640 0.8638 0.8633 0.8449 0.8425 0.8367 0.8367 0.8360

(b) The results of the integration from Yahoo! to Google

From table 4, we can notice that SFE-ME is superior to EHCI-ME in more than 60% of

all MiR scores for the G Y integration process and in nearly 75% of all MiR scores for the
Y G integration process. Among these cases, SFE-ME can achieve the best G Y MiR of
0.9301 and the best Y G MiR of 0.9055 when s = 0.1 and d = 0.1. When d = 0.1

434 Cheng-Zen Yang et al.

and s 0.3, EHCI-ME outperforms SFE-ME for both MaR and MiR in the G Y
integration process. Considering the d influences of Google’s hierarchical thesaurus
information shown in Table 3 (b), the experimental results suggest that over-emphasizing the
weight of Google’s hierarchical thesaurus information will impair the effectiveness of SFE.

Table 4. The micro-averaged recall (MiR) measures of EHCI-ME and SFE-ME.
 EHCI-ME SFE-ME (= 0.4)

 d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.8561 0.7999 0.7873 0.7945 0.7718 0.9301 0.9096 0.8972 0.8969 0.9109

0.20 0.8174 0.7807 0.7770 0.7934 0.7732 0.8369 0.8400 0.8325 0.8133 0.8284

0.30 0.7989 0.7797 0.7787 0.7907 0.7746 0.7838 0.8030 0.8058 0.7921 0.7962

0.40 0.7921 0.7797 0.7777 0.7873 0.7742 0.7698 0.7831 0.7917 0.7835 0.7849

0.50 0.7866 0.7787 0.7773 0.7862 0.7746 0.7640 0.7804 0.7821 0.7814 0.7825

0.60 0.7801 0.7773 0.7770 0.7859 0.7742 0.7650 0.7790 0.7818 0.7818 0.7818

0.70 0.7780 0.7766 0.7760 0.7831 0.7739 0.7585 0.7756 0.7814 0.7818 0.7818

0.80 0.7763 0.7739 0.7760 0.7828 0.7763 0.7575 0.7746 0.7780 0.7790 0.7818

0.90 0.7736 0.7739 0.7732 0.7831 0.7766 0.7575 0.7715 0.7760 0.7777 0.7790

1.00 0.7729 0.7736 0.7725 0.7801 0.7749 0.7619 0.7715 0.7753 0.7753 0.7766

(a) The results of the integration from Google to Yahoo!

 EHCI-ME SFE-ME (= 0.1)

 d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.8952 0.8620 0.8535 0.8559 0.8545 0.9055 0.8713 0.8699 0.8696 0.8679

0.20 0.8709 0.8504 0.8490 0.8535 0.8538 0.8768 0.8590 0.8572 0.8613 0.8610

0.30 0.8613 0.8480 0.8487 0.8538 0.8535 0.8651 0.8555 0.8538 0.8579 0.8548

0.40 0.8583 0.8473 0.8477 0.8545 0.8531 0.8610 0.8552 0.8542 0.8572 0.8528

0.50 0.8524 0.8470 0.8473 0.8528 0.8528 0.8596 0.8548 0.8528 0.8552 0.8446

0.60 0.8501 0.8466 0.8473 0.8531 0.8535 0.8593 0.8559 0.8524 0.8531 0.8442

0.70 0.8473 0.8473 0.8504 0.8524 0.8531 0.8579 0.8555 0.8514 0.8453 0.8439

0.80 0.8470 0.8470 0.8483 0.8521 0.8524 0.8572 0.8552 0.8483 0.8432 0.8425

0.90 0.8466 0.8459 0.8442 0.8514 0.8511 0.8562 0.8548 0.8473 0.8429 0.8425

1.00 0.8518 0.8562 0.8624 0.8627 0.8620 0.8552 0.8545 0.8463 0.8425 0.8418

(b) The results of the integration from Yahoo! to Google

 Hierarchical Taxonomy Integration Using 435

Semantic Feature Expansion on Category-Specific Terms

From Table 5, we can notice that SFE-ME is superior to EHCI-ME in more than 80% of
all MaP for the G Y integration process, and in all cases for the Y G integration process. In
addition, SFE-ME achieves the best G Y MaP of 0.6662 when s = 1.0 and d = 0.1,
and the best Y G MaP of 0.4663 when s = 0.7 and d = 0.9.

Table 5. The macro-averaged precision (MaP) measures of EHCI-ME and SFE-ME.
 EHCI-ME SFE-ME (= 0.4)

 d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.1936 0.3273 0.3356 0.3426 0.3425 0.2122 0.2980 0.3139 0.3158 0.3557

0.20 0.3491 0.3482 0.3475 0.3459 0.3559 0.3664 0.3696 0.3572 0.3477 0.3510

0.30 0.3890 0.3537 0.3486 0.3460 0.3547 0.4707 0.3960 0.3793 0.3523 0.3486

0.40 0.4090 0.3613 0.3497 0.3482 0.3543 0.5794 0.4137 0.3797 0.3723 0.3531

0.50 0.4253 0.3657 0.3515 0.3521 0.3560 0.6279 0.4649 0.3971 0.3778 0.3552

0.60 0.4373 0.3734 0.3565 0.3588 0.3603 0.6613 0.4918 0.4192 0.3556 0.3624

0.70 0.4455 0.3811 0.3611 0.3681 0.3655 0.6600 0.5592 0.4397 0.3663 0.3916

0.80 0.4532 0.3876 0.3686 0.3735 0.3559 0.6607 0.6403 0.4872 0.3876 0.3333

0.90 0.4548 0.3904 0.3747 0.3853 0.3607 0.6636 0.6543 0.5738 0.4321 0.3548

1.00 0.4565 0.4125 0.3862 0.4070 0.3625 0.6662 0.6575 0.5955 0.5043 0.4304

(a) The results of the integration from Google to Yahoo!

 EHCI-ME SFE-ME (= 0.1)

 d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.0565 0.1643 0.1952 0.1985 0.2004 0.0969 0.3236 0.3816 0.4159 0.4198

0.20 0.0963 0.1969 0.2090 0.2070 0.2090 0.1744 0.3439 0.3997 0.4362 0.4498

0.30 0.1171 0.2047 0.2080 0.2097 0.2120 0.2051 0.3566 0.4041 0.4470 0.4575

0.40 0.1279 0.2050 0.2085 0.2100 0.2126 0.2190 0.3749 0.4083 0.4510 0.4640

0.50 0.1345 0.2032 0.2096 0.2105 0.2145 0.2231 0.3785 0.4100 0.4525 0.4642

0.60 0.1375 0.2034 0.2104 0.2100 0.2164 0.2273 0.3827 0.4106 0.4544 0.4646

0.70 0.1375 0.2042 0.2128 0.2106 0.2153 0.2318 0.3854 0.4120 0.4551 0.4663

0.80 0.1378 0.2052 0.2138 0.2109 0.2149 0.2354 0.3854 0.4132 0.4555 0.4651

0.90 0.1382 0.2055 0.2132 0.2102 0.2121 0.2366 0.3840 0.4147 0.4534 0.4636

1.00 0.1018 0.1012 0.1024 0.1019 0.1017 0.1661 0.1797 0.1847 0.1876 0.1881

(b) The results of the integration from Yahoo! to Google

436 Cheng-Zen Yang et al.

From Table 6, SFE-ME achieves the best G Y MiP of 0.6078 when s = 0.9 and d
= 0.1, and the best Y G MiP of 0.2988 when s = 0.7 and d = 0.9. In addition,
SFE-ME achieves MiP improvements in 90% of all cases for the G Y integration process
and in all cases for the Y G integration process. These results show that the number of
incorrectly integrated documents in SFE-ME is much lower. With high precision performance,
SFE-ME may reduce a lot of time for users in manually verifying the integration correctness.

Table 6. The micro-averaged precision (MiP) measures of EHCI-ME and SFE-ME.
 EHCI-ME SFE-ME (= 0.4)

 d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.1156 0.2504 0.2715 0.2740 0.2817 0.1205 0.2835 0.3099 0.2782 0.3687

0.20 0.2253 0.3018 0.2947 0.2822 0.3080 0.1569 0.3661 0.3570 0.3504 0.3629

0.30 0.2741 0.3170 0.2984 0.2858 0.3107 0.2737 0.3777 0.3946 0.3515 0.3642

0.40 0.3136 0.3329 0.3002 0.2897 0.3115 0.4721 0.3834 0.3776 0.3866 0.3688

0.50 0.3494 0.3390 0.3033 0.2695 0.3135 0.5581 0.4556 0.3862 0.3879 0.3666

0.60 0.3763 0.3475 0.3101 0.3101 0.3199 0.6061 0.4663 0.4032 0.3147 0.3700

0.70 0.3906 0.3583 0.3192 0.3336 0.3317 0.6041 0.4924 0.3952 0.3180 0.4151

0.80 0.3966 0.3759 0.3334 0.3485 0.3414 0.6016 0.5824 0.4335 0.3229 0.3452

0.90 0.3987 0.3826 0.3402 0.3734 0.3540 0.6078 0.5871 0.4726 0.3509 0.3800

1.00 0.3992 0.4332 0.3772 0.4198 0.3568 0.5999 0.5894 0.4937 0.3879 0.3974

(a) The results of the integration from Google to Yahoo!

 EHCI-ME SFE-ME (= 0.1)

 d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.0677 0.1269 0.1172 0.1118 0.1111 0.0943 0.1818 0.2089 0.2344 0.2686

0.20 0.0999 0.1226 0.1145 0.1121 0.1120 0.1183 0.1903 0.2184 0.2485 0.2829

0.30 0.1087 0.1186 0.1137 0.1123 0.1122 0.1269 0.1929 0.2278 0.2534 0.2860

0.40 0.1125 0.1158 0.1131 0.1124 0.1119 0.1318 0.1948 0.2299 0.2585 0.2909

0.50 0.1142 0.1152 0.1127 0.1122 0.1121 0.1365 0.1984 0.2303 0.2606 0.2943

0.60 0.1147 0.1131 0.1123 0.1121 0.1118 0.1418 0.2042 0.2304 0.2612 0.2983

0.70 0.1147 0.1128 0.1122 0.1119 0.1117 0.1469 0.2131 0.2301 0.2597 0.2988

0.80 0.1150 0.1134 0.1121 0.1118 0.1116 0.1503 0.2152 0.2312 0.2591 0.2985

0.90 0.1151 0.1127 0.1116 0.1117 0.1110 0.1522 0.2154 0.2340 0.2581 0.2988

1.00 0.0979 0.0867 0.0865 0.0870 0.0865 0.1190 0.1388 0.1417 0.1468 0.1573

(b) The results of the integration from Yahoo! to Google

 Hierarchical Taxonomy Integration Using 437

Semantic Feature Expansion on Category-Specific Terms

For many applications, a compromised performance may be required with a high F1 score.
From Table 7 and Table 8, we can notice that SFE-ME is superior to EHCI-ME in nearly 90%
of all MaF and MiF scores for the G Y integration process, and it has consistent
improvements in all cases for the Y G integration process. In our experiments with = 0.4,
SFE-ME achieves the highest MaF (0.6839) and the highest MiF (0.6764) when s = 0.6
and d = 0.1 for the G Y integration process. For the Y G integration process, SFE-ME
achieves the highest MaF (0.5919) and the highest MiF (0.4413) when = 0.1, s = 0.7, and

d = 0.9. These two tables show that the SFE scheme can mostly get more balanced
improvements in both recall and precision considerations.

Table 7. The macro-averaged F1 (MaF) measures of EHCI-ME and SFE-ME.
 EHCI-ME SFE-ME (= 0.4)

d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.3119 0.4556 0.4602 0.4670 0.4637 0.3430 0.4428 0.4585 0.4603 0.5046

0.20 0.4792 0.4724 0.4703 0.4700 0.4761 0.5000 0.5025 0.4894 0.4799 0.4870

0.30 0.5118 0.4773 0.4722 0.4702 0.4755 0.5738 0.5184 0.5041 0.4789 0.4767

0.40 0.5274 0.4840 0.4725 0.4718 0.4748 0.6415 0.5299 0.5020 0.4948 0.4780

0.50 0.5391 0.4872 0.4739 0.4751 0.4765 0.6658 0.5684 0.5154 0.4988 0.4789

0.60 0.5475 0.4932 0.4782 0.4810 0.4804 0.6839 0.5871 0.5336 0.4790 0.4852

0.70 0.5522 0.4994 0.4817 0.4886 0.4847 0.6766 0.6305 0.5497 0.4887 0.5106

0.80 0.5572 0.5040 0.4884 0.4931 0.4771 0.6761 0.6782 0.5836 0.5065 0.4584

0.90 0.5572 0.5064 0.4927 0.5035 0.4816 0.6776 0.6831 0.6396 0.5422 0.4776

1.00 0.5583 0.5245 0.5022 0.5205 0.4825 0.6836 0.6845 0.6525 0.5939 0.5399

(a) The results of the integration from Google to Yahoo!

 EHCI-ME SFE-ME (= 0.1)

d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.1064 0.2723 0.3160 0.3205 0.3227 0.1746 0.4654 0.5201 0.5492 0.5521

0.20 0.1737 0.3145 0.3332 0.3310 0.3334 0.2895 0.4856 0.5361 0.5676 0.5776

0.30 0.2053 0.3242 0.3317 0.3344 0.3372 0.3296 0.4978 0.5400 0.5765 0.5837

0.40 0.2215 0.3245 0.3322 0.3349 0.3378 0.3471 0.5153 0.5439 0.5800 0.5895

0.50 0.2311 0.3221 0.3336 0.3352 0.3400 0.3521 0.5187 0.5454 0.5813 0.5899

0.60 0.2355 0.3223 0.3346 0.3345 0.3426 0.3574 0.5225 0.5459 0.5829 0.5904

0.70 0.2354 0.3234 0.3379 0.3352 0.3411 0.3629 0.5251 0.5472 0.5834 0.5919

0.80 0.2358 0.3247 0.3388 0.3356 0.3405 0.3672 0.5251 0.5484 0.5839 0.5911

0.90 0.2364 0.3248 0.3376 0.3345 0.3367 0.3686 0.5236 0.5497 0.5823 0.5902

1.00 0.1811 0.1810 0.1831 0.1823 0.1820 0.2776 0.2962 0.3026 0.3064 0.3071

(b) The results of the integration from Yahoo! to Google

438 Cheng-Zen Yang et al.

We have also measured these six scores for the s = 0.0, d = 0.0, and = 0.0 cases,
which means that the integration is performed by only ME without EHCI and SFE
enhancements. In this configuration, for the G Y integration process, ME can achieve very
prominent recall performance in MaR (0.9578) and MiR (0.9616) but with poor precision
performance in MaP (0.0111) and MiP (0.0111). Its MaF and MiF are 0.022 and 0.0219,
respectively. For the Y G integration process, ME has similar performance. Although ME
can attain the best recall performance, these results show that it allows many documents of
other categories to be incorrectly integrated.

Table 8. The micro-averaged F1 (MiF) measures of EHCI-ME and SFE-ME.
 EHCI-ME SFE-ME (= 0.4)

 d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.2037 0.3814 0.4037 0.4075 0.4128 0.2133 0.4322 0.4607 0.4246 0.5249

0.20 0.3533 0.4353 0.4273 0.4163 0.4406 0.2642 0.5099 0.4997 0.4897 0.5047

0.30 0.4082 0.4508 0.4314 0.4199 0.4435 0.4058 0.5138 0.5298 0.4869 0.4998

0.40 0.4493 0.4666 0.4332 0.4236 0.4443 0.5852 0.5148 0.5113 0.5177 0.5018

0.50 0.4838 0.4723 0.4363 0.4306 0.4463 0.6450 0.5753 0.5170 0.5184 0.4993

0.60 0.5077 0.4803 0.4433 0.4447 0.4527 0.6764 0.5834 0.5320 0.4487 0.5023

0.70 0.5201 0.4904 0.4523 0.4679 0.4644 0.6725 0.6024 0.5249 0.4521 0.5422

0.80 0.5250 0.5060 0.4664 0.4823 0.4742 0.6706 0.6649 0.5568 0.4565 0.4789

0.90 0.5262 0.5121 0.4725 0.5057 0.4863 0.6744 0.6668 0.5874 0.4835 0.5108

1.00 0.5264 0.5554 0.5069 0.5458 0.4887 0.6713 0.6682 0.6032 0.5171 0.5257

(a) The results of the integration from Google to Yahoo!

 EHCI-ME SFE-ME (= 0.1)

 d

s
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

0.10 0.1258 0.2212 0.2061 0.1977 0.1967 0.1707 0.3009 0.3369 0.3692 0.4102

0.20 0.1792 0.2142 0.2017 0.1981 0.1980 0.2085 0.3115 0.3481 0.3857 0.4259

0.30 0.1930 0.2081 0.2005 0.1986 0.1983 0.2213 0.3148 0.3596 0.3913 0.4286

0.40 0.1989 0.2038 0.1995 0.1986 0.1978 0.2287 0.3174 0.3623 0.3972 0.4338

0.50 0.2014 0.2028 0.1989 0.1983 0.1982 0.2355 0.3220 0.3627 0.3995 0.4365

0.60 0.2021 0.1996 0.1983 0.1981 0.1977 0.2434 0.3298 0.3627 0.4000 0.4408

0.70 0.2021 0.1991 0.1982 0.1978 0.1975 0.2508 0.3413 0.3623 0.3973 0.4413

0.80 0.2025 0.2000 0.1980 0.1976 0.1974 0.2558 0.3439 0.3633 0.3964 0.4408

0.90 0.2027 0.1989 0.1972 0.1975 0.1964 0.2584 0.3441 0.3667 0.3952 0.4412

1.00 0.1757 0.1575 0.1572 0.1580 0.1572 0.2089 0.2387 0.2428 0.2501 0.2650

(b) The results of the integration from Yahoo! to Google

 Hierarchical Taxonomy Integration Using 439

Semantic Feature Expansion on Category-Specific Terms

The experimental results show that SFE-ME can get more improved integration
performance with the SFE scheme. Compared with EHCI-ME, SFE-ME shows that the
semantic information of the hypernyms of the category-specific terms can be used to facilitate
the integration process between two hierarchical taxonomies.

6. Conclusion

In recent years, the taxonomy integration problem has been progressively studied for
integrating two homogeneous hierarchical taxonomies. Many types of implicit information
embedded in the source taxonomy are explored to improve the integration performance. The
semantic information embedded in the source taxonomy, however, has not been discussed in
previous research.

In this paper, an enhanced integration approach (SFE) is proposed to exploit the semantic
information of the hypernyms of the category-specific terms. Augmented with these additional
semantic category features, the source documents can be more precisely integrated into the
correct destination category in the experiments. The experimental results show that SFE-ME
can achieve the best macro-averaged F1 score and the best micro-averaged F1 score. The
results also show that the SFE scheme can get precision and recall enhancements in a
significant portion of all cases.

There are still some issues left for future study. For example, the effectiveness of SFE on
other classification schemes, such as SVM and NB, may need to be investigated to decide
which one has the best integration performance. In addition, deciding the optimal parameter
configuration is a classical classification problem which is also important to the taxonomy
integration problem. Although mining more valuable implicit information can be a tough
challenge, we believe that the integration performance can be further improved with
appropriate assistance of more effective auxiliary information and advanced classifiers.

Acknowledgement
This work was supported in part by National Science Council of R.O.C. under grant NSC
96-2422-H-006-002 and NSC 96-2221-E-155-067. The authors would also like to express
their gratitude to the anonymous reviewers for their precious comments.

References
Agrawal, R., & Srikan, R. (2001). On Integrating Catalogs. in Proceedings of the 10th

International Conference on World Wide Web, 603-612.
Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A Maximum Entropy Approach to

Natural Language Processing. Computational Linguistics, 39-71.

440 Cheng-Zen Yang et al.

Chen, I.-X., Ho, J.-C., & Yang, C.-Z. (2005). An Iterative Approach for Web Catalog
Integration with Support Vector Machines. in Proceedings of the 2nd Asia Information
Retrieval Symposium (AIRS 2005), 703-708.

Chen, I.-X., Ho, J.-C., & Yang, C.-Z. (2007). Hierarchical Web Catalog Integration with
Conceptual Relationships in a Thesaurus. International Journal of Computational
Linguistics and Chinese Language Processing, 12(2), 155-174.

Cheng, T.-H., & Wei, C.-P. (2008). A Clustering-based Approach for Integrating
Document-Category Hierarchies. IEEE Transactions on Systems, Man, and
Cybernetics �– Part A: Systems and Humans, 38(2), 410-424.

Darroch, J. N., & Ratcliff, D. (1972). Generalized Iterative Scaling for Log-linear Models.
Annals of Mathematical Statistics, 43, 1470-1480.

Frakes, W., & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and Algorithms,
1st edition, Prentice Hall, PTR.

Ho, J.-C., Chen, I.-X., & Yang, C.-Z. (2006). Learning to Integrate Web Catalogs with
Conceptual Relationships in Hierarchical Thesaurus. in Proceedings of the 3rd Asia
Information Retrieval Symposium (AIRS 2006), 217-229.

Hsu, M.-H., Tsai, M.-F., & Chen, H.-H. (2006). Query Expansion with ConceptNet and
WordNet: an Intrinsic Comparison. in Proceedings of the 3rd Asia Information Retrieval
Symposium (AIRS 2006), 1-13.

Krikos, V., Stamou, S., Kokosis, P., Ntoulas, A., & Christodoulakis, D. (2005). DirectoryRank:
Ordering Pages in Web Directories. in Proceedings of the 7th ACM International
Workshop on Web Information and Data Management (WIDM 2005), 17-22.

Ng, H.-T., Goh, W.-B., & Low, K.-L. (1997). Feature selection, Perception Learning, and a
Usability Case Study for Text Categorization. in Proceedings of the 20th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, 67-73.

Sarawagi, S., Chakrabarti, S., & Godbole, S. (2003). Cross-training: Learning Probabilistic
Mappings between Topics. in Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 177-186.

Tseng, Y.-H., Lin, C.-J., Chen, H.-H., & Lin, Y.-I. (2006). Toward Generic Title Generation
for Clustered Documents. in Proceedings of the 3rd Asia Information Retrieval
Symposium (AIRS 2006), 145-157.

Wu, C.-W., Tsai, T.-H., & Hsu, W.-L. (2005). Learning to Integrate Web Taxonomies with
Fine-Grained Relations: A Case Study Using Maximum Entropy Model. in Proceedings
of the 2nd Asia Information Retrieval Symposium (AIRS 2005), 190-205.

Wu, C.-W., Tsai, T.-H., Lee, C.-W., & Hsu, W.-L. (2008). Web Taxonomy Integration with
Hierarchical Shrinkage algorithm and Fine-Grained Relations. Expert Systems with
Applications, 35(4), 2123-2131.

 Hierarchical Taxonomy Integration Using 441

Semantic Feature Expansion on Category-Specific Terms

Yang, Y., & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text
Categorization. in Proceedings of the 14th International Conference on Machine
Learning (ICML�’97), 412-420.

Zhang, D., & Lee, W.-S. (2004a). Web Taxonomy Integration using Support Vector Machines.
in Proceedings of the 13th International Conference on World Wide Web, 472-481.

Zhang, D., & Lee, W.-S. (2004b). Web Taxonomy Integration Through Co-Bootstrapping. in
Proceedings of the 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 410–417.

Zhu, S., Yang, C. C., & Lam, W. (2004). CatRelate: A New Hierarchical Document Category
Integration Algorithm by learning Category Relationships. in Proceedings of the 7th
International Conference on Asian Digital Libraries (ICADL 2004), Shanghai, China,
280-289.

Online Resources
Information Mapping Project, Computational Semantics Laboratory, Stanford University.

http://infomap.stanford.edu/.
The Porter Stemming Algorithm., http://tartarus.org/˜martin/PorterStemmer.
WordNet, A lexical database for the English language: Cognitive Science Laboratory,

Princeton University, http://wordnet.princeton.edu/.
Zhang, L., “Maximum Entropy Modeling Toolkit for Python and C++,”

http://homepages.inf.ed.ac.uk/s0450736/maxent.html.

442 Cheng-Zen Yang et al.

Computational Linguistics and Chinese Language Processing

Vol. 13, No. 4, December 2008, pp. 443-460 443ʳ

 The Association for Computational Linguistics and Chinese Language Processing

[Received September 15, 2008; Revised Mar. 19, 2009; Accepted Mar. 25, 2009]

Automatic Wikibook Prototyping via Mining Wikipedia

Jen-Liang Chou*, and Shih-Hung Wu*

Abstract

Wikipedia is the world’s largest collaboratively edited source of encyclopedic
knowledge. Wikibook is a sub-project of Wikipedia that is intended to create a
book that can be edited by various contributors, similar to how Wikipedia is
composed and edited. Editing a book, however, requires more effort than editing
separate articles. Therefore, methods of quickly prototyping a book is a new
research issue. In this paper, we investigate how to automatically extract content
from Wikipedia and generate a prototype of a Wikibook as a start point for further
editing. Applying search technology, our system can retrieve relevant articles from
Wikipedia. A table of contents is built automatically and is based on a two-stage
searching method. Our experiments show that, given a keyword as the title of a
book, our system can generate a table of contents, which can be treated as a
prototype of a Wikibook. Such a system can help free textbook editing. We
propose an evaluation method based on the comparison of system results to a
traditional textbook and show the coverage of our system.

Keywords: Wikipedia, Wikibook, Table of Contents Generation

1. Introduction

The ability to quickly construct a free encyclopedia, such as Wikipedia, has shown that the
Web 2.0 has been successful. Community and interactivity among users on the Internet has
become a popular topic. A project named “Science Online,” which brought the wiki scheme to
schools, lets students participate in collaborative writing (Forte & Bruckman, 2007).
Wikipedia is useful in college education, both for general topics (Lally & Dunford, 2007,
May/June) and for specific topics, such as physics (Muchnik, Itzhack, Solomon, & Louzoun,
2007). In this paper, we focus on another project of the Wikimedia Foundation, Wikibook,
which is also useful in the classroom (Sajjapanroj, Bonk, Lee, & Lin, 2006). Wikibook
provides free textbooks on the Internet via the Wiki system, letting global users edit the

* Department of Computer Science and Information Engineering, Chaoyang University of Technology,
Taiwan R.O.C.
E-mail :shwu@cyut.edu.tw

444 Jen-Liang Chou, and Shih-Hung Wu

contents of textbooks. Creating a book without supporting data, however, is difficult. An
expert or a system that can provide a general framework and useful references for a book is of
much help. Thus, we propose an automatic Wikibook prototyping system that can pick
relevant articles from Wikipedia and construct a hierarchy as the table of contents for a given
topic. Our system consists of information retrieval and web mining technology.

In previous work, the TOC and anchor text of a Wikipedia entry has been used to form
the TOC of a Wikibook (Yang, Han, Oh, & Kwak, 2007). A relevant research area is Topic
Maps. Topic Maps are analogous to the Table of Contents (TOC) of a textbook. Users can
realize and memorize the relevant concepts of a topic. “Topic Maps for learning” (TM4L)
(Dicheva & Dichev, 2005) is an application of Topic Maps. These methods, though, mostly
rely on humans without using information retrieval technology, which can provide a
considerable amount of relevant information. Studies in knowledge acquisition provide some
hints. Semi-automatic methods can aggregate a domain ontology via Internet search
(Roberson & Dicheva, 2007).

We propose a method that can help prototype a Wikibook automatically using the
contents from Wikipedia. In the following sections, we will describe our methodology in
Section 2, system implementation in Section 3, experimental results in Section 4, discussions
in Section 5, and give conclusion in the final section.

2. Methodology

We propose a framework for Wikibook prototyping which involves several modules. These
modules can be replaced to fulfill the needs of different requirements. For example, we might
customize the system for different languages, users of different ages, or topics with different
contexts.

2.1 Corpus Preparation
The first module is the preparation of a corpus. We can use the whole of Wikipedia, certain
language versions, or subsets as the searching target. The system then extracts and analyzes
contents from the corpus. As a knowledge source, Wikipedia provides not only the content but
also a lot of links to contexts, which are also valuable. We will extract keywords from the
content of Wikipedia pages, and will find related terms from the anchor text in these pages.

2.2 Search Engine and Anchor Text Miner
The second module is a search engine and an anchor text miner. As mentioned above, relevant
topics can be found not only from a full text keyword search, but also from links in Wikipedia.
This module is important from the technical point of view. Our system searches relevant

 Automatic Wikibook Prototyping via Mining Wikipedia 445

topics and their hyponyms using information retrieval technology. On the other hand, the
anchor text miner can extract related terms from the anchor texts of the retrieved pages.

2.3 Hierarchical Construction
Given relevant topics, our system then generates a hierarchy. This hierarchy can be viewed as
the table of contents of a Wikibook for further editing.

3. Implementation issues

Our methodology gives a general idea on how to generate a Wikibook automatically within a
flexible framework. In the following sections, we discuss our system and experiments on
computer science topics in both the English and Chinese versions of Wikipedia. Figure 1
shows the architecture of our system.

User

Wikipedia
Articles

indexing

 1. Heading 1
 2. Heading 2

2.1 sub-heading
 3. Heading 3

3.1 sub-heading
 3.2 sub-heading
 4. Heading 4
ǾǾǾ

TOC

Wikipedia
full-text
index

Article title
(Heading)

Sub-Search

Anchor text

Search

keyword

Mining
anchor text

Article title
(sub-heading)

Figure 1. System Architecture

446 Jen-Liang Chou, and Shih-Hung Wu

3.1 Corpus Choice
We chose Wikipedia as our corpus in the experiments for two reasons. First, the idea of the
availability of the corpus; it is an ample resource of information which is available for every
potential Wikibook editor and there are no copyright issues in regards to using the content for
a Wikibook. Second, the quality of content: there is more professional knowledge in
Wikipedia than in general Websites, and potential editors can compile the content from
Wikipedia with less effort.

3.2 Search Strategy
Our search strategy is automatic two-stage iterative searching. The system takes a term as the
query and performs context searching via a standard information retrieval process. We use
pseudo-relevance feedback as our searching algorithm. The resulting set of the first search will
be used as the corpus in the second stage.

The system ranks the search results according to a traditional TF-IDF scoring function
that is restated in Formula (1) where Scorei is the ranking score of an article, i denotes an
article, j denotes a term occurring within the query, and T denotes the number of terms in the
query. TFj is the frequency of j occurring within the article title, TFij is the frequency that term
j occurs in article i. We assume ij itoken T j as the number of the rest words after
deleting term j from the article i, where Ti is the number of terms in the article i:

2

T j j ij j
i

j j
j j

j

TF IDF TF IDF
Score

tokenTF IDF
 (1)

where log 1j
j

D
IDF

D
, measures term j involvement in other documents, D is all the

articles in the index, Dj is articles that contain j.

Table 1 shows a collection of four documents, and the corresponding value of each
variable in Formula (1) is shown in Table 2. Suppose the query terms are “A B C”, then T is 3,
and i can be 1 to 4 as the Doc ID in Table 1. Then, the Score of a document according to the
formula is shown in the last column of Table 2. Where Score1 = 0.551; Score2 = 0.260; Score3
= 0.675; Score4 = 0, we rank these scores from high to low. From this, we can attain results
such that, if we input the query “A B C”, the system will output the order of the document as 3,
1, 2, 4.

 Automatic Wikibook Prototyping via Mining Wikipedia 447

Table 1. Example Documents
Doc ID Title Contents

1 A A B A E C

2 B B D F

3 C C A C E

4 D D E F B

Table 2. Calculate the value of each notion using Formula (1)
i j TFj TFij |D| |Dj| IDFj tokenij Scorei

1 A 1 2 4 2 0.477 3 0.551

1 B 0 1 4 3 0.368 4 0

1 C 0 1 4 2 0.477 4 0

2 A 0 0 4 2 0.477 3 0

2 B 1 1 4 3 0.368 2 0.260

2 C 0 0 4 2 0.477 3 0

3 A 0 1 4 2 0.477 3 0

3 B 0 0 4 3 0.368 4 0

3 C 1 2 4 2 0.477 2 0.675

4 A 0 0 4 2 0.477 4 0

4 B 0 1 4 3 0.368 3 0

4 C 0 0 4 2 0.477 4 0

This means the frequency of a term occurring both in the title and in the article is
important. The higher the term frequency is, the higher the score of the article will be.

After filtering out the noise in the resulting set, such as redirected pages, our system
maintains the top N documents, which are the highest score articles, as the resulting set for
further search and the user can customize the arbitrary parameter N. Our system thus finds the
first level of relevant topics from the resulting set. These relevant topics can be treated as the
backbone of a Wikibook.

3.3 Sub-Topic Finding
Since the extracted topics from the first search often contain the original query term, our
system removes the original query term string and uses the reduced topics as the query terms
in the second stage search based on the result of the first stage search. For example, if we

448 Jen-Liang Chou, and Shih-Hung Wu

input the keyword “Operating system (܂ᄐߓอ)” and retrieve the topic “Linux Operating
System (Linux܂ᄐߓอ)”, the shortened query will be “Linux”. As another example, if we
input the keyword “Operating system (܂ᄐߓอ)” and retrieve the topic “Windows Operating
System (ီ࿗܂ᄐߓอ),” the shortened query will be “Windows (ီ࿗)”. This query
reformulation is the same both in the English version and the Chinese version.

Our system extracts keywords from the second stage search result as the sub-level topics
of the output TOC. This is a recursive method; we can find the sub-sub-topics in the same
manner. For example, we can further search for sub-topics of “Linux” or “Windows”. After
finding the sub-level topics, our system will extract other related terms from the anchor text in
these Wikipedia articles. As such, every related topic we find corresponds to a related
Wikipedia article, which might be useful content of a Wikibook. There are two approaches for
mining the related terms: one is to extract anchor texts only in the short definition of an article;
the other is to extract from the whole article. Our system then combines these related terms as
the sub-level topics.

Figure 2. User Interface

 Automatic Wikibook Prototyping via Mining Wikipedia 449

4. Experiment

4.1 Dataset Preparation
We downloaded the English and Chinese version of Wikipedia dump data from the Wikimedia
downloads website (http://download.wikimedia.org/enwiki/). Then, we parsed the content and
stored it in a MySQL database. In the following experiment, our system uses the data under
the title and content XML tags. A searching tool is built based on the Lucene open source
information retrieval API (http://lucene.apache.org/). The user interface is shown in Figure 2.

Our system can generate a TOC for any given title without other information. To
evaluate the quality of our system, we conducted several experiments to find differences with
previous work. As the target of comparison, we first observe a manually edited Wikibook
entitled “Operating System Design”; part of the TOC is shown in Table 3. The first four level
one topics in this TOC are general concepts, which are independent of the title of the
Wikibook. The sub-topics of and after the fifth topic, however, are very likely to have been
generated automatically. We also find that the sub-topic of the fifth topic, “Kernel
Architecture,” states the concept of “Kernel Architecture” or gives some illustrations. Our
system can help to automatically generate this part of a Wikibook TOC.

Table 3. Partial view of the Wikibook TOC of “Operating
System Design”, which was edited manually

1. Preface
2. Introduction
3. Case studies
4. History
5. Kernel Architecture

5.1 Monolithic Kernels
5.1.1 Solaris
5.1.2 Linux
5.1.3 Windows 9x

5.2Microkernels
5.2.1 QNX

5.3Exokernel
5.3.1 XOK

5.4 Hybrid Kernels
5.4.1 Windows NT/XP
5.4.2 Mac OSX
5.4.3 BeOS

6. Initialisation
6.1 Boot Loaders
6.2 Hardware Initialisation

7. Processes
…

450 Jen-Liang Chou, and Shih-Hung Wu

4.2 Experiment 1: Generate the TOC of “Operating System Design” via
our System

As the first example, to derive a TOC about operating systems, we input the query term
“Operating system,” into our system. The system automatically generates a corresponding
TOC, shown in Table 4. The arbitrary N can be 10, 20, 50, 100, or 1000. In our experiment,
we choose the Top 20 (N=20) as our output number. The user can choose different N for
greater or fewer topics in our system. The sub-topics are ranked according to Formula (1),
discussed in Section 3.2. Next, the system uses the scheme described in Section 3.3 to perform
a second stage search. In this case, the sub-topics at the second level are adequate. For
example, the sub-topics of “Linux operating system” in Table 4 are instances of the Linux
operating system. The scheme in Section 2.3 is effective.

Table 4. Partial view of automatically
generated TOC of “Operating
System”

Table 5. Partial view of automatically
generated TOC of the Chinese
version “ὁ㋏㍅(Operating
System)”

1. Operating system
2. THE operating system
3. IBM AIX (operating system)
4. CPM operating system
5. Disk operating system
6. Kent Applicative Operating System
7. Linux operating system

7.1 Distro
7.2 Flask operating system
7.3 Sabayon
7.4 Red hatter

8. Operating system advocacy
9. Real-time operating system

9.1 Rubus (disambiguation)
9.2 RTMOS (Real-Time Multiprogramming

Operating System)
10. VSE (operating system)

10.1 Exec
10.2 Protected procedure call

11. Computer network operating system
11.1 Faceless process

12. Network operating system
12.1 Faceless process
12.2 Brazil (operating system)

13. Solaris (operating system)
14. Pick Operating System
15. Darwin (operating system)
16. Operating system/kernel

16.1 Flask operating system

 อߓᄐ܂.1
 อߓᄐ܂ۯ2.64
3.Linux܂ᄐߓอ
 3-1.Ebuntu
4.Darwin (܂ᄐߓอ)
5.ီ࿗܂ᄐߓอ
 5-1.AUTOEXEC.BAT
 5-2.JavaOS
 5-3.Xfwm
 5-4.WINGs Display Manager
 ।ڣอᖵߓᄐ܂.6
 อழၴ।ߓᄐ܂.7
8.პຌ܂ᄐߓอ٨।
9.ီ࿗܂ᄐߓอ95
10.პຌီ࿗܂ᄐߓอᚨش࿓ڤૠտ૿
٨।ڤࠤ

 Automatic Wikibook Prototyping via Mining Wikipedia 451

Table 5 shows the result of the same experiment in the Chinese version of Wikipedia.
The result is similar but with less recall. Since the size of the Chinese version of Wikipedia is
much smaller than the English version of Wikipedia, this is a reasonable result. Table 6 shows
the results of searching and mining the anchor text, which is described in Section 2.3. As we
can see, the topic has * notion, meaning it is the anchor text, and the results show more topic
information differences with Table 3.

Table 6. Partial view of automatically generated TOC of the Chinese version
“Operating System”, plus mining anchor texts from short definition

 อߓᄐ܂.1
 * Օীᖙߓ܂อ
 * ֫ᖲ
 *
 * ಖᖋ᧯
 * ༊Եߓڤอ
 * ླྀ
 * ࿏᧯
…
 อߓᄐ܂ۯ2.64
 * EM64T
 * IA-64
 * Linux
 * Windows
…
3.Linux܂ᄐߓอ
 * 386
 * Apache
 * DEV C++
 * GNOME
 * GNU ՠ࿓
…
 3-1.Ebuntu
 * 12ִ 4ֲ
 ڣ2006 *
 * Edubuntu
…
4.Darwin (܂ᄐߓอ)
 ڣ2000 *
ڣ2002 * 4ִ
ڣ2003 * 7ִ
ڣ2005 * 5ִ

…

452 Jen-Liang Chou, and Shih-Hung Wu

4.3 Experiment 2: Using the crawling method to generate the TOC of
“Operating System Design”

We perform the same experiment with the crawling method described in the literature (Yang,
Han, Oh, & Kwak, 2007), which takes a full TOC of a manually edited Wikipedia entry as the
input, and outputs a more detailed TOC. The partial result is shown in Tables 7 and 8.

Table 7. Partial result of the TOC generated by the crawling method for the
English version of “operating system”

1 Technology
 1.1 Program execution
 * Kernel
 * Process(computing)
 1.2 Interrupts
 * interrupt
 * kernel
 * register
 * stack
…
2 Security
 * classified information
 * emulates
 * file transfer protocols
 * firewalls
 * Government Department of Defense
 * p-code
 * Popek and Geldberg virtualization requirment
 * sandbox
 * Trusted Computer System Evaluation Criteria
 2.1 Example: Microsoft Windows
 * access privileges
 * administrator
 …
3 File system support in modern operating systems
 3.1 Linux and UNIX
 * ext2
 * ext3
 * FAT
 * GFS
 * GFS2
 * HFS
 * ISO 9660
 …

 Automatic Wikibook Prototyping via Mining Wikipedia 453

4 Graphical user interfaces
 * CDE
 * context switch
 * COSE
 * GNOME
 * graphical user interface
 …
5 History
 * 80286
 * AmigaOS
 * batch processing
 * Control Data Corporation
 …
6 Mainframes
 * ALGOL
 * B5000
 * Burroughs Corporation
 …

Table8. Partial result of the TOC generated by the crawling method for the
Chinese version of “operating system”

1 ᖵ
 * ՠ܂ඈݧ
 * ։ழᖲࠫ
 * ։ཋߓڤอ
 ڤᑌڻޅ *
 ছזڣ1980 1.1
 ڣ1947 *
 ڣ1963 *
 ڣ1964 *
 זڣ1970 *
 * AT&T
 * Cߢ
 * Direct access storage device
 * IBM System/360
 * Maurice V. Wilkes
 * Multics
 * Multics
 * Unix

 * Օীሽᆰ
…

454 Jen-Liang Chou, and Shih-Hung Wu

4.4 Evaluation by Comparing to Traditional Textbook
To measure the coverage of our system results over a traditional textbook, we compare the
generated TOC to the TOC of a traditional textbook and show the hits and the precision. Table
9 is a partial TOC adopted from a textbook “Operating System Concepts” (Silberschatz,
Galvin, & Gagne, 2001). A traditional textbook provides a suitable coverage, such that we can
estimate how much content can be put into one book.

As in the TOC of the current Wikibook in Table 3, this TOC begins with general topics
which can be used for each book. Then, it follows the main ideas, which are the most
important topics. The order of the topics might be different according how the authors rank
them. Nevertheless, there should be some causality, from problem to solution or from general
idea to special case. In order to achieve such a goal (finding more relationships between topics
(Völkel, Krötzsch, Vrandecic, Haller, & Studer, 2006), more AI technology might be involved,
such as frame or logical inference. A predefined frame might guide a system to search general
information for a Wikibook. Logic can be used to infer the causality between topics.

Table 9. TOC of an “Operating System” Textbook
1 Introduction

1.1 What Is an Operating System?
1.2 Mainframe Systems

…
2 Computer-System Structures

2.1 Computer-System Operation
…
3 Operating-System Structures

3.1 System Components
…
4 Processes

4.1 Process Concept
…
Chapter 5 Threads …

We separate the number of matching hits and precision rate of the first level and second
level in the following table. Table 10 shows the result using the English version. The number
of first level and second level topics in the textbook is 23 and 177, respectively. Table 11
shows the results using the Chinese version. The number of first level and second level topics
in the textbook is 22 and 191, respectively. We adopt two matching criteria: rigid for exact
matching and relaxed for partial matching. Table 12 shows the evaluation results of English
version using the crawling method, and Table 13 shows that of the Chinese version.

 Automatic Wikibook Prototyping via Mining Wikipedia 455

In this paper, we perform three experiments on our system. Searching only method
cannot provide the user more precise concepts because of the low number of hits. The
searching method plus mining short definitions, though, can give more hits than the above and
attain better precision. On the other hand, the searching method plus mining full document
definitions can give better hits, but lose some precision. The result is very similar to the result
of crawling method, which requires a manually edited TOC as input.

Comparing our method plus mining anchor text with crawling method, we discuss two
directions. In the first level, we can gain the same number of hits. In the second level, if the
user wants fewer sub-topics for further editing, mining short definitions can archive precision
close to crawling method. On the other hand, if the user wants to get more relative subtopics,
mining full document definitions attains more hits than crawling method. In the Chinese
version, we can get the same results.

Table 10. Hits and precision of the TOC of “Operating system”

 Searching method Searching plus mining Short
definition

Searching plus mining full
document definition

 # of
output Hits Precision # of

output
Hits

(Short) Precision # of
output

Hits
(Long) Precision

First Level 20 5 0.250

Second
Level

(Relax)
17

3 0.176

340

68 0.200

2154

284 0.132

Second
Level

(Rigid)
2 0.118 36 0.106 93 0.043

Table 11. Hits and precision of the TOC of Chinese version “Operating system”

 Searching method Searching plus mining Short
definition

Searching plus mining full
document definition

 # of
output Hits Precision # of

output
Hits

(Short) Precision # of
output

Hits
(Long) Precision

First Level 10 2 0.200

Second
Level

(Relax)
5

1 0.200

179

43 0.240

1273

150 0.118

Second
Level

(Rigid)
0 0.000 21 0.117 61 0.048

456 Jen-Liang Chou, and Shih-Hung Wu

Table 12. Hits and precision of the TOC of “Operating system”
 using crawling method

 Searching method [18]

 # of
output Hits Precision

First Level 13 5 0.385

Second Level
(Relax)

406
105 0.259

Second Level
(Rigid) 46 0.113

Table 13. Hits and precision of the TOC of Chinese version
“Operating system” using crawling method

 Searching method [18]

 # of
output Hits Precision

First Level 8 3 0.375

Second Level
(Relax)

280
54 0.193

Second Level
(Rigid) 30 0.107

5. Discussion and Future Work

According to the observations in the previous section, we would like to discuss issues that
might improve the results of automatic Wikibook prototyping.

5.1 Fast Prototyping of Wikibooks
Speeding up editing collaboratively is our goal. Our system can generate a prototype of a
Wikibook on any topic. We present our system to depict the TOC in relevant concepts of a
book, and it looks like the TOC in general books. It will let editors get relevant concepts of the
given topic more quickly and with a good starting point. The TOC generated by our system
can be a prototype for editors to revise. Thus, it saves time and stimulates interest in editors to
revise it. Since the topics are related articles in Wikipedia, they also provide contents of that
topic. Thus, our system not only provides TOC but also some related content.

5.2 Identification of Hypernym/Hyponym Relation
To know the relations between relevant topics is very important in this application, especially
the relation between the upper and lower concepts, known as the hypernym/hyponym relation.

 Automatic Wikibook Prototyping via Mining Wikipedia 457

With this relation, a tree structure can be built and a hierarchy formed (Nguyen, Matsuo, &
Ishizuka, 2007). Supervised (Aggarwal, Gates, & Yu, 1999) or semi-supervised methods
(Huang, Zhang, & Lam, 2006) of hierarchical clustering algorithms are promising methods.
After finding a set of relevant documents, a system may be clustered into a hierarchy
according to the content. The titles of these articles can be treated as the TOC. A
knowledge-based approach is also possible. We can try to identify the hypernym/hyponym
relation between relevant titles by using WordNet (Farreres, Rodríguez, & Gibert, 2002) or
SUMO.

5.3 Importance of an Article
Currently, our system ranks relevant documents according to the scoring function of Lucene.
We might combine the result with Google’s PageRank (Page, Brin, Motwani, & Winograd,
1999). Each page of the Wikipedia entry contains a link to a page that reports how many
entries link to this entry, cf. Figure 3. The more inward the link is, the higher the importance
of this entry is. With the analysis of the link relation, importance can be ranked
(Wissner-Gross, 2006). This information helps to decide whether the TOC should contain this
entry or not. The relatedness of words in Wikipedia might also help (Ponzetto & Strube, 2007).
In the future, we will acquire more TOC of good Wikibooks as a training set to develop a
better process via machine learning algorithm. Clustering algorithms are promising tools for
this task.

Figure 3. “What links here” in each page of Wikipedia entry links to a

page that reports all the entries that link to this entry

6. Conclusion

We proposed an automatic process that can generate a Wikibook by mining the content of
Wikipedia. Our method involves document searching, keyword extraction, related term
mining, and hierarchy construction technology. We built an experimental system and

458 Jen-Liang Chou, and Shih-Hung Wu

conducted primary experiments using both English and Chinese. The results showed the
automatically generated TOC might help the community to edit a Wikibook more rapidly.

Previous works have not evaluated their system. In this paper, we proposed a method to
evaluate the result by comparing to the traditional textbook and report the hits and precision.
This gives a standard to compare systems. We find that using the anchor text from the short
definition or the full article of Wikipedia will give better precision and more useful terms. The
major improvement over previous work is that we do not need a manually edited TOC. Our
system uses a searching mechanism that requires only the title as a search keyword, rather
than using the full TOC in a manually edited article.

Acknowledgement
This research was partly supported by the National Science Council under NSC
96-2221-E-324-046.

References
Aggarwal, C. C., Gates, S. C., & Yu, P. S. (1999). On the merits of building categorization

systems by supervised clustering. In Proceedings of the Fifth ACM SIGKDD
international Conference on Knowledge Discovery and Data Mining. KDD '99.,
352-356.

The Apache Software Foundation. (2008). Lucene Project. Retrieved December 26, 2007,Γ
http://lucene.apache.org/

Dicheva, D., & Dichev, C. (2005). Authoring educational topic maps: can we make it easier?
In Proceedings of the Fifth IEEE International Conference on Advanced Learning
Technologies. ICALT’06., 216-218.

Forte, A., & Bruckman, A. (2007). Constructing text:: Wiki as a toolkit for (collaborative?)
learning. In Proceedings of the 2007 international Symposium on Wikis. WikiSym '07.,
31-42.

Farreres, J., Rodríguez, H., & Gibert, K. (2002). Semiautomatic creation of taxonomies. In
Coling-02 on Semanet: Building and Using Semantic Networks - Volume 11
International Conference On Computational Linguistics., 1-7.

Huang, R., Zhang, Z., & Lam, W. (2006). Refining hierarchical taxonomy structure via
semi-supervised learning. In Proceedings of the 29th Annual international ACM SIGIR
Conference on Research and Development in information Retrieval. SIGIR '06.,
653-654.

Lally, A. M., & Dunford, C. E. (2007, May/June). Using Wikipedia to Extend Digital
Collections. D-Lib Magazine, 13.

 Automatic Wikibook Prototyping via Mining Wikipedia 459

Muchnik, L., Itzhack, R., Solomon, S., & Louzoun, Y. (2007). Self-emergence of knowledge
trees: Extraction of the Wikipedia hierarchies. The American Physical Society, Phys.
Rev. E 76, 016106.

Nguyen, Dat P.T., Matsuo, Y., & Ishizuka, M. (2007). Subtree Mining for Relation Extraction
from Wikipedia. In Proceeding of NAACL/HLT 2007, Companion Volume, 125-128.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking:
Bringing order to the web. Technical Report, Stanford University.

Ponzetto, S. P., & Strube, M. (2007). An API for Measuring the Relatedness of Words in
Wikipedia. Proceedings of the ACL 2007 Demo and Poster Sessions, 49-52.

Roberson, S., & Dicheva, D. (2007). Semi-automatic ontology extraction to create draft topic
maps. In Proceedings of the 45th Annual Southeast Regional Conference. ACM-SE 45.,
100-105.

Sajjapanroj, S., Bonk, C., Lee, M., & Lin, G. (2006). The Challenges and Successes of
Wikibookian Experts and Want-To-Bees. In T. Reeves & S. Yamashita (Eds.),
Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare,
and Higher Education 2006, 2329-2333.

Silberschatz, A., Galvin, P. B., & Gagne, G. (2001). Operating System Concepts, Sixth Edition.
John Wiley & Sons.

Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., & Studer, R. (2006). Semantic Wikipedia.
In Proceedings of the 15th international Conference on World Wide Web. WWW '06.,
585-594.

Wissner-Gross, A. D. (2006). Preparation of Topical Reading Lists from the Link Structure of
Wikipedia. In Proceedings of the Sixth IEEE international Conference on Advanced
Learning Technologies. ICALT’05., 825-829.

Wikimedia Foundation. (2008). Wikimedia Downloads / enwiki. Retrieved December 26,
2007, http://download.wikimedia.org/enwiki/

Yang, J., Han, J., Oh, I., & Kwak, M. (2007). Using Wikipedia technology for topic maps
design. In Proceedings of the 45th Annual Southeast Regional Conference. ACM-SE 45,
106-110.

460 Jen-Liang Chou, and Shih-Hung Wu

