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Abstract 

Search interface detection is an essential task for extracting information from the 
hidden Web. The challenge for this task is that search interface data is represented 
in high-dimensional and sparse features with many missing values. This paper 
presents a new multi-classifier ensemble approach to solving this problem. In this 
approach, we have extended the random forest algorithm with a weighted feature 
selection method to build the individual classifiers. With this improved random 
forest algorithm (IRFA), each classifier can be learned from a weighted subset of 
the feature space so that the ensemble of decision trees can fully exploit the useful 
features of search interface patterns. We have compared our ensemble approach 
with other well-known classification algorithms, such as SVM, C4.5, Naïve Bayes, 
and original random forest algorithm (RFA). The experimental results have shown 
that our method is more effective in detecting search interfaces of the hidden Web. 

Keywords: Search Interface Detection, Random Forest, Hidden Web, Form 
Classification 

1. Introduction 

Hidden Web refers to the Web pages that are dynamically generated from searchable 
structured or unstructured databases. Different from the Publicly Indexable Web that is 
accessible through static hyperlinks, the pages in a hidden Web can only be obtained through 
queries submitted via the search interface to the databases containing data about the hidden 
Web. Search interfaces are usually encoded as HTML forms that need to be filled out and 
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submitted by users to obtain information. On the Web, there are many different HTML forms, 
and many of them are not search interfaces (He, Patel, Zhang, & Chang, 2007). To extract 
useful information from hidden Web pages, effectively detecting the search interfaces is an 
essential step since the interface is the only entrance to the hidden Web. Therefore, we first 
need to find the entrance to the hidden database. The entrance (i.e., search forms) is mixed 
with lots of non-search forms in HTML pages. Thus, it is very important to distinguish the two 
types of forms in order to enable the Hidden Web crawler to locate the entrance and extract 
information further. 

Information extraction from the hidden Web has been a hot research 
topic (BrightPlanet.com, 2000) since the term �“Hidden Web�” was first coined (Florescu, Levy, 
& Mendelzon, 1998). Most previous work, however, has been focused on the problems of 
automatic query generation (Ntoulas, Zerfos, & Cho, 2005), form filling (Cavelee, Liu, & 
Probe, 2004), and wrapper generation for extracting structured information (Wang & 
Lochovsky, 2003), where detecting search interface was performed manually or by some 
heuristic methods. Using heuristic rules to find search forms is the simplest and most effective 
method (Raghavan & Garcia-Molina, 2001; Lage, Silva, Golgher, & Laender, 2004). As 
hidden Web sites adopt different search forms, though, it is time-consuming to compose 
different rules for different search forms. Employing machine learning and information 
retrieval techniques to learn classification models from the content of search forms and using 
the models to classify different forms automatically is a more desirable approach with respect 
to scalability and robustness. This approach regards search interface detection as a two-class 
classification problem. One example of this is using decision trees to build form classification 
models to detect search interface (Cope, Craswell, & Hawking, 2003). 

Automatic search interface detection was first explored by Raghavan and Garcia-Molina 
in their hidden Web crawler HiWE (Hidden Web Exposer) (Raghavan & Garcia-Molina, 
2001). Their crawling system used heuristic rules to detect the search entrance to the hidden 
database. Juliano P. Lage (Lage, Silva, Golgher, & Laender, 2004) used two heuristic rules to 
perform detection tasks. The first heuristic was the same as HiWE. The second one was to 
check whether the form contains the �“password�” HTML element or not. The disadvantage of 
this method, however, lies in that it does not have auto-leaning capability. Moreover, it is not 
robust and scalable to diverse hidden Web databases because the rules are too simple to match 
different form structures. 

Cope et al. (2003)used a decision tree classification algorithm to detect search interfaces. 
This method usually generates long rules due to the large size of the feature space in the 
training set (the number of training samples is too small compared to the number of features). 
Therefore, it is prone to overfitting, and the classification precision is not satisfying. 

Zhang et al. (2004) presented a best-effort parsing framework to address the problem of 
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understanding Web search interfaces. The authors transformed search interfaces into a visual 
language under the hypothesis that automatic construction of search interfaces is guided by a 
hidden syntax. This hypothesis enables parsing as a principled framework to understand the 
semantic model of the visual language. The experimental results testified the effectiveness of 
their approach. 

To summarize, little previous work has addressed the special characteristics of the search 
interface detection domain, for instance, large and diverse features, small size of training 
samples with many missing values, etc. The high dimension and sparse data of search 
interfaces present a tricky problem for the traditional single classifier approach. As collecting 
training samples (i.e., HTML forms) is costly, the training data set is usually small, while the 
number of features in the learning space is relatively large, due to multi-type features existing 
in forms. It�’s difficult for a single classifier to fully exploit the rich feature space (very sparse 
in the data matrix). For many classification methods, the single classifier tends to be 
overfitting. To attack this problem, we propose a multi-classifier ensemble approach in this 
paper. 

Our method is based on the random forest algorithm. A random forest model consists of 
a set of decision trees that are constructed by bootstrapping the training data. In our approach, 
we develop a weighted feature selection method to select a subset of features for each decision 
tree in the tree induction process. Classification is made by aggregating predictions of 
individual decision trees in the forest. Since each classifier is learned from a subset of the 
feature space, the ensemble approach can fully exploit the useful features in search forms. We 
have conducted experiments on several real data sets. The experimental results have shown 
that our random forest approach improves the classification accuracy in search interface 
detection. 

The contributions of this paper can be summarized as follows: 

1. We explored the random forest approach to attacking the problem of detecting search 
interfaces from the sparse feature space of hidden Webs where specific feature extraction 
and representation techniques were used. 

2. We extended the random forest algorithm with a weighted feature selection method to select 
a subset of features for each decision tree. The new algorithm can automatically remove the 
noisy features in search forms so that decision tree classifiers can be learned from more 
representative subsets of the feature space. 

3. We conducted experiments on real data sets to compare the improved random forest 
algorithm with other well-known classification algorithms, such as SVM and C4.5. The 
experimental results have shown that the new method is more effective in detecting search 
interfaces of the hidden Web. 
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The rest of this paper is organized as follows. In Section 2, we formalize the detecting 
search interface problem as a form classification problem and present the feature extraction 
techniques. Section 3 describes the improved random forest algorithm for form classification. 
Experimental results and analysis are presented in Section 4. Section 5 concludes this paper 
and presents our future work. 

2. Feature Extraction for Form Classification 

Search interface detection is a process of distinguishing the search forms of the hidden Web 
from non-search forms. It is a two-class classification problem in machine learning. This 
section describes how to extract form features from HTML pages and discusses the 
characteristics of the data matrix for form classification. 

2.1 Feature Extraction Rules 
An HTML form usually begins with the tag FORM  and ends with the tag FORM . 
According to this rule, HTML forms can be extracted by searching the FORM  tag in 
HTML pages. Each extracted form is a sample in the training set. The features of each form 
are generated by parsing the corresponding FORM  HTML block. 

HTML forms contain two kinds of features: one is the attributes of forms and elements, 
and the other is the statistics of those attributes. A form mainly contains four kinds of 
elements, that is, �“INPUT�”, �“SELECT�”, �“LABEL�” and �“TEXTAREA�”, which are the children 
elements of �“FORM�” element. Element �“INPUT�” contains several types, such as �“text�”, 
�“hidden�”, etc. The hierarchy of a form is shown in Figure 1. All of these elements contain a set 
of attributes, such as �“name�”, �“value�”, �“size�”, etc. The attributes of �“form�” elements are 
�“method�”, �“action�”, and �“name�”. Attribute �“method�” indicates the method for the form to 
submit query data, such as �“POST�” or �“GET�”. Attribute �“action�” indicates the address of the 
corresponding server of the form, and attribute �“name�” indicates the name of the form. Some 
elements and attributes can be removed because they are not useful for form classification, for 
instance �“option�”, �“size�”, �“width�”, etc. Besides, the statistics about the number of elements or 
attributes in each element can also be computed as important features. 

Figure 1. The hierarchy of form elements 
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Figure 2 shows an example of a search form. The form contains three elements: one 
�“SELECT�” element and two �“INPUT�” elements. There are three attributes in the �“SELECT�” 
element : �“name�” with value �“and�”, �“size�” with value �“1�”, and �“width�” with value �“50�”. It also 
contains several �“OPTION�” elements. The �“size�” and �“width�” attributes, along with the 
�“OPTION�” elements are not useful for form classification, so they can be removed. The 
corresponding HTML codes are shown in Figure 3. 

Figure 2. A search form 

Figure 3. The HTML codes of the form in Figure 2 

Figure 4 shows an example of a non-search form. The corresponding HTML codes are 
shown in Figure 5. According the feature extraction rules, the useful form elements in this 
form include �“INPUT�”, �“LABEL�”, and �“FORM�”, which can be used to compose the feature 
space. Elements �“TABEL�”, �“FONT�”, and �“TR�” can be removed because they are not useful. 

Figure 4. A non-search form
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Figure 5. The HTML codes of the form in Figure 4 

There are some important differences between the features of search form and non-search 
form. First, the number of �“INPUT�”, �“SELECT�”, and �“TEXTAREA�” elements in search 
forms is larger than that in non-search forms. Second, the value of the �“method�” attribute in 
�“FORM�” elements is always set as �“POST�” in search forms, while it is always set as �“GET�” in 
non-search forms. Moreover, the elements�’ values of search forms often contain some 
keywords such as �“search�”, �“find�”, or other words that have the same meaning as �“search�”. 
These differences, however, are not the only decisive factors. There are other features that can 
be explored by classification algorithms. 

According to the major differences, six kinds of rules are used in the feature extraction 
process as follows: 

1. Extract the �“name�” attribute values from �“input�”, �“select�”, �“textarea�”, and �“label�” 
elements; 

2. Extract the �“value�” attribute value from �“input�”, �“textarea�”, and �“label�” elements; 

3. Extract the �“name�” and �“method�” attribute values from �“form�” elements; 

4. Extract the words that appear between slashes(/) in the �“action�” attributes of the �“form�” 
elements; 

5. Extract the words that appear between slashes(/) in the �“src�” and �“alt�” attributes of the 
�“input-image�” element; 

6. Calculate the number of �“input�”, �“select�”, �“label�”, and �“textarea�” elements in each form. 

The next step is to standardize the value of the features that are extracted from the forms. 
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First, all strings are transformed into lowercases; then the string type values are aggregated 
and mapped to specific enumerating values. For instance, the values of �“search�”, �“find�”, or 
�“srch�” are mapped to �“search�”. 

2.2 The Sparse Data Matrix 
The extracted features and the labels of forms are used to compose the data matrix for the 
classification algorithm. The formalized data matrix is shown in Table 1. 

Table 1. The data matrix for form classification 

class 1t  2t   it   mt  

1c  11a  12a  1ia   1ma

      

jc  1ja  2ja  jia  jma

      

nc  1na  2na  nia  nma

The set 1 2 mT t t t  in Table 1 represents the names of the form features. For form 
classification, the label of a form is represented as an element in the set C yes no , while 
�“yes�” indicates that the form is a search interface of hidden Web and �“no�” indicates a 
non-search interface. Each row is a sample form. jia  represents the value of feature it  in 
the j th form, and jc  indicates the class of the j th form. Table 2 illustrates two examples 
of a search form and a non-search form as shown in Figure 2 and Figure 4. 

The expression of it  is a four-tuple of �“element name�”-�“type�”-�“attribute 
name�”-�“sequence number�”. The �“element name�” contains six values: �“FORM�”, �“SELECT�”, 
�“INPUT�”, �“TEXT AREA�”, �“LABEL�”, and their statistics. For element, �“INPUT�”, the value of 
�“type�” can be �“text�”, �“hidden�”, and so on. �“attribute name�” has six options: �“name�”, �“value�”, 
�“src�”, �“alt�”, �“method�”, and �“action�”. Sequence number represents the sequence of the features 
in the form. 

As illustrated in Table 2, the combination of �“element name�”,�“type�”,�“attribute name�”, 
and �“sequence number�” has many unique alternatives. This will result in a high-dimensional 
feature space for form classification. Furthermore, since each form has just a few features, the 
data matrix for classification is very sparse and there are many missing values and noisy 
features. This problem presents a big challenge for search form detection. 

Table 2. Two examples of form vectors
class form-action-1 form-action-2 form-action-3 input-text-number input-submit-number 

yes www.thearda.com cgi-bin search 1 1 

no servlet login ? 3 0 
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3. Feature Weighting Random Forest Algorithm 

This section presents an improved random forest algorithm, which extends the classical 
random forest method with a feature weighting technique. We describe the basic random 
forest classification approach in Subsection 3.1 and our new algorithm in Subsection 3.2. 

3.1 Random Forest Algorithm 
Random Forest (RFA) (Ho, 1998; Breiman, 2001) is an ensemble of unpruned classification or 
regression trees, which is induced from bootstrapping samples of the training set, using 
random feature selection in the tree induction process. Prediction is made by aggregating the 
predictions of the ensemble. Random Forest grows many classification trees. To classify a 
new object from an input vector, it passes the sample vector to each of the trees in the forest. 
Each tree gives a classification decision. All the classification results of individual trees are 
combined to choose the classification having the most votes over all the classification trees in 
the forest. 

Random forest generally exhibits a substantial performance improvement over single tree 
classifiers, such as CART (Breiman, Friedman, & Olshen, 1984) and C4.5 (Quinlan, 1993). It 
presents a good solution for classification of sparse data sets. Since basic RFA selects features 
randomly, it�’s easy to select unimportant or noisy features, especially when there are many 
noisy features in the training data. This may lead to bad classification results. As discussed in 
previous sections, the data matrix for form classification contains many missing values. It�’s 
necessary to enhance basic RFA so that the performance can be improved in search form 
classification. 

3.2 Improved Random Forest with Weighted Feature Selection 
Due to the sparse feature space, there are a lot of missing values in the training data set. The 
features with too many missing values become less important and can be treated as noisy 
features. Random selection of features often obtains many unimportant or noisy features, 
which leads to bad trees in the forest. To avoid this, we extend basic RFA, using a weighting 
scheme in feature selection to replace random selection. We use 2  statistic to measure the 
importance of features (Larson, 1982). The 2  statistic of a feature A  against the class 
feature is computed as follows. 

222
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- m  is the number of values in feature A  

- ijo  is the count of joint event ( )i jA C , defined as:
( )ij i jo count A a C c                                              (2) 

- ije  is the expected value of joint event ( )i jA C , defined as: 

( ) ( )i j
ij

count A a count C c
e

N
                                       (3) 

where N  is the number of the samples in the training data, ( )icount A a  is the number 
of samples whose value of feature A  is ia , and ( )jcount C c  is the number of samples 
whose value of the class feature is jc . 

An 2  statistic weight is calculated for each feature. From the weights, we select only 
different subsets of features with high weights to build individual decision trees. 

Given a set of decision trees built from different subsets of features, we use a probability 
estimation technique to combine the results of individual classifiers. Assume x  is a test 
instance and is given to each classifier ( 1 )jh j k  for deciding a possible class ic . The 
output of an individual classifier can be computed as ( ( ) )i jP I x c h . The final classification 
result is achieved by combining the probability values as: 

1

1( ( ) ) ( ( ) )
k

i i j
j

P I x c P I x c h
k

                                        (4) 

If class ic  has the highest probability, ic  is the class of x . Kittler has provided a more 
profound explanation of this method (Kittler, Hatef, Duin, & Matas, 1998). The pseudo-code 
of the new algorithm (IRFA) is given in 1Algorithm . 

Step 1 is to compute a weight for each feature according to (1). Step 2 sorts the features 
in descending order of feature weights. Step 3 selects n  features from the entire feature set 
according to a given feature selection rate . Step 4 learns individual classifiers from the 
selected training samples (and selected features). Selection of training samples employs the 
bootstrapping method. The method of sampling without replacement is used to select t  
features from n  features, where 2log 1t n . After each iteration, the learned decision 
tree classifier will be added to forest M . After forest M  is grown, Step 5 classifies the 
unlabeled instances based on (4). 
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Algorithm 1 The pseudo-code of the feature weighting random forest algorithm 

Input: 
- D : the training database (its number is d ), 
- N : the features of the forms (its number is n ), 

- C : the target class attribute C yes no , 

- k : the number of decision trees, 
- : the selection rate of features. 

Output: the decision forest M . 
Process: 
1. Compute the weight W based on Formula (1); 
2. Sort N  on the descending order of weight W ; 

3. Let n n , and select n  features with larger weights as the training samples; 

4. for 1i  to k do 
(a) Select d samples from the training samples by bootstrapping; 

(b) Randomly select t features; where 2log 1t n and the selection is biased towards  
the features with larger weights; 

(c) Build a decision tree from the d samples with selected features; 

(d) Add the learned decision tree to M ; 
endfor 

5. Using M to do classification based on Formula (4). 

3.3 The computational complexity 
The computational complexity of RFA (Breiman, 2001) is ( log )O ktd d , where k is the 
number of decision trees, t  is the number of attributes, d  is the number of training samples. 
In IRFA, the enumerating number of the feature attribute is constant (Formula (1)). The 
computational complexity of all feature weights is ( )O n . Using the bucket sorting method, 
the weights can be sorted in linear time. Therefore, the computational complexity of the IRFA 
is ( log )O ktd d n , where 2log 1t n . Therefore, the computational complexity of 
IRFA is very close to the complexity of RFA. 

The computational cost depends on three factors: the number of decision trees k , the 
number of features n , and the number of training samples d . We will discuss how to select 
the number of decision trees k  and the number of features n  to balance between 
classification accuracy and computational cost in Section 4. 



 

 

               Feature Weighting Random Forest for Detection of             397 

Hidden Web Search Interfaces 

4. Experiments 

4.1 Data Sets 
We used two Web page collections in our experiments. One was taken from project 
Metaquerier1, and the other was created by crawling the website Search Engine Guide2 with a 
Web crawler implemented in Java. The two collections represent a pseudo-random crawling of 
the Web. A HTML parser was developed to extract the HTML forms and their context 
features from these two collections. The extracted forms were used to compose the final data 
sets for experiments. 

Table 3. The three data sets used in the experiments 
 search non-search features content of data sets 

Data set 1 46 43 198 
Extracted from the website 
collection crawled from Search 
Engine Guide by crawler 

Data Set 2 65 116 208 
Extracted from artificial 
website collection of 
Metaquerier project 

Data Set 3 51 96 202 The forms are selected from 
data set 1 and data set 2. 

Figure 6. The domain distribution of non-search forms 

We manually classified the extracted forms into search forms (i.e., real search interface 
of hidden Web) and non-search forms. Three classification data sets were constructed from the 
classified forms, as shown in Table 3. The three data sets have a variety of sample 
distributions. Data set 1 and Data set 2 cover different domains, while Data set 3 is a mixture 

1http://metaquerier.cs.uiuc.edu/repository/ training data set 
2http://www.searchengineguide.com 
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of the two domains. The three data sets also have different feature types and feature numbers. 
The average number of features in the data sets is over 200, while the average number of 
samples is less than 140. The matrices of the three data sets were quite sparse, and the number 
of features was quite large. 

To further test the robustness of our method, the non-search forms in the data sets were 
made of a variety of forms, including registration forms, login forms, network investigation 
forms, etc. Figure 6 shows the distribution of different non-search forms. 

4.2 Comparison Experiments 
We first carried out experiments to compare our random forest method with four well-known 
classification algorithms, i.e., Support Vector Machine (SVM), C4.5, Naïve Bayes,and 
Random Forest Algorithm (RFA) implemented in Weka3. We also implemented our algorithm 
(IRFA) as a plug-in of Weka and conducted all experiments in this environment to make a fair 
comparison. We conducted the standard 10-fold classification experiments on the three data 
sets. The evaluation metrics used were precision and computation time. The number of trees 
was set to 100 for IRFA and parameter  set to 0.5 . The final experimental results are 
shown in Table 4. 

Table 4. The results of comparison experiments 

  Bayes  C4.5 Decision Tree SVM RFA IRFA 

Data Set 1 Precision 
Time Cost(s) 

82.02% 
0.005 

80.90% 
0.05 

79.78% 
0.52 

88.76% 
3.16 

91.01% 
7.08   

Data Set 2 Precision 
Time Cost(s) 

83.43% 
0.005 

88.40% 
0.03 

82.87% 
0.88 

91.71% 
5.22 

92.27% 
17.86  

Data Set 3 Precision 
Time Cost(s) 

84.35% 
0.005 

89.79% 
0.02 

85.71% 
0.88 

91.84% 
3.58 

93.88% 
15.13  

We can see that IRFA showed significant improvement over the other four algorithms. 
The result of C4.5 was better than SVM and Naïve Bayes. This was due to the fact that there 
were a lot of missing values in the data sets and SVM and Naïve Bayes did not perform well 
in this kind of sparse data. The high dimensionality in the training sets, however, causes an 
overfitting problem to C4.5 because the single decision tree could become very complex. RFA 
and IRFA can avoid this problem by selecting different subsets of features to build individual 
decision trees. Compared with RFA, IRFA uses features that are more correlated to the class 
label feature, so the accuracy of each individual tree is improved. Therefore, our method got 
better performance than RFA. Since IRFA needed to compute the 2  values for features, it 

3http://www.cs.waikato.ac.nz/ml/weka/ 
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took more computational time. This extra overhead, however, is worthwhile and acceptable in 
real applications because the training process is offline and not executed frequently. 

4.3 Selection of the Number of Features 
When building each decision tree, IRFA only selects a subset of the original features. The 
number of selected features is controlled by the selection rate . Different selection rates 
result in different classification precisions and computational costs. We carried out 
experiments on the three data sets with 0.1,  0.2, ,  1.0 . Figure 7 plots selection rate  
against precision, while Figure 8 is  against computational cost. 

Figure 7 shows that when 0.5 , the precision increases greatly as the selection rate 
increases. The reason is that a larger selection rate increases the number of features to be 
selected. When 0.5 0.8 , the classification performance becomes relatively stable. This 
means that the forest has selected enough discriminative features. When 0.8 , the 
precision will decrease as the selection rate increases. This can be explained by the idea that 
having too large a selection rate will increase the possibility of selecting noisy features. Most 
experiments have shown that 0.5  was a good setting. 

Figure 8 shows that the computational time of IRFA increases linearly as the feature 
selection rate increases. This property indicates that IRFA is scalable to large 
high-dimensional data. 

 Figure 7. Influence of the number of features on precision 

Figure 8. Influence of the number of features on time cost 
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4.4 Selection of the Number of Trees 
Another interesting issue is whether the performance of IRFA highly depends on the size of a 
forest (number of decision trees in the forest). Since a large number of trees lead to a 
considerable computational cost, we need to find a good tradeoff between classification 
precision and computational cost. We performed experiments on the three data sets with 
different tree numbers ( 10,25,50,75,100,125,150,200)k . The feature selection rate  was 
set to 0.5 in all experiments. The experimental results are shown in Figure 9 and Figure 10. 

Figure 9 plots the precision against the number of trees k . The results show that if the 
number of trees is too small, the classification performance of the forest will be unstable. If 
the number of trees is too large, however, the computational cost for generating a forest will 
be very high. The classification precision becomes stable when 75 150k . The 
near-optimal precision can be obtained when k  is set to 100. Moreover, as shown in 
Figure 10, with the increase of the number of trees, the computational time increases linearly 
as well. Therefore, in most situations, 100k  is a good balance between classification 
accuracy and computational cost. 

 Figure 9. Influence of the number of trees on precision 

Figure 10. Influence of the number of trees on time cost 
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4.5 Comparison in Different Domains 
The representation of search forms in different domains varies, so it is necessary to investigate 
if the performance of IRFA can be consistent in different domains. An experiment was 
designed to classify search interfaces from four different domains. We used the Web 
collection provided by Metaquerier4, which contains the information about Books, Movies, 
Airfares, and Jobs. The number of trees for IRFA was set to 100, and parameter  was set to 
0.5. 

The experimental results are shown in Table 5. We can see the obvious variance of 
accuracy with regard to different domains. The detection accuracies for Books and Jobs 
domains are higher than those of Movies and Airfares. This was due to the different HTML 
structures of the search interfaces, as the search interfaces of Movies and Airfares domains are 
more complex and some of them require more than one step to get the content. The results 
imply that more formalized and simpler interfaces are more easily recognized. From the 
results, we also observe that the classification performance of IRFA was very stable in various 
domains. Even though the precision of SVM on the Movies data set was a little better than 
IRFA, it became the worst in other domains. Compared with other algorithms, IRFA was the 
most stable. 

 Table 5. Results of comparison experiments on different domains 
 Dataset Size Bayes C4.5 SVM RFA IRFA 

Books 251 92.83% 96.41% 89.24% 92.03% 96.81% 

Movies 126 91.27% 91.27% 92.06% 87.30% 91.27% 

Airfares 265 89.06% 90.94% 87.92% 91.69% 91.70% 

Jobs 104 88.46% 94.23% 78.85% 96.15% 96.15% 

4.6 Comparison with Different Feature Selection Schemes 
We conducted experiments to demonstrate the performance of IRFA with different feature 
selection schemes. In this section, we used four commonly used feature selection functions 
mentioned in (Dash & Liu, 1997). 

1. Random selection, which randomly selects the features using sampling without replacement, 
is the simplest feature selection method. Random feature selection is the method used in the 
original random forest (Breiman, 2001). 

2. Information gain is defined as the difference between the original information requirement 
and the new requirement (Han & Kamber, 2007). The information gain value of a feature X  

4http://metaquerier.cs.uiuc.edu/repository/training data set 
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is attained by computing the difference between the prior uncertainty and expected posterior 
uncertainty using X . Feature X  is preferred to feature Y  if the information gain from 
feature X  is greater than that from feature Y  (Dash & Liu, 1997). In this experiment, the 
information gain from feature X  is set to feature X  as its weight instead of Chi-square 
value in IRFA. 

3. Gain Ratio is an extension of information gain. It attempts to overcome the problem that the 
information gain measure is biased toward tests with many outcomes (i.e., it prefers to select 
attributes having a large number of values) (Han & Kamber, 2007). The process of 
embedding gain ratio into IRFA is similar to information gain in our experiment. 

4. Chi-square 2  that has been explained in Section 3.2. The experiments in the prior sections 
were all based on this feature selection method. 

Table 6. Comparison with different feature selection schemes 

 Random Information Gain Gain Ratio Chi-square 2  

Data Set 1 88.76% 88.76% 89.89% 91.01% 

Data Set 2 91.71% 91.16% 92.27% 92.27% 

Data Set 3 91.84% 93.20% 93.20% 93.88% 

We implemented the four feature selection methods in Weka�’s random forest package, 
and carried out experiments on the data sets described in Section 4.1. The results are shown in 
Table 6. From the results, we can see that the Chi-square method is better than the others. The 
reason that Information Gain and Gain Ratio scheme did not attain better performance can be 
explained as follows: since both of them use the same feature evaluation criterion in feature 
sampling and tree construction (for node splitting), the information of features cannot be fully 
exploited. 

5. Conclusions 

This paper has proposed IRFA, an improved random forest algorithm, for detecting search 
interfaces of the hidden Web. We extend the original random forest algorithm with a weighted 
feature selection method to automatically select a more representative subset of features for 
building each decision tree. The new method can overcome the problem of classifying 
high-dimensional and sparse search interface data through the ensemble of decision trees, each 
learned from a different subset of the original feature space. We have implemented the new 
algorithm and compared it with SVM, C4.5, Naïve Bayes, and original random forest 
algorithm (RFA). The experimental results have shown that our method is more accurate and 
robust. We have also observed that the new method is scalable to high dimensional data. 
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In the future, we plan to investigate more feature weighting methods for construction of 
random forests. Currently, we just use the features in the search forms. It is expected that 
using contextual information near the search forms may improve detection performance. 
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Corpus Cleanup of Mistaken Agreement Using 

Word Sense Disambiguation 

Liang-Chih YuϠ, Chung-Hsien WuЀ, Jui-Feng YehϞ, and Eduard Hovy̚ 

Abstract 

Word sense annotated corpora are useful resources for many text mining 
applications. Such corpora are only useful if their annotations are consistent. Most 
large-scale annotation efforts take special measures to reconcile inter-annotator 
disagreement. To date, however, nobody has investigated how to automatically 
determine exemplars in which the annotators agree but are wrong. In this paper, we 
use OntoNotes, a large-scale corpus of semantic annotations, including word senses, 
predicate-argument structure, ontology linking, and coreference. To determine the 
mistaken agreements in word sense annotation, we employ word sense 
disambiguation (WSD) to select a set of suspicious candidates for human 
evaluation. Experiments are conducted from three aspects (precision, 
cost-effectiveness ratio, and entropy) to examine the performance of WSD. The 
experimental results show that WSD is most effective in identifying erroneous 
annotations for highly-ambiguous words, while a baseline is better for other cases. 
The two methods can be combined to improve the cleanup process. This procedure 
allows us to find approximately 2% of the remaining erroneous agreements in the 
OntoNotes corpus. A similar procedure can be easily defined to check other 
annotated corpora. 
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1. Introduction 

Word sense annotated corpora are useful resources for many text mining applications, such as 
thesaurus construction (Tseng, 2002; Yeh, 2004; 2008), paraphrase extraction (Zhao et al., 
2008; Bhaget & Ravichandran, 2008), opinion mining (Ku & Chen, 2007; Kim & Hovy, 2007), 
and medical information extraction (Wu et al., 2005; Yu et al., 2008). Various machine 
learning algorithms can then be trained on these corpora to improve the applications’ 
effectiveness. Lately, many such corpora have been developed in different languages, 
including SemCor (Miller et al., 1993), LDC-DSO (Ng & Lee, 1996), Hinoki (Kasahara et al., 
2004), and the sense annotated corpora with the help of Web users (Chklovski & Mihalcea, 
2002). The SENSEVAL1 (Kilgarriff & Palmer, 2000; Kilgarriff, 2001; Mihalcea & Edmonds, 
2004) and SemEval-20072 evaluations have also created large amounts of sense tagged data 
for word sense disambiguation (WSD) competitions. 

The OntoNotes (Pradhan et al., 2007a; Hovy et al., 2006) project has created a 
multilingual corpus of large-scale semantic annotations, including word senses, 
predicate-argument structure, ontology linking, and coreference3. In word sense creation, 
sense creators generate sense definitions by grouping fine-grained sense distinctions obtained 
from WordNet and dictionaries into more coarse-grained senses. There are two reasons for 
using this grouping instead of using WordNet senses directly. First, people have trouble 
distinguishing many of the WordNet-level distinctions in real text and make inconsistent 
choices; thus, the use of coarse-grained senses can improve inter-annotator agreement (ITA) 
(Palmer et al., 2004; 2006). Second, improved ITA enables machines to more accurately learn 
to perform sense tagging automatically. Sense grouping in OntoNotes has been calibrated to 
ensure that ITA averages at least 90%. Table 1 shows the OntoNotes sense tags and 
definitions for the word arm (noun sense). The OntoNotes sense tags have been used for many 
applications, including the SemEval-2007 evaluation (Pradhan et al., 2007b), sense merging 
(Snow et al., 2007), sense pool verification (Yu et al., 2007), and class imbalance problems 
(Zhu & Hovy, 2007). 

 

 

1 http://www.senseval.org 
2 http://nlp.cs.swarthmore.edu/semeval 
3 Year 1 and Year 2 of the OntoNotes corpus has been released by Linguistic Data Consortium (LDC) 

(http://www.ldc.upenn.edu) in 2007 and 2008, respectively. 



 

 

                   Corpus Cleanup of Mistaken Agreement Using               407 

Word Sense Disambiguation 

Table 1. OntoNotes sense tags and definitions. The WordNet version is 2.1. 

Sense Tag Sense Definition WordNet sense 

arm.01 The forelimb of an animal WN.1 

arm.02 A weapon WN.2 

arm.03 A subdivision or branch of an organization WN.3 

arm.04 A projection, a narrow extension of a structure 
WN.4 
WN.5 

In creating Onto Notes, each word sense annotation involves two annotators and an 
adjudicator. First, all sentences containing the target word along with its sense distinctions are 
presented independently to two annotators for sense annotation. If the two annotators agree on 
the same sense for the target word in a given sentence, then their selection is stored in the 
corpus. Otherwise, this sentence is double-checked by the adjudicator for the final decision. 
The major problem of the above annotation scheme is that only the instances where the two 
annotators disagree are double-checked, while those showing agreement are stored directly 
without any adjudication. Therefore, if the annotators happen to agree but are both wrong, the 
corpus becomes polluted by the erroneous annotations. Table 2 shows an actual occurrence of 
an erroneous instance (sentence) for the target word management. In this example sentence, 
the actual sense of the target word is management.01, but both of our annotators made a 
decision of management.02. (Note that there is no difficulty in making this decision; the joint 
error might have occurred due to annotator fatigue, habituation after a long sequence of 
management.02 decisions, etc.) 

Table 2. Example sentence for the target word management along with its sense 
definitions. 

Example sentence: 

The 45-year-old Mr. Kuehn, who has a background in crisis management, succeeds Alan D. 
Rubendall, 45. 

management.01: Overseeing or directing. Refers to the act of managing something. 

 
He was given overall management of the program. 
I'm a specialist in risk management. 
The economy crashed because of poor management. 

management.02: The people in charge. The ones actually doing the managing. 

 
Management wants to start downsizing. 
John was promoted to Management. 
I spoke to their management, and they're ready to make a deal. 
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Although most annotations in OntoNotes are correct, there is still a small (but unknown) 
fraction of erroneous annotations in the corpus. Therefore, a cleanup procedure is necessary to 
produce a high-quality corpus. It is, however, impractical for human experts to evaluate the 
whole corpus for cleanup. Given that we are focusing on word senses, this study proposes the 
use of WSD to facilitate the corpus cleanup process. WSD has shown promising accuracy in 
recent SENSEVAL and SemEval-2007 evaluations. 

The rest of this work is organized as follows. Section 2 describes the corpus cleanup 
procedure. Section 3 presents the features for WSD. Section 4 summarizes the experimental 
results. Conclusions are drawn in Section 5. 

2. Corpus Cleanup Procedure 

Figure 1 shows the cleanup procedure (dashed lines) for the OntoNotes corpus. As mentioned 
earlier, each word, along with its sentence instances, is annotated by two annotators. The 
annotated corpus, thus, can be divided into two parts according to the annotation results. The 
first part includes the annotation with disagreement among the two annotators, which is 
double-checked by the adjudicator. The final decisions made by the adjudicator are stored into 
the corpus. Since this part is double-checked by the adjudicator, it will not be evaluated by the 
cleanup procedure. 

 

Figure 1. Corpus cleanup procedure. 
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The second part of the corpus is the focus of the cleanup procedure. The WSD system 
evaluates each instance in the second part. If the output of the WSD system disagrees with the 
two annotators, the instance is considered to be a suspicious candidate, otherwise it is 
considered to be clean and is stored into the corpus. The set of suspicious candidates is 
collected and subsequently evaluated by the adjudicator to identify erroneous annotations. 

3. Word Sense Disambiguation 

This study takes a supervised learning approach to build a WSD system from the OntoNotes 
corpus. The feature set used herein is similar to several state-of-the-art WSD systems (Lee & 
Ng, 2002; Ando, 2006; Tratz et al., 2007; Cai et al., 2007; Agirre & Lopez de Lacalle, 2007; 
Specia et al., 2007), which is further integrated into a Naïve Bayes classifier (Lee & Ng, 2002; 
Mihalcea, 2007). In addition, a new feature, predicate-argument structure, provided by the 
OntoNotes corpus is integrated as well. The feature set includes: 

Part-of-Speech (POS) tags: This feature includes the POS tags in the positions (P-3, P-2, P-1, P0, 
P1, P2, P3), relative to the POS tag of the target word. For instance, the POS sequence of the 
constituent “…mediator in an attempt to break the…” is “NN NN IN DT TO VB DT”. 

Local Collocations: This feature includes single words and multi-word n-grams. The single 
words include (W-3, W-2, W-1, W0, W1, W2, W3), relative to the target word W0. Similarly, the 
multi-word n-grams include (W-2,-1, W-1,1, W1,2, W-3,-2,-1, W-2,-1,1, W-1,1,2, W1,2,3). For instance, the 
multi-word n-grams of the above example constituent include {in_an, an_to, to_break, 
mediator_in_an, in_an_to, an_to_break, to_break_the}. 

Bag-of-Words: This feature can be considered as a global feature, consisting of 5 words prior to 
and after the target word, without regard to position. 

Predicate-Argument Structure: The predicate-argument structure captures the semantic 
relations between the predicates and their arguments within a sentence. Consider the following 
example sentence. 

 

[Arg0 The New York arm of the London-based firm] auctioned off [Arg1 the estate of John 
T. Dorrance Jr., the Campbell's Soup Co. heir,] [ArgM-TMP last week]. 

 

The argument label Arg0 is usually assigned to the agent, causer, and experiencer, while Arg1 
is usually assigned to the patient. The ArgM-TMP represents a temporal modifier 
(Babko-Malaya, 2006; Palmer et al., 2005). The predicate-argument structure of the above 
sentence is illustrated in Figure 2. The semantic relations can be either direct or indirect. A 
direct relation is used to model a verb-noun (VN), whereas an indirect relation is used to 
model a noun-noun (NN) relation. Additionally, an NN-relation can be built from the 



 

 

410                                                       Liang-Chih Yu et al. 

combination of two VN-relations with the same predicate. Table 3 presents some examples. 
For instance, NN1 can be built by combining VN1 and VN2. Therefore, the two features, VN1 
and NN3, can be used to disambiguate the noun arm 4. 

Figure 2. Example of predicate-argument structure. 
 

Table 3. VN and NN-relations. <DATE> is a named entity identified by the 
IdentiFiner. 

Relation Type Example 

VN relation 

NV
ARG1

 

VN1: (auction.01, Arg0, arm.03) 
VN2: (auction.01, Arg1, estate.01) 
VN3: (auction.01, ArgM-TMP, <DATE>) 

NN relation: 

V

N

ARG 0 ARG1

N
 

NN1: (arm.03, Arg0-Arg1, estate.01) 
NN2: (estate.01, Arg1-ArgM-TMP, <DATE>) 
NN3: (arm.03, Arg0-ArgM-TMP, <DATE>) 

4. Experimental Results 

4.1 Experiment Setup 
The experiment data used herein consisted of the 35 nouns from the SemEval-2007 English 
Lexical Sample Task (Pradhan et al., 2007b). All sentences containing the 35 nouns were 
selected from the OntoNotes corpus, resulting in a set of 16,329 sentences. This data set was 

4 Our WSD system does not include the sense identifier (except for the target word) for word-level 
training and testing. 
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randomly split into training and test sets using different proportions (1:9 to 9:1, 10% 
increments). The WSD systems (described in Section 3) were then built from the different 
portions of the training set, called WSD_1 to WSD_9, respectively, and applied to their 
corresponding test sets. In each test set, the instances with disagreement among the annotators 
were excluded, since they have already been double-checked by the adjudicator. A baseline 
system was also implemented using the principle of most frequent sense (MFS), where each 
word sense distribution was retrieved from the OntoNotes corpus. Table 4 shows the accuracy 
of the baseline and WSD systems. 

Table 4. Accuracy of the baseline and WSD systems with different training portions. 

 
Baseline
(MFS) 

WSD 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Accuracy 0.696 0.751 0.798 0.809 0.819 0.822 0.824 0.831 0.836 0.832 

The output of WSD may agree or disagree with the annotators. The instances with 
disagreement were selected from each WSD system as suspicious candidates. This experiment 
randomly selected at most 20 suspicious instances for each noun then unified these instances 
to form a suspicious set of 687 instances. An adjudicator who is a linguistic expert then 
evaluated the suspicious set, and agreed in 42 instances with the WSD systems, indicating 
about 6% (42/687) truly erroneous annotations. This corresponds to 2.6% (42/16329) 
erroneous annotations in the corpus as a whole, which we verified by an independent random 
spot check. 

In the following sections, we examine the performance of WSD from three aspects: 
precision, cost-effectiveness ratio, and entropy. In addition, we summarize a general cleanup 
procedure for other sense-annotated corpora. 

4.2 Cleanup Precision Analysis 
The cleanup precision for a single WSD system can be defined as the number of erroneous 
instances identified by the WSD system, divided by the number of suspicious candidates 
selected by the WSD system. An erroneous instance refers to an instance where the annotators 
agree with each other but disagree with the adjudicator. Table 5 lists the cleanup precision of 
the baseline and WSD systems. The experimental results show that WSD_7 (trained on 70% 
training data) identified 17 erroneous instances out of 120 selected suspicious candidates, thus 
yielding the highest precision of 0.142. Another observation is that the upper bound of 
WSD_7 was 0.35 (42/120) under the assumption that it identified all erroneous instances. This 
low precision discourages the use of WSD to automatically correct erroneous annotations. 
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Table 5. Cleanup precision of the baseline and WSD systems with different training 
portions. 

 
Baseline 
(MFS) 

WSD 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Prec 
0.090 

(17/188) 
0.113 

(20/177)
0.112 

(16/143) 
0.113 

(17/150) 
0.124 

(16/129)
0.123 

(15/122)
0.127 

(16/126)
0.142 

(17/120) 
0.130 

(14/108) 
0.125 

(14/112)

4.3 Cleanup Cost-Effectiveness Analysis 
The cleanup procedure used herein is a semi-automatic process; that is, WSD is applied in the 
first stage to select suspicious candidates for human evaluation in the later stage. Obviously, 
we would like to minimize the number of candidates the adjudicator has to examine. Thus, we 
use the metric cost-effectiveness (CE) ratio, which is defined as effectiveness divided by cost, 
to measure the performance of WSD. The cost rate is defined as the number of suspicious 
instances selected by a single WSD system, divided by the total number of suspicious 
instances in the suspicious set. The effectiveness rate is defined as the number of erroneous 
instances identified by a single WSD system, divided by the total number of erroneous 
instances in the suspicious set. On the other hand, the missing rate can be defined as 
1-effectiveness rate. In this experiment, the baseline value of the cost-effectiveness ratio is 1, 
which means that the human expert needs to evaluate all 687 instances in the suspicious set to 
identify the 42 erroneous instances. Figure 3 illustrates the CE ratio of the WSD systems. The 
most cost-effective WSD system was WSD_7. The CE ratios of the baseline and WSD_7 are 
listed in Table 6. The experimental results indicate that 17.5% of all suspicious instances were 
required to be evaluated to identify about 40% of the erroneous annotations when using 
WSD_7. 

Figure 3. CE ratio of WSD systems with different training portions. 
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Table 6. CE ratio of the baseline and WSD_7. 
 Cost Effectiveness CE Ratio 

Baseline 
(MFS) 

0.274 
(188/687) 

0.405 
(17/42) 1.48 

WSD_7 0.175 
(120/687) 

0.405 
(17/42) 2.31 

4.4 Entropy Analysis 
So far, the experimental results show that the best WSD system can help human experts 
identify about 40% erroneous annotations, but it still missed the other 60%. To improve 
performance, we conducted experiments to analyze the effect of word entropy with respect to 
WSD performance on identifying erroneous annotations. 

For the SemEval 35 nouns used in this experiment, some words are very ambiguous and 
some words are not. This property of ambiguity may affect the performance of WSD systems 
in identifying erroneous annotation. To this end, this experiment used entropy to measure the 
ambiguity of words (Melamed, 1997). The entropy of a word can be computed by the word 
sense distribution, defined as: 

2( ) ( ) log ( ),
i

i i
ws W

H W P ws P ws                    (1) 

where ( )H W  denotes the entropy of a word W, and P( iws ) denotes the probability of a word 
sense. A high entropy value indicates a high ambiguity level. For instance, the noun defense 
has 7 senses (see Table 8) in the OntoNotes corpus, occurring with the distribution 
{.14, .18, .19, .08, .04, .28, .09}, thus yielding a relative high entropy value (2.599). 
Conversely, the entropy of the noun rate is low (0.388), since it has only two senses with very 
skewed distribution {.92, .08}. 

Consider the two groups of the SemEval nouns: the nouns for which at least one (Group 
1) or none (Group 2) of their erroneous instances can be identified by the machine. The use of 
the criteria “at least one” and “none” is to distinguish whether or not the machine can identify 
the erroneous instances in these two groups of nouns. The average entropy of these two groups 
of nouns was computed, as shown in Table 7. An independent t-test was then used to 
determine whether or not the difference of the average entropy among these two groups was 
statistically significant. The experimental results show that WSD_7 was more effective on 
identifying erroneous annotations occurring in highly-ambiguous words (p<0.05), while the 
baseline system has no such tendency (p=0.368). 

 
 

Table 7. Average entropy of two groups of nouns for the baseline and WSD_7. 
 Group 1 Group 2 Difference p-value 

Baseline (MFS) 1.226 1.040 0.186 0.368 

WSD_7 1.401 0.932 0.469* 0.013 

*p<0.05 
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Table 8 shows the detailed analysis of WSD performance on different words. As 
indicated, WSD_7 identified the erroneous instances (7/7) occurring in the two top-ranked 
highly-ambiguous nouns, i.e., defense and position, but missed all those (0/12) occurring in 
the two most unambiguous words, i.e., move and rate. The major reason is that the sense 
distribution of unambiguous words is often skewed, thus, WSD systems built from such 
imbalanced data tend to suffer from the over-fitting problem; that is, they tend to over-fit the 
predominant sense class and ignore small sense classes (Zhu & Hovy, 2007). Fortunately, the 
over-fitting problem can be greatly reduced when the entropy of words exceeds a certain 
threshold (e.g., the dashed line in Table 8), since the word sense has become more evenly 
distributed. 

Table 8. Entropy of words versus WSD performance. The dashed line denotes a 
cut-point for the combination of the baseline and WSD_7. 

Noun #sense
Major 
Sense

Entropy #err. 
instances WSD_7 MFS WSD_7+ 

MFS 

defense 7 0.28 2.599 5 5 4 5 

position 7 0.30 2.264 2 2 2 2 

base 6 0.35 2.023 1 1 0 1 

system 6 0.54 1.525 2 1 0 1 

chance 4 0.49 1.361 1 1 1 1 

order 8 0.72 1.348 4 1 0 1 

part 5 0.70 1.288 1 1 1 1 

power 3 0.51 1.233 3 1 3 3 

area 3 0.72 1.008 2 1 2 2 

management 2 0.62 0.959 2 1 0 0 

condition 3 0.71 0.906 1 0 1 1 

job 3 0.78 0.888 1 0 0 0 

state 4 0.83 0.822 1 0 0 0 

hour 4 0.85 0.652 1 1 1 1 

value 3 0.90 0.571 2 1 1 1 

plant 3 0.88 0.556 1 0 0 0 

move 4 0.93 0.447 6 0 0 0 

rate 2 0.92 0.388 6 0 1 1 

Total — — — 42 17 17 21 

Nouns without erroneous instances: authority, bill, capital, carrier, development, drug, effect, 
exchange, future, network, people, point, policy, president, share, source, space 
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4.5 Combination of WSD and MFS 
Another observation from Table 8 is that WSD_7 identified more erroneous instances when 
the word entropy exceeded the cut-point, since the over-fitting problem was reduced. 
Conversely, MFS identified more instances when the word entropy was below the cut-point. 
This finding encourages the use of a combination of WSD_7 and MFS for corpus cleanup; that 
is, different strategies can be used with different entropy intervals. For this experimental data, 
MFS and WSD_7 can be applied below and above the cut-point, respectively, to select the 
suspicious instances for human evaluation. Therefore, the final suspicious set can be generated 
by combining the suspicious instances suggested by MFS and WSD_7. As illustrated in Figure 
4, when the entropy of words increased, the accumulated effectiveness rates of both WSD_7 
and MFS increased accordingly, since more erroneous instances were identified. Additionally, 
the difference of the accumulated effect rate of MFS and WSD_7 increased gradually from the 
beginning until the cut-point, since MFS identified more erroneous instances than WSD_7 did 
in this stage. When the entropy exceeded the cut-point, WSD_7 was more effective and, thus, 
its effectiveness rate kept increasing, while that of MFS increased slowly, thus, their 
difference was decreased with the rise of the entropy. For the combination of MFS and 
WSD_7, its effectiveness rate before the cut-point was the same as that of MFS, since MFS 
was used in this stage to select the suspicious set. When WSD was used after the cut-point, the 
effectiveness rate of the combination system increased continuously, and finally reached 0.5 
(21/42). 

Figure 4. Effectiveness rate against word entropy. 
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Figure 5. CE ratio against word entropy. 

Based on the above experimental results, the most cost-effective method for corpus 
cleanup is to use the combination method and begin with the most ambiguous words, since the 
WSD system in the combination method is more effective in identifying erroneous instances 
occurring in highly-ambiguous words and these words are also more important for many 
applications. Figure 5 shows the curve of the CE ratios of the combination method by starting 
with the most ambiguous word. The results indicate that the CE ratio of the combination 
method decreased gradually after more words with lower entropy were involved in the cleanup 
procedure. Additionally, the CE ratio of the combination method was improved by using MFS 
after the cut-point and finally reached 2.50, indicating that 50% (21/42) erroneous instances 
can be identified by double-checking 20% (137/687) of the suspicious set. This CE ratio was 
better than 2.31 and 1.48, reached by WSD_7 and MFS, respectively. 

The proposed cleanup procedure can be applied to other sense annotated corpora by the 
following steps: 

 Build the baseline (MFS) and WSD systems from the corpus. 

 Create a suspicious set from the WSD systems. 

 Calculate the entropy for each word in terms of it sense distribution in the corpus. 

 Choose a cut-point value. Select a small portion of words with entropy within a certain 
interval (e.g., 1.0 ~ 1.5 in Table 8) for human evaluation to decide an appropriate cut-point 
value. The cut-point value should not be too low or too high, since WSD systems may suffer 
from the over-fitting problem if the value is too low, and the performance would be 
dominated by the baseline system if the value is too high. 
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 Combine the baseline and best single WSD system through the cut-point. 

 Start the cleanup procedure in the descending order of word entropy until the CE ratio is 
below a predefined threshold. 

5. Conclusion 

This study has presented a cleanup procedure to identify incorrect sense annotation in a corpus. 
The cleanup procedure incorporates WSD systems to select a set of suspicious instances for 
human evaluation. The experiments are conducted from three aspects: precision, 
cost-effectiveness ratio, and entropy, to examine the performance of WSD. The experimental 
results show that the WSD systems are more effective on highly-ambiguous words. 
Additionally, the most cost-effective cleanup strategy is to use the combination method and 
begin with the most ambiguous words. The incorrect sense annotations found in this study can 
be used for SemEval-2007 to improve the accuracy of WSD evaluation. 

The absence of related work on (semi-) automatically determining cases of erroneous 
agreement among annotators in a corpus is rather surprising. Variants of the method described 
here, replacing WSD for whatever procedure is appropriate for the phenomenon annotated in 
the corpus (sentiment recognition for a sentiment corpus, etc.), are easy to implement and may 
produce useful results for corpora in current use. Future work will focus on devising an 
algorithm to perform the cleanup procedure iteratively on the whole corpus. 
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Abstract 

In recent years, the hierarchical taxonomy integration problem has obtained 
considerable attention in many research studies. Many types of implicit information 
embedded in the source taxonomy are explored to improve the integration 
performance. The semantic information embedded in the source taxonomy, 
however, has not been discussed in previous research. In this paper, an enhanced 
integration approach called SFE (Semantic Feature Expansion) is proposed to 
exploit the semantic information of the category-specific terms. From our 
experiments on two hierarchical Web taxonomies, the results show that the 
integration performance can be further improved with the SFE scheme. 

Keywords: Hierarchical Taxonomy Integration, Semantic Feature Expansion, 
Category-Specific Terms, Hierarchical Thesauri Information 

1. Introduction 

In many daily information processing tasks, merging two classified information sources to 
create a larger taxonomy with abundant information is in great demand. For example, an 
e-commerce service provider may merge various catalogs from other vendors into its local 
catalog to provide customers with versatile contents. A Web user may also want to integrate 
different blog catalogs from Web 2.0 portals to organize a personal information management 
library. In these examples, people may need an efficient automatic integration approach to 
process the huge amount of information. 

In recent years, the taxonomy integration problem has obtained much attention in many 
research studies (e.g. Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; 
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Zhang & Lee, 2004a; Zhang & Lee, 2004b; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 
2005; Wu, Tsai, & Hsu, 2005; Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007; Cheng & 
Wei, 2008; Wu, Tsai, Lee, & Hsu, 2008). As pointed out in these studies, the integration work 
is more subtle than traditional classification work because the integration accuracy can be 
further improved with different kinds of implicit information embedded in the source or 
destination taxonomy. A taxonomy, or catalog, usually contains a set of objects divided into 
several categories according to some classified characteristics. In the taxonomy integration 
problem, the objects in a taxonomy, the source taxonomy S, are integrated into another 
taxonomy, the destination taxonomy D. As shown in earlier research, this problem is more 
than a traditional document classification problem because different kinds of implicit 
information in the source taxonomy are explored to greatly help integrate source documents 
into the destination taxonomy. For example, a Naive Bayes classification approach (Agrawal 
& Srikan, 2001) with the classification relationship information implicitly existing in the 
source catalog can achieve integration accuracy improvement. Several SVM (Support Vector 
Machines) approaches (Chen, Ho, & Yang, 2005) can also have similar improvement with 
other implicit source information. 

The implicit source information studied in previous enhanced approaches generally 
includes the following features: (1) co-occurrence relationships of source objects (Agrawal & 
Srikan, 2001; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2005), (2) latent 
source-destination mappings (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang & Lee, 2004b; 
Cheng & Wei, 2008), (3) inter-category centroid information (Zhang & Lee, 2004a), and (4) 
parent-children relationships in the source hierarchy (Wu, Tsai, & Hsu, 2005; Ho, Chen, & 
Yang, 2006; Wu, Tsai, Lee, & Hsu, 2008). In our survey, however, the semantic information 
embedded in the source taxonomy has not been discussed. Since different applications have 
shown that the semantic information can benefit the task performance (Krikos, Stamou, 
Kokosis, Ntoulas, & Christodoulakis, 2005; Hsu, Tsai, & Chen, 2006), such information 
should be able to achieve similar improvements for taxonomy integration. In addition, we 
further study the hierarchical taxonomy integration problem because many taxonomies, such 
as Web catalogs, existing in the real world are hierarchical. 

In this paper, we propose an enhanced integration approach by exploiting the implicit 
semantic information in the source taxonomy with a semantic feature expansion (SFE) 
mechanism. The basic idea behind SFE is that some semantically related terms can be found to 
represent a source category, and these representative terms can be further viewed as the 
additional common category labels for all documents in the category. Augmented with these 
additional semantic category labels, the source documents should be more precisely integrated 
into the correct destination category. The semantic expanding scheme, however, needs to 
consider the polysemy situation to avoid introducing many topic-irrelevant features. Therefore, 
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SFE employs an efficient correlation coefficient method to select representative 
semantically-related terms. 

To study the effectiveness of SFE, we implemented it based on a hierarchical taxonomy 
integration approach (EHCI) proposed in Ho et al. (2006) and Chen et al. (2007) with the 
Maximum Entropy (ME) model classifiers. We have conducted experiments with real-world 
Web catalogs from Yahoo! and Google, and measured the integration performance with 
precision, recall, and F1 measures. The results show that the SFE mechanism consistently can 
improve the integration performance of the EHCI approach. 

The rest of the paper is organized as follows. Section 2 describes the problem definition 
and Section 3 reviews previous related research. Section 4 elaborates the proposed semantic 
feature expansion approach and the hierarchical integration process. Section 5 presents the 
experimental results, and discusses the factors that influence the experiments. Section 6 
concludes the paper and discusses some future directions of our work. 

2. Problem Statement 

Following the definitions in Ho et al. (2006), we assume that two homogeneous hierarchical 
taxonomies, the source taxonomy S and the destination taxonomy D, participate in the 
integration process. The taxonomies are said to be homogeneous if the topics of the two 
taxonomies are similar. In addition, the taxonomies under consideration are required to 
overlap with a significant number of common documents. For example, in our experimental 
data sets, 20.6% of the total documents (436/2117) in the Autos directory of Yahoo! also 
appear in the corresponding Google directory. 

The source taxonomy S has a set of m categories, or directories, S1, S2, …, Sm. These 
categories may have subcategories, such as S1,1 and S2,1. Similarly, the destination catalog D 
has a set of n categories. The integration process is to directly decide the destination category 
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S1,1

S

…
Sm D1

D1,1

D

…
DnD2

D2,2D2,1

Source Taxonomy Destination Taxonomy
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S
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Sm D1
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Figure 1. A typical integration scenario for two hierarchical taxonomies.  
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in D for each document dx in S. In this study, we allow that dx can be integrated into multiple 
destination categories because a document commonly appears in several different directories 
in a real-world taxonomy. 

Figure 1 depicts a typical scenario of the integration process on two hierarchical 
taxonomies. For illustration, we assume that the source category S1,1 has a significant number 
of overlapped documents with the destination categories D1,1 and D2,2. This means that the 
documents appearing in S1,1 should have similar descriptive information as the documents in 
D1,1 and D2,2. Therefore, a non-overlapped document 1

xd  in category S1,1 should be 
intensively integrated into both two destination categories D1,1 and D2,2. 

3. Previous Work 

3.1 Integration Techniques 
In previous studies, different sorts of implicit information embedded in the source taxonomy 
are explored to help the integration process. These implicit source features can be mainly 
categorized into four types: (1) co-occurrence relationships of source objects, (2) latent 
source-destination mappings, (3) inter-category centroid information, and (4) parent-children 
relationships in the source hierarchy. The co-occurrence relationships of source objects are 
first studied to enhance a Naive Bayes classifier based on the concept that if two documents 
are in the same source category, they are more likely to be in the same destination category 
(Agrawal & Srikan, 2001). The enhanced Naïve Bayes classifier (ENB) is shown to have more 
than 14% accuracy improvement on average. The work in Chen et al. (2005) also has the 
similar concept in its iterative pseudo relevance feedback approach. As reported in Chen et al. 
(2005), the enhanced SVM classifiers consistently achieve improvement. 

Latent source-destination mappings are explored in Sarawagi et al. (2003) and Zhang and 
Lee (2004b). The cross-training (CT) approach (Sarawagi, Chakrabarti, & Godbole, 2003) 
extracts the mappings from the first semi-supervised classification phase using the source 
documents as the training sets. Then, the destination documents are augmented with the latent 
mappings for the second semi-supervised classification phase to complete the integration. The 
co-bootstrapping (CB) approach (Zhang & Lee, 2004b) exploits the predicted 
source-destination mappings to repeatedly refine the classifiers. The experimental results 
show that both CT and CB outperform ENB (Sarawagi, Chakrabarti, & Godbole, 2003; Zhang 
& Lee, 2004b). 

In Zhang and Lee (2004a), a cluster shrinkage (CS) approach, in which the feature 
weights of all objects in a document category are shrunk toward the category centroid, is 
proposed. Therefore, the cluster-binding relationships among all documents of a category are 
strengthened. The experimental results show that the CS-enhanced Transductive SVMs give 
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significant improvement to the original T-SVMs and consistently outperform ENB. 

In Wu et al. (2005) and Ho et al. (2006), the parent-children information embedded in 
hierarchical taxonomies is intentionally extracted. Based on the hierarchical characteristics, 
Wu et al. extend the CS and CB approach to improve the integration performance. In Ho et al. 
(2006), an enhanced approach called EHCI is proposed to further extract the hierarchical 
relationships as a conceptual thesaurus. Their results show that the implicit hierarchical 
information can be effectively used to boost the accuracy performance. 

The semantic information embedded in the source taxonomy has not been discussed in 
past studies. This observation motivates us to study the embedded taxonomical semantic 
information and its effectiveness. 

3.2 Overview of the Maximum Entropy Model Classifiers 
In our proposed SFE scheme, we use the Maximum Entropy (ME) model classifiers to 
perform the main integration task. Here, we provide a brief overview of the ME model as the 
background of our work. More details can be found in Berger et al. (1996). In ME, the entropy 

( )H p  for a conditional distribution ( | )p y x  is used to measure the uniformity of ( | )p y x , 
where y is an instance of all outcomes Y in a random process and x denotes a contextual 
environment of the contextual space X, or the history space. To express the relationship 
between x and y, we can have an indicator function ( , )f x y  (usually known as feature 
function) defined as: 

1           if ( ) has the defined relationship
( , )

0 else                                       
x, y

f x y   (1) 

The entropy ( )H p  is defined by: 
( ) ( | ) log ( | )

x X
H p p y x p y x   (2) 

The Maximum Entropy Principle is to find a probability model *p C  such that: 
* arg max ( )

p C
p H p  (3) 

where C is a set of allowed conditional probabilities. There are, however, two constraints: 
{ } { }p pE f E f  (4) 

and 
( | ) 1

y Y
p y x  (5) 

where { }pE f  is the expected value of f with the empirical distribution ( , )p x y as defined in 
Equation 6 and { }pE f  is the observed expectation of f with the observed distribution ( )p x  
from the training data as defined in Equation 7. 
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,
{ } ( , ) ( , )p

x y
E f p x y f x y  (6) 

,
{ } ( ) ( | ) ( , )p

x y
E f p x p y x f x y  (7) 

As indicated in [10], the conditional probability ( | )p y x  can be computed by: 

1( | ) exp ( , )
( ) i i

i
p y x f x y

z x
 (8) 

where i  is the Lagrange multiplier for feature if , and ( )z x  is defined as 

( ) exp ( , )i i
y i

z x f x y  (9) 

With the improved iterative scaling (IIS) algorithm (Darroch & Ratcliff, 1972; Berger, Pietra, 
& Pietra, 1996), the i  values can be estimated. Then, the classifiers are built according to 
the ME model and the training data. 

3.3 Hierarchical Taxonomy Integration 
Previous integration research for hierarchal taxonomy integration mainly can be classified into 
two categories: clustering-based (Cheng & Wei, 2008) and classification-based (Ho, Chen, & 
Yang, 2006; Zhu, Yang, & Lam, 2004; Chen, Ho, & Yang, 2007). The clustering-based 
approach has the advantage in handling manifold taxonomies which may even have small 
overlaps and in performing integration without a priori training work. Therefore, the 
application of the clustering-based approach is much more general. The effectiveness of the 
clustering-based approach, however, depends on the clustering parameters. For inexperienced 
users, finding optimal clustering parameters will be very challenging. 

Although the classification-based approach is more appropriate for handling taxonomies 
which have significant overlaps, it cannot handle the subtle relationships embedded in 
categories. For example, CatRelate uses five types of hierarchical relationships in a taxonomy 
to help catalog integration (Zhu, Yang, & Lam, 2004), and an integration scheme called EHCI 
uses a hierarchical weighting mechanism to strengthen the integration effectiveness (Ho, Chen, 
& Yang, 2006; Chen, Ho, & Yang, 2007). Nonetheless, CatRelate only discusses the 
hierarchical relationships on a category basis with a set of simple rules. It may suffer from 
complicated hierarchical relationships when handling large taxonomies. In contrast, EHCI’s 
hierarchical weighting mechanism considers the influences of category labels of more 
comprehensive neighboring levels on a document basis. The experimental results reported in 
Ho et al. (2006) and Chen et al. (2007) also show that EHCI is effective for handling large 
taxonomies. Therefore, we use EHCI as our baseline to study the effectiveness of the proposed 
SFE approach. The following gives a brief overview for EHCI. 
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In EHCI, the conceptual relationships (category labels) are first extracted from the 
hierarchical taxonomy structure as a thesaurus (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 
2007). Then, the features of each document are extended with the thesaurus by adding the 
weighted label features. A weighting formula is designed to control the impact of the semantic 
concepts of each hierarchical level. Equation 10 calculates the EHCI feature weight ,

e
x df of 

each term x in document d, where Li is the relevant label weight assigned as 1 2i  with an 
i-level depth, ,x df is the original weight, and  is used to control the magnitude relation. 
The weight ,x df  is assigned by x iTF TF , where xTF is the term frequency of x, and i 
denotes the number of the stemmed terms in each document. The label weight Li of each 
thesaurus is exponentially decreased and accumulated based on the increased levels. 

, ,
0

(1 )e x
x d x dn

ii

L
f f

L
 (10) 

Table 1 shows the label weights of different levels, where L0 is the document level, L1 is 
one level upper, and so on to Ln for n levels upper. The label weighting scheme uses a 
power-law distribution to avoid over-emphasis on the least related hierarchical levels. To 
build the enhanced classifiers for destination categories, the same enhancement on hierarchical 
label information is also applied to the destination taxonomy to strengthen the discriminative 
power of the classifiers. 

Although the EHCI approach employs only the embedded hierarchical information with a 
simple power-law distribution, the integration accuracy performance can be effectively 
improved. As reported in Chen et al. (2007), the EHCI approach outperforms a 
straightforward classification scheme that does not employ any embedded information to help 
hierarchical taxonomy integration. 

 

 

Table 1. The label weights assigned for different levels. 
Hierarchical Level Label Weight 

Document Level (L0) 1/20 

One Level Upper (L1) 1/21 

Two Levels Upper (L2) 1/22 

… … 

n Levels Upper (Ln) 1/2n 
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4. Hierarchical Taxonomy Integration with Semantic Feature Expansion 

The proposed semantic feature expansion (SFE) approach is to use extracted representative 
terms of a category as the implicit semantic information to help the corresponding integration 
process. In the following, the overall processing flow of SFE is presented first. Related 
approaches incorporated in the integration process are then described. Finally, the SFE 
approach is elaborated. 

4.1 Integration Process 
To apply SFE to hierarchical taxonomies, a hierarchical taxonomy integration approach 
(EHCI) (Ho, Chen, & Yang, 2006; Chen, Ho, & Yang, 2007) is considered as the baseline. 
Currently, classifiers based on the Maximum Entropy (ME) model are used because of its 
prominent performance in many tasks, such as natural language processing (Berger, Pietra, & 
Pietra, 1996) and flattened taxonomy integration (Wu, Tsai, & Hsu, 2005). Figure 2 shows the 
entire integration process flow of the SFE approach. 

Destination
Hierarchical

Catalog

Web Pages Crawler
Document Parsing

and Feature Extraction

Hypernyms in
InfoMap Extraction

Integrate EHCI 
Features and
SFE Features

Document
Transferring and

ME Training

Document
Transferring and
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ME Model
Integrated

Results
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Hierarchical

Catalog

Web Pages Crawler
Document Parsing

and Feature Extraction

Hypernyms in
InfoMap Extraction

Integrate EHCI 
Features and
SFE Features

Document
Transferring and

ME Testing

Figure 2. The processing flow for hierarchical taxonomy integration with 
semantic feature expansion. 



 

 

                    Hierarchical Taxonomy Integration Using                 429 

Semantic Feature Expansion on Category-Specific Terms 

4.2 Semantic Feature Expansion 
To further improve the integration performance, the semantic information of inter-taxonomy 
documents is explored in the proposed approach to perform semantic feature expansion (SFE). 
The main idea is to augment the feature space of each document with representative topic 
words. As noted in Tseng et al. (2006), the hypernyms of documents can be considered as the 
candidates of the representative topic words for the documents. Hereby, SFE adopts a similar 
approach to Tseng et al. (2006) to first select important term features from the documents and 
then decide the representative topic terms from hypernyms. 

Since feature expansion with hypernyms intends to introduce features that are not related 
to the document topic, these irrelevant features need to be filtered out before the final 
integration work. From the aspect of improving integration accuracy, the expanded features 
that have little discriminative power among categories are considered to be removed. 
According to previous studies (Ng, Goh, & Low, 1997; Yang & Pedersen, 1997; Tseng, Lin, 
Chen, & Lin, 2006), although the 2 -test (chi-square) method is very effective in feature 
selection for text classification, it cannot differentiate negatively related terms from positively 
related ones. For a term t and a category c, their 2  measure is defined as: 

2
2 ( )

( , ) T T F F

T F F T T F F T

N N N N N
t c

N N N N N N N N
 (11) 

where N is the total number of the documents, TN ( FN ) is the number of the documents of 
category c (other categories) containing the term t, and TN ( FN ) is the number of the 
documents of category c (other categories) not containing the term t. 

Therefore, the correlation coefficient (CC) method is suggested to filter out the 
negatively related terms (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006). Since N is 
the same for each term, we can omit it and get the following equation to calculate the CC 
value for each term: 

( )
( , ) T T F F

T F F T T F F T

N N N N
CC t c

N N N N N N N N
 (12) 

Since the categories in a taxonomy are in a hierarchical relationship, SFE only considers the 
categories of the same parent in the CC method. 

Then, the five terms with the highest CC values are selected to perform semantic feature 
expansion. As indicated by (Ng, Goh, & Low, 1997; Tseng, Lin, Chen, & Lin, 2006), the 
terms selected with CC are highly representative for a category. The category-specific terms 
of a source category, however, may not be topic-genetic to the corresponding destination 
category. Therefore, SFE uses them as the basis to find more topic-indicative terms for each 
category. 
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Some lexical dictionaries, such as InfoMap (http://infomap.stanford.edu/) and WordNet 
(http://wordnet.princeton.edu/), can be used to extract the hypernyms of the category-specific 
terms to get the topic indicative features of a category. For example, if a category has the 
following five category-specific terms: output, signal, circuit, input, and frequency, SFE gets 
the following hypernyms from InfoMap: signal, signaling, sign, communication, abstraction, 
relation, etc. These hypernyms are more topic-generic than the category specific terms. Then, 
SFE calculates the weight xHW  of each extracted hypernym x by: 

1

x
x n

ii

HF
HW

HF
 (13) 

where xHF is the term frequency of x, and i denotes the number of the hypernyms in each 
category. 

For each document kd , its SFE feature vector ksf  is changed by extending Equation 
10 as follows: 

(1 ) (1 )k k k ksf l h f  (14) 

where kl  denotes the feature vector of the hierarchical thesaurus information computed from 
the left term of Equation 10, kh denotes the feature vector of the topic-generic terms of the 
category computed from Equation 13, and kf  denotes the original feature vector of the 
document derived from the right term of Equation 10. 

5. Experimental Analysis 

We have conducted experiments with real-world catalogs from Yahoo! and Google to study 
the performance of the SFE scheme with a Maximum Entropy classification tool from 
Edinburgh University (ver. 20041229) (Zhang, 2004). Two integration procedures were 
implemented. The baseline is ME with EHCI (EHCI-ME), and the other is ME with EHCI and 
SFE (SFE-ME). We measured three scores with different  and  values: precision, recall, and 
F1 measures. Both integration directions were evaluated: from Google to Yahoo! and from 
Yahoo! to Google. The experimental results show that SFE-ME can effectively improve the 
integration performance. For recall measures, SFE-ME outperforms EHCI-ME in more than 
60% of all cases. For precision measures, SFE-ME outperforms EHCI-ME in more than 90% 
of all cases. SFE-ME can also achieve the best recall and precision performance. For F1 
measures, SFE-ME outperforms EHCI-ME in nearly 95% of all the cases. The experimental 
results are detailed in the following. 
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5.1 Data Sets 
In the experiments, five directories from Yahoo! and Google were extracted to form two 
experimental taxonomies (Y and G). Table 2 shows these directories and the number of the 
extracted documents after ignoring the documents that could not be retrieved. As in previous 
studies (Agrawal & Srikan, 2001; Sarawagi, Chakrabarti, & Godbole, 2003; Ho, Chen, & 
Yang, 2006), the documents appearing in only one category were used as the training data 
(|Y-G| and |G-Y|), and the common documents were used as the testing data (|Y Test| and |G 
Test|). Since some documents may appear in more than one category in a taxonomy, |Y Test| is 
slightly different from |G Test|. For simplicity consideration, the level of each hierarchy was 
controlled to be at most three in the experiments. If the number of the documents of a certain 
subcategory was less than 10, the subcategory would be merged upward to its parent category. 

Table 2. The experimental categories and the numbers of documents. 
Category Google |G-Y| |G Class| |G Test| Yahoo! |Y-G| |Y Class| |Y Test| 
Autos /autos/… 1096 12 427 /automotive/… 1681 24 436 
Movies /movies/… 5188 26 1422 /movies_Film/… 7255 27 1344 
Outdoors /outdoors/… 2396 16 208 /outdoors/… 1579 19 210 
Photo /photography/… 615 9 235 /photography/… 1304 23 218 
Software /software/… 5829 27 641 /software/… 1876 25 691 
Total ʳ  15124 90 2932 ʳ  13695 108 2918 

Before the integration, we used the stopword list in Frakes and Baeza-Yates (1992) to 
remove the stopwords, and the Porter algorithm (Porter, 1980) for stemming. In the integration 
process, we allow that each source document xd can be integrated into multiple destination 
categories (one-to-many) as we find in real-world taxonomies. Different  values from 0.1 
to 1.0 were applied to the source taxonomy ( s ) and the destination taxonomy ( d ). To both 
taxonomies, the same  value ranging from 0.1 to 1.0 was applied for semantic feature 
expansion. The lexical dictionary used in the experiments was InfoMap to get hypernyms. As 
reported in Tseng et al. (2006), we believe that WordNet will result in similar hypernym 
performance. 

In the experiments, we measured the integration performance of EHCI-ME and SFE-ME 
in six scores: macro-averaged recall (MaR), micro-averaged recall (MiR), macro-averaged 
precision (MaP), micro-averaged precision (MiP), macro-averaged F1 measure (MaF), and 
micro-averaged F1 measure (MiF). The standard F1 measure is defined as the harmonic mean 
of   recall   and   precision:   1 2F rp r p ,   where   recall   is  computed  as 

 correctly integrated documents
all test documents

r       and     precision     is     computed     as 

 correctly integrated documents
all predicted positive documents

p .  The  micro-averaged  scores  were  measured by 
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computing the scores globally over all categories in five directories. The macro-averaged 
scores were measured by first computing the scores for each individual category, then 
averaging these scores. The recall measures are used to reflect the traditional performance 
measurements on integration accuracy. The precision measures show the degrees of false 
integration. The standard F1 measures show the compromised scores between recall and 
precision. 

5.2 Experimental Results and Discussion 
Although we have measured the integration performance with different  values, this paper 
only lists part of the results in five different d values, which are 0.1, 0.3, 0.5, 0.7, and 0.9. 
Considering , we have also measured the integration performance with different values 
ranging from 0.1 to 1.0. When  is between 0.1 and 0.4, SFE-ME is superior to EHCI-ME. For 
different integration directions, we found that the optimal  value may be also different. Here, 
we only report two cases,  = 0.4 for integrating documents from Google to Yahoo! and  = 
0.1 for integrating documents from Yahoo! to Google, in which the SFE approach can show 
its effectiveness. 

Table 3 and Table 4 show the macro-averaged and micro-averaged recall results of 
EHCI-ME and SFE-ME. The macro-averaged and micro-averaged precision results of 
EHCI-ME and SFE-ME are listed in Table 5 and Table 6. In Table 7 and Table 8, the 
macro-averaged and micro-averaged F1 measure results of EHCI-ME and SFE-ME are listed, 
respectively. 

From Table 3 (a), we can notice that SFE-ME is superior to EHCI-ME in more than 75% 
of all MaR scores for the integrations from Google to Yahoo!. Although Table 3 (b) shows 
that SFE-ME can only achieve nearly 40% improvements for the integration from Yahoo! to 
Google, SFE-ME has consistent MaR performance. Two reasons cause this 
lower-than-average MaR performance. First, the recall performance of SFE-ME is not as good 
as EHCI-ME for categories with few positive examples in the Y G integration process. This 
can be justified from the superior MiR performance of SFE-ME. Second, the d  weight 
increasingly mitigates the improvements of SFE in the MaR measures of SFE-ME in a 
consistent way in the Y G integration process. The MiR performance of SFE-ME also has 
the similar mitigation. 

From Table 3, we can also notice that SFE-ME achieves the best MaR of 0.8935 when 

s = 0.1 and d  = 0.1 for the G Y integration process. Although Table 3 (b) shows that 
EHCI-ME achieves the best MaR for the Y G integration process, SFE-ME indeed achieves 
higher MaR of 0.9501 in our experiment while s = 0.1, d  = 0.1, and  = 0.4. 
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Table 3. The macro-averaged recall (MaR) measures of EHCI-ME and SFE-ME. 
 EHCI-ME SFE-ME (  = 0.4) 

d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.8023 0.7419 0.7320 0.7334 0.7175 0.8935 0.8618 0.8500 0.8489 0.8678 

0.20 0.7636 0.7342 0.7274 0.7331 0.7192 0.7867 0.7845 0.7769 0.7742 0.7950 

0.30 0.7481 0.7336 0.7315 0.7333 0.7210 0.7347 0.7501 0.7511 0.7476 0.7539 

0.40 0.7422 0.7329 0.7283 0.7313 0.7197 0.7185 0.7367 0.7403 0.7374 0.7398 

0.50 0.7362 0.7299 0.7272 0.7301 0.7204 0.7085 0.7310 0.7340 0.7337 0.7346 

0.60 0.7317 0.7261 0.7262 0.7292 0.7207 0.7081 0.7284 0.7338 0.7338 0.7338 

0.70 0.7262 0.7242 0.7233 0.7263 0.7191 0.6941 0.7227 0.7333 0.7338 0.7338 

0.80 0.7231 0.7205 0.7232 0.7253 0.7235 0.6922 0.7208 0.7277 0.7304 0.7338 

0.90 0.7192 0.7205 0.7191 0.7262 0.7243 0.6922 0.7146 0.7224 0.7275 0.7304 

1.00 0.7186 0.7200 0.7181 0.7216 0.7211 0.7020 0.7138 0.7214 0.7223 0.7243 

(a) The results of the integration from Google to Yahoo! 
 

 EHCI-ME SFE-ME (  = 0.1) 

d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.9022 0.7937 0.8287 0.8312 0.8290 0.8833 0.8285 0.8165 0.8079 0.8059 

0.20 0.8798 0.7817 0.8205 0.8258 0.8242 0.8514 0.8261 0.8138 0.8124 0.8069 

0.30 0.8294 0.7787 0.8185 0.8254 0.8228 0.8394 0.8240 0.8138 0.8117 0.8059 

0.40 0.8256 0.7777 0.8177 0.8269 0.8214 0.8357 0.8237 0.8144 0.8121 0.8079 

0.50 0.8200 0.7769 0.8169 0.8226 0.8201 0.8350 0.8237 0.8141 0.8124 0.8090 

0.60 0.8180 0.7761 0.8169 0.8223 0.8217 0.8357 0.8233 0.8141 0.8127 0.8097 

0.70 0.8165 0.7771 0.8198 0.8212 0.8204 0.8350 0.8233 0.8144 0.8127 0.8100 

0.80 0.8162 0.7768 0.8157 0.8205 0.8189 0.8350 0.8233 0.8151 0.8131 0.8107 

0.90 0.8161 0.7735 0.8103 0.8184 0.8157 0.8340 0.8230 0.8151 0.8138 0.8117 

1.00 0.8202 0.8585 0.8640 0.8638 0.8633 0.8449 0.8425 0.8367 0.8367 0.8360 

(b) The results of the integration from Yahoo! to Google 
 
From table 4, we can notice that SFE-ME is superior to EHCI-ME in more than 60% of 

all MiR scores for the G Y integration process and in nearly 75% of all MiR scores for the 
Y G integration process. Among these cases, SFE-ME can achieve the best G Y MiR of 
0.9301 and the best Y G MiR of 0.9055 when s = 0.1 and d  = 0.1. When d  = 0.1 
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and s  0.3, EHCI-ME outperforms SFE-ME for both MaR and MiR in the G Y 
integration process. Considering the d  influences of Google’s hierarchical thesaurus 
information shown in Table 3 (b), the experimental results suggest that over-emphasizing the 
weight of Google’s hierarchical thesaurus information will impair the effectiveness of SFE. 

Table 4. The micro-averaged recall (MiR) measures of EHCI-ME and SFE-ME. 
 EHCI-ME SFE-ME (  = 0.4) 

   d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.8561 0.7999 0.7873 0.7945 0.7718 0.9301 0.9096 0.8972 0.8969 0.9109 

0.20 0.8174 0.7807 0.7770 0.7934 0.7732 0.8369 0.8400 0.8325 0.8133 0.8284 

0.30 0.7989 0.7797 0.7787 0.7907 0.7746 0.7838 0.8030 0.8058 0.7921 0.7962 

0.40 0.7921 0.7797 0.7777 0.7873 0.7742 0.7698 0.7831 0.7917 0.7835 0.7849 

0.50 0.7866 0.7787 0.7773 0.7862 0.7746 0.7640 0.7804 0.7821 0.7814 0.7825 

0.60 0.7801 0.7773 0.7770 0.7859 0.7742 0.7650 0.7790 0.7818 0.7818 0.7818 

0.70 0.7780 0.7766 0.7760 0.7831 0.7739 0.7585 0.7756 0.7814 0.7818 0.7818 

0.80 0.7763 0.7739 0.7760 0.7828 0.7763 0.7575 0.7746 0.7780 0.7790 0.7818 

0.90 0.7736 0.7739 0.7732 0.7831 0.7766 0.7575 0.7715 0.7760 0.7777 0.7790 

1.00 0.7729 0.7736 0.7725 0.7801 0.7749 0.7619 0.7715 0.7753 0.7753 0.7766 

(a) The results of the integration from Google to Yahoo! 
 
 EHCI-ME SFE-ME (  = 0.1) 

  d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.8952  0.8620 0.8535  0.8559 0.8545 0.9055 0.8713 0.8699  0.8696  0.8679  

0.20 0.8709  0.8504 0.8490  0.8535 0.8538 0.8768 0.8590 0.8572  0.8613  0.8610  

0.30 0.8613  0.8480 0.8487  0.8538 0.8535 0.8651 0.8555 0.8538  0.8579  0.8548  

0.40 0.8583  0.8473 0.8477  0.8545 0.8531 0.8610 0.8552 0.8542  0.8572  0.8528  

0.50 0.8524  0.8470 0.8473  0.8528 0.8528 0.8596 0.8548 0.8528  0.8552  0.8446  

0.60 0.8501  0.8466 0.8473  0.8531 0.8535 0.8593 0.8559 0.8524  0.8531  0.8442  

0.70 0.8473  0.8473 0.8504  0.8524 0.8531 0.8579 0.8555 0.8514  0.8453  0.8439  

0.80 0.8470  0.8470 0.8483  0.8521 0.8524 0.8572 0.8552 0.8483  0.8432  0.8425  

0.90 0.8466  0.8459 0.8442  0.8514 0.8511 0.8562 0.8548 0.8473  0.8429  0.8425  

1.00 0.8518  0.8562 0.8624  0.8627 0.8620 0.8552 0.8545 0.8463  0.8425  0.8418  

(b) The results of the integration from Yahoo! to Google 
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From Table 5, we can notice that SFE-ME is superior to EHCI-ME in more than 80% of 
all MaP for the G Y integration process, and in all cases for the Y G integration process. In 
addition, SFE-ME achieves the best G Y MaP of 0.6662 when s  = 1.0 and d  = 0.1, 
and the best Y G MaP of 0.4663 when s  = 0.7 and d  = 0.9. 

Table 5. The macro-averaged precision (MaP) measures of EHCI-ME and SFE-ME.  
 EHCI-ME SFE-ME (  = 0.4) 

    d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.1936 0.3273 0.3356 0.3426 0.3425 0.2122 0.2980 0.3139 0.3158 0.3557 

0.20 0.3491 0.3482 0.3475 0.3459 0.3559 0.3664 0.3696 0.3572 0.3477 0.3510 

0.30 0.3890 0.3537 0.3486 0.3460 0.3547 0.4707 0.3960 0.3793 0.3523 0.3486 

0.40 0.4090 0.3613 0.3497 0.3482 0.3543 0.5794 0.4137 0.3797 0.3723 0.3531 

0.50 0.4253 0.3657 0.3515 0.3521 0.3560 0.6279 0.4649 0.3971 0.3778 0.3552 

0.60 0.4373 0.3734 0.3565 0.3588 0.3603 0.6613 0.4918 0.4192 0.3556 0.3624 

0.70 0.4455 0.3811 0.3611 0.3681 0.3655 0.6600 0.5592 0.4397 0.3663 0.3916 

0.80 0.4532 0.3876 0.3686 0.3735 0.3559 0.6607 0.6403 0.4872 0.3876 0.3333 

0.90 0.4548 0.3904 0.3747 0.3853 0.3607 0.6636 0.6543 0.5738 0.4321 0.3548 

1.00 0.4565 0.4125 0.3862 0.4070 0.3625 0.6662 0.6575 0.5955 0.5043 0.4304 

(a) The results of the integration from Google to Yahoo! 
 
 EHCI-ME SFE-ME (  = 0.1) 

    d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.0565  0.1643 0.1952  0.1985 0.2004 0.0969 0.3236 0.3816  0.4159  0.4198  

0.20 0.0963  0.1969 0.2090  0.2070 0.2090 0.1744 0.3439 0.3997  0.4362  0.4498  

0.30 0.1171  0.2047 0.2080  0.2097 0.2120 0.2051 0.3566 0.4041  0.4470  0.4575  

0.40 0.1279  0.2050 0.2085  0.2100 0.2126 0.2190 0.3749 0.4083  0.4510  0.4640  

0.50 0.1345  0.2032 0.2096  0.2105 0.2145 0.2231 0.3785 0.4100  0.4525  0.4642  

0.60 0.1375  0.2034 0.2104  0.2100 0.2164 0.2273 0.3827 0.4106  0.4544  0.4646  

0.70 0.1375  0.2042 0.2128  0.2106 0.2153 0.2318 0.3854 0.4120  0.4551  0.4663  

0.80 0.1378  0.2052 0.2138  0.2109 0.2149 0.2354 0.3854 0.4132  0.4555  0.4651  

0.90 0.1382  0.2055 0.2132  0.2102 0.2121 0.2366 0.3840 0.4147  0.4534  0.4636  

1.00 0.1018  0.1012 0.1024  0.1019 0.1017 0.1661 0.1797 0.1847  0.1876  0.1881  

(b) The results of the integration from Yahoo! to Google 
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From Table 6, SFE-ME achieves the best G Y MiP of 0.6078 when s = 0.9 and d  
= 0.1, and the best Y G MiP of 0.2988 when s  = 0.7 and d  = 0.9. In addition, 
SFE-ME achieves MiP improvements in 90% of all cases for the G Y integration process 
and in all cases for the Y G integration process. These results show that the number of 
incorrectly integrated documents in SFE-ME is much lower. With high precision performance, 
SFE-ME may reduce a lot of time for users in manually verifying the integration correctness. 

Table 6. The micro-averaged precision (MiP) measures of EHCI-ME and SFE-ME. 
 EHCI-ME SFE-ME (  = 0.4) 

   d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.1156 0.2504 0.2715 0.2740 0.2817 0.1205 0.2835 0.3099 0.2782 0.3687 

0.20 0.2253 0.3018 0.2947 0.2822 0.3080 0.1569 0.3661 0.3570 0.3504 0.3629 

0.30 0.2741 0.3170 0.2984 0.2858 0.3107 0.2737 0.3777 0.3946 0.3515 0.3642 

0.40 0.3136 0.3329 0.3002 0.2897 0.3115 0.4721 0.3834 0.3776 0.3866 0.3688 

0.50 0.3494 0.3390 0.3033 0.2695 0.3135 0.5581 0.4556 0.3862 0.3879 0.3666 

0.60 0.3763 0.3475 0.3101 0.3101 0.3199 0.6061 0.4663 0.4032 0.3147 0.3700 

0.70 0.3906 0.3583 0.3192 0.3336 0.3317 0.6041 0.4924 0.3952 0.3180 0.4151 

0.80 0.3966 0.3759 0.3334 0.3485 0.3414 0.6016 0.5824 0.4335 0.3229 0.3452 

0.90 0.3987 0.3826 0.3402 0.3734 0.3540 0.6078 0.5871 0.4726 0.3509 0.3800 

1.00 0.3992 0.4332 0.3772 0.4198 0.3568 0.5999 0.5894 0.4937 0.3879 0.3974 

(a) The results of the integration from Google to Yahoo! 
 
 EHCI-ME SFE-ME (  = 0.1) 

     d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.0677 0.1269 0.1172  0.1118 0.1111 0.0943 0.1818 0.2089  0.2344  0.2686  

0.20 0.0999 0.1226 0.1145  0.1121 0.1120 0.1183 0.1903 0.2184  0.2485  0.2829  

0.30 0.1087 0.1186 0.1137  0.1123 0.1122 0.1269 0.1929 0.2278  0.2534  0.2860  

0.40 0.1125 0.1158 0.1131  0.1124 0.1119 0.1318 0.1948 0.2299  0.2585  0.2909  

0.50 0.1142 0.1152 0.1127  0.1122 0.1121 0.1365 0.1984 0.2303  0.2606  0.2943  

0.60 0.1147 0.1131 0.1123  0.1121 0.1118 0.1418 0.2042 0.2304  0.2612  0.2983  

0.70 0.1147 0.1128 0.1122  0.1119 0.1117 0.1469 0.2131 0.2301  0.2597  0.2988  

0.80 0.1150 0.1134 0.1121  0.1118 0.1116 0.1503 0.2152 0.2312  0.2591  0.2985  

0.90 0.1151 0.1127 0.1116  0.1117 0.1110 0.1522 0.2154 0.2340  0.2581  0.2988  

1.00 0.0979 0.0867 0.0865  0.0870 0.0865 0.1190 0.1388 0.1417  0.1468  0.1573  

(b) The results of the integration from Yahoo! to Google 
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For many applications, a compromised performance may be required with a high F1 score. 
From Table 7 and Table 8, we can notice that SFE-ME is superior to EHCI-ME in nearly 90% 
of all MaF and MiF scores for the G Y integration process, and it has consistent 
improvements in all cases for the Y G integration process. In our experiments with  = 0.4, 
SFE-ME achieves the highest MaF (0.6839) and the highest MiF (0.6764) when s  = 0.6 
and d  = 0.1 for the G Y integration process. For the Y G integration process, SFE-ME 
achieves the highest MaF (0.5919) and the highest MiF (0.4413) when  = 0.1, s  = 0.7, and 

d  = 0.9. These two tables show that the SFE scheme can mostly get more balanced 
improvements in both recall and precision considerations. 

Table 7. The macro-averaged F1 (MaF) measures of EHCI-ME and SFE-ME. 
 EHCI-ME SFE-ME (  = 0.4) 

d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.3119 0.4556 0.4602 0.4670 0.4637 0.3430 0.4428 0.4585 0.4603 0.5046 

0.20 0.4792 0.4724 0.4703 0.4700 0.4761 0.5000 0.5025 0.4894 0.4799 0.4870 

0.30 0.5118 0.4773 0.4722 0.4702 0.4755 0.5738 0.5184 0.5041 0.4789 0.4767 

0.40 0.5274 0.4840 0.4725 0.4718 0.4748 0.6415 0.5299 0.5020 0.4948 0.4780 

0.50 0.5391 0.4872 0.4739 0.4751 0.4765 0.6658 0.5684 0.5154 0.4988 0.4789 

0.60 0.5475 0.4932 0.4782 0.4810 0.4804 0.6839 0.5871 0.5336 0.4790 0.4852 

0.70 0.5522 0.4994 0.4817 0.4886 0.4847 0.6766 0.6305 0.5497 0.4887 0.5106 

0.80 0.5572 0.5040 0.4884 0.4931 0.4771 0.6761 0.6782 0.5836 0.5065 0.4584 

0.90 0.5572 0.5064 0.4927 0.5035 0.4816 0.6776 0.6831 0.6396 0.5422 0.4776 

1.00 0.5583 0.5245 0.5022 0.5205 0.4825 0.6836 0.6845 0.6525 0.5939 0.5399 

(a) The results of the integration from Google to Yahoo! 
 
 EHCI-ME SFE-ME (  = 0.1) 

d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.1064 0.2723 0.3160 0.3205 0.3227 0.1746 0.4654 0.5201 0.5492 0.5521 

0.20 0.1737 0.3145 0.3332 0.3310 0.3334 0.2895 0.4856 0.5361 0.5676 0.5776 

0.30 0.2053 0.3242 0.3317 0.3344 0.3372 0.3296 0.4978 0.5400 0.5765 0.5837 

0.40 0.2215 0.3245 0.3322 0.3349 0.3378 0.3471 0.5153 0.5439 0.5800 0.5895 

0.50 0.2311 0.3221 0.3336 0.3352 0.3400 0.3521 0.5187 0.5454 0.5813 0.5899 

0.60 0.2355 0.3223 0.3346 0.3345 0.3426 0.3574 0.5225 0.5459 0.5829 0.5904 

0.70 0.2354 0.3234 0.3379 0.3352 0.3411 0.3629 0.5251 0.5472 0.5834 0.5919 

0.80 0.2358 0.3247 0.3388 0.3356 0.3405 0.3672 0.5251 0.5484 0.5839 0.5911 

0.90 0.2364 0.3248 0.3376 0.3345 0.3367 0.3686 0.5236 0.5497 0.5823 0.5902 

1.00 0.1811 0.1810 0.1831 0.1823 0.1820 0.2776 0.2962 0.3026 0.3064 0.3071 

(b) The results of the integration from Yahoo! to Google 
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We have also measured these six scores for the s  = 0.0, d  = 0.0, and  = 0.0 cases, 
which means that the integration is performed by only ME without EHCI and SFE 
enhancements. In this configuration, for the G Y integration process, ME can achieve very 
prominent recall performance in MaR (0.9578) and MiR (0.9616) but with poor precision 
performance in MaP (0.0111) and MiP (0.0111). Its MaF and MiF are 0.022 and 0.0219, 
respectively. For the Y G integration process, ME has similar performance. Although ME 
can attain the best recall performance, these results show that it allows many documents of 
other categories to be incorrectly integrated. 

Table 8. The micro-averaged F1 (MiF) measures of EHCI-ME and SFE-ME. 
 EHCI-ME SFE-ME (  = 0.4) 

  d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.2037 0.3814 0.4037 0.4075 0.4128 0.2133 0.4322 0.4607 0.4246 0.5249 

0.20 0.3533 0.4353 0.4273 0.4163 0.4406 0.2642 0.5099 0.4997 0.4897 0.5047 

0.30 0.4082 0.4508 0.4314 0.4199 0.4435 0.4058 0.5138 0.5298 0.4869 0.4998 

0.40 0.4493 0.4666 0.4332 0.4236 0.4443 0.5852 0.5148 0.5113 0.5177 0.5018 

0.50 0.4838 0.4723 0.4363 0.4306 0.4463 0.6450 0.5753 0.5170 0.5184 0.4993 

0.60 0.5077 0.4803 0.4433 0.4447 0.4527 0.6764 0.5834 0.5320 0.4487 0.5023 

0.70 0.5201 0.4904 0.4523 0.4679 0.4644 0.6725 0.6024 0.5249 0.4521 0.5422 

0.80 0.5250 0.5060 0.4664 0.4823 0.4742 0.6706 0.6649 0.5568 0.4565 0.4789 

0.90 0.5262 0.5121 0.4725 0.5057 0.4863 0.6744 0.6668 0.5874 0.4835 0.5108 

1.00 0.5264 0.5554 0.5069 0.5458 0.4887 0.6713 0.6682 0.6032 0.5171 0.5257 

(a) The results of the integration from Google to Yahoo! 
 

 EHCI-ME SFE-ME (  = 0.1) 

  d 

s 
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90 

0.10 0.1258  0.2212 0.2061 0.1977 0.1967 0.1707 0.3009 0.3369 0.3692  0.4102  

0.20 0.1792  0.2142 0.2017 0.1981 0.1980 0.2085 0.3115 0.3481 0.3857  0.4259  

0.30 0.1930  0.2081 0.2005 0.1986 0.1983 0.2213 0.3148 0.3596 0.3913  0.4286  

0.40 0.1989  0.2038 0.1995 0.1986 0.1978 0.2287 0.3174 0.3623 0.3972  0.4338  

0.50 0.2014  0.2028 0.1989 0.1983 0.1982 0.2355 0.3220 0.3627 0.3995  0.4365  

0.60 0.2021  0.1996 0.1983 0.1981 0.1977 0.2434 0.3298 0.3627 0.4000  0.4408  

0.70 0.2021  0.1991 0.1982 0.1978 0.1975 0.2508 0.3413 0.3623 0.3973  0.4413  

0.80 0.2025  0.2000 0.1980 0.1976 0.1974 0.2558 0.3439 0.3633 0.3964  0.4408  

0.90 0.2027  0.1989 0.1972 0.1975 0.1964 0.2584 0.3441 0.3667 0.3952  0.4412  

1.00 0.1757  0.1575 0.1572 0.1580 0.1572 0.2089 0.2387 0.2428 0.2501  0.2650  

(b) The results of the integration from Yahoo! to Google 
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The experimental results show that SFE-ME can get more improved integration 
performance with the SFE scheme. Compared with EHCI-ME, SFE-ME shows that the 
semantic information of the hypernyms of the category-specific terms can be used to facilitate 
the integration process between two hierarchical taxonomies. 

6. Conclusion 

In recent years, the taxonomy integration problem has been progressively studied for 
integrating two homogeneous hierarchical taxonomies. Many types of implicit information 
embedded in the source taxonomy are explored to improve the integration performance. The 
semantic information embedded in the source taxonomy, however, has not been discussed in 
previous research. 

In this paper, an enhanced integration approach (SFE) is proposed to exploit the semantic 
information of the hypernyms of the category-specific terms. Augmented with these additional 
semantic category features, the source documents can be more precisely integrated into the 
correct destination category in the experiments. The experimental results show that SFE-ME 
can achieve the best macro-averaged F1 score and the best micro-averaged F1 score. The 
results also show that the SFE scheme can get precision and recall enhancements in a 
significant portion of all cases. 

There are still some issues left for future study. For example, the effectiveness of SFE on 
other classification schemes, such as SVM and NB, may need to be investigated to decide 
which one has the best integration performance. In addition, deciding the optimal parameter 
configuration is a classical classification problem which is also important to the taxonomy 
integration problem. Although mining more valuable implicit information can be a tough 
challenge, we believe that the integration performance can be further improved with 
appropriate assistance of more effective auxiliary information and advanced classifiers. 
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Automatic Wikibook Prototyping via Mining Wikipedia 

Jen-Liang Chou*, and Shih-Hung Wu* 

Abstract 

Wikipedia is the world’s largest collaboratively edited source of encyclopedic 
knowledge. Wikibook is a sub-project of Wikipedia that is intended to create a 
book that can be edited by various contributors, similar to how Wikipedia is 
composed and edited. Editing a book, however, requires more effort than editing 
separate articles. Therefore, methods of quickly prototyping a book is a new 
research issue. In this paper, we investigate how to automatically extract content 
from Wikipedia and generate a prototype of a Wikibook as a start point for further 
editing. Applying search technology, our system can retrieve relevant articles from 
Wikipedia. A table of contents is built automatically and is based on a two-stage 
searching method. Our experiments show that, given a keyword as the title of a 
book, our system can generate a table of contents, which can be treated as a 
prototype of a Wikibook. Such a system can help free textbook editing. We 
propose an evaluation method based on the comparison of system results to a 
traditional textbook and show the coverage of our system. 

Keywords: Wikipedia, Wikibook, Table of Contents Generation 

1. Introduction 

The ability to quickly construct a free encyclopedia, such as Wikipedia, has shown that the 
Web 2.0 has been successful. Community and interactivity among users on the Internet has 
become a popular topic. A project named “Science Online,” which brought the wiki scheme to 
schools, lets students participate in collaborative writing (Forte & Bruckman, 2007). 
Wikipedia is useful in college education, both for general topics (Lally & Dunford, 2007, 
May/June) and for specific topics, such as physics (Muchnik, Itzhack, Solomon, & Louzoun, 
2007). In this paper, we focus on another project of the Wikimedia Foundation, Wikibook, 
which is also useful in the classroom (Sajjapanroj, Bonk, Lee, & Lin, 2006). Wikibook 
provides free textbooks on the Internet via the Wiki system, letting global users edit the 
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contents of textbooks. Creating a book without supporting data, however, is difficult. An 
expert or a system that can provide a general framework and useful references for a book is of 
much help. Thus, we propose an automatic Wikibook prototyping system that can pick 
relevant articles from Wikipedia and construct a hierarchy as the table of contents for a given 
topic. Our system consists of information retrieval and web mining technology. 

In previous work, the TOC and anchor text of a Wikipedia entry has been used to form 
the TOC of a Wikibook (Yang, Han, Oh, & Kwak, 2007). A relevant research area is Topic 
Maps. Topic Maps are analogous to the Table of Contents (TOC) of a textbook. Users can 
realize and memorize the relevant concepts of a topic. “Topic Maps for learning” (TM4L) 
(Dicheva & Dichev, 2005) is an application of Topic Maps. These methods, though, mostly 
rely on humans without using information retrieval technology, which can provide a 
considerable amount of relevant information. Studies in knowledge acquisition provide some 
hints. Semi-automatic methods can aggregate a domain ontology via Internet search 
(Roberson & Dicheva, 2007). 

We propose a method that can help prototype a Wikibook automatically using the 
contents from Wikipedia. In the following sections, we will describe our methodology in 
Section 2, system implementation in Section 3, experimental results in Section 4, discussions 
in Section 5, and give conclusion in the final section. 

2. Methodology 

We propose a framework for Wikibook prototyping which involves several modules. These 
modules can be replaced to fulfill the needs of different requirements. For example, we might 
customize the system for different languages, users of different ages, or topics with different 
contexts. 

2.1 Corpus Preparation 
The first module is the preparation of a corpus. We can use the whole of Wikipedia, certain 
language versions, or subsets as the searching target. The system then extracts and analyzes 
contents from the corpus. As a knowledge source, Wikipedia provides not only the content but 
also a lot of links to contexts, which are also valuable. We will extract keywords from the 
content of Wikipedia pages, and will find related terms from the anchor text in these pages. 

2.2 Search Engine and Anchor Text Miner 
The second module is a search engine and an anchor text miner. As mentioned above, relevant 
topics can be found not only from a full text keyword search, but also from links in Wikipedia. 
This module is important from the technical point of view. Our system searches relevant 



 

 

              Automatic Wikibook Prototyping via Mining Wikipedia            445 

topics and their hyponyms using information retrieval technology. On the other hand, the 
anchor text miner can extract related terms from the anchor texts of the retrieved pages. 

2.3 Hierarchical Construction 
Given relevant topics, our system then generates a hierarchy. This hierarchy can be viewed as 
the table of contents of a Wikibook for further editing. 

3. Implementation issues 

Our methodology gives a general idea on how to generate a Wikibook automatically within a 
flexible framework. In the following sections, we discuss our system and experiments on 
computer science topics in both the English and Chinese versions of Wikipedia. Figure 1 
shows the architecture of our system. 

 

User

Wikipedia 
Articles

indexing

  1.  Heading 1
  2.  Heading 2

2.1  sub-heading
  3.  Heading 3

3.1  sub-heading
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Sub-Search

Anchor text
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anchor text

Article title
(sub-heading)

Figure 1. System Architecture 
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3.1 Corpus Choice 
We chose Wikipedia as our corpus in the experiments for two reasons. First, the idea of the 
availability of the corpus; it is an ample resource of information which is available for every 
potential Wikibook editor and there are no copyright issues in regards to using the content for 
a Wikibook. Second, the quality of content: there is more professional knowledge in 
Wikipedia than in general Websites, and potential editors can compile the content from 
Wikipedia with less effort. 

3.2 Search Strategy 
Our search strategy is automatic two-stage iterative searching. The system takes a term as the 
query and performs context searching via a standard information retrieval process. We use 
pseudo-relevance feedback as our searching algorithm. The resulting set of the first search will 
be used as the corpus in the second stage. 

The system ranks the search results according to a traditional TF-IDF scoring function 
that is restated in Formula (1) where Scorei is the ranking score of an article, i denotes an 
article, j denotes a term occurring within the query, and T denotes the number of terms in the 
query. TFj is the frequency of j occurring within the article title, TFij is the frequency that term 
j occurs in article i. We assume ij itoken T j  as the number of the rest words after 
deleting term j from the article i, where Ti is the number of terms in the article i: 

2

T j j ij j
i

j j
j j

j

TF IDF TF IDF
Score

tokenTF IDF
                             (1) 

where log 1j
j

D
IDF

D
, measures term j involvement in other documents, D is all the 

articles in the index, Dj is articles that contain j. 

Table 1 shows a collection of four documents, and the corresponding value of each 
variable in Formula (1) is shown in Table 2. Suppose the query terms are “A B C”, then T is 3, 
and i can be 1 to 4 as the Doc ID in Table 1. Then, the Score of a document according to the 
formula is shown in the last column of Table 2. Where Score1 = 0.551; Score2 = 0.260; Score3 
= 0.675; Score4 = 0, we rank these scores from high to low. From this, we can attain results 
such that, if we input the query “A B C”, the system will output the order of the document as 3, 
1, 2, 4. 
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Table 1. Example Documents 
Doc ID Title Contents 

1 A A B A E C 

2 B B D F 

3 C C A C E 

4 D D E F B 

Table 2. Calculate the value of each notion using Formula (1) 
i j TFj TFij |D| |Dj| IDFj tokenij Scorei 

1 A 1 2 4 2 0.477 3 0.551 

1 B 0 1 4 3 0.368 4 0 

1 C 0 1 4 2 0.477 4 0 

2 A 0 0 4 2 0.477 3 0 

2 B 1 1 4 3 0.368 2 0.260 

2 C 0 0 4 2 0.477 3 0 

3 A 0 1 4 2 0.477 3 0 

3 B 0 0 4 3 0.368 4 0 

3 C 1 2 4 2 0.477 2 0.675 

4 A 0 0 4 2 0.477 4 0 

4 B 0 1 4 3 0.368 3 0 

4 C 0 0 4 2 0.477 4 0 

This means the frequency of a term occurring both in the title and in the article is 
important. The higher the term frequency is, the higher the score of the article will be. 

After filtering out the noise in the resulting set, such as redirected pages, our system 
maintains the top N documents, which are the highest score articles, as the resulting set for 
further search and the user can customize the arbitrary parameter N. Our system thus finds the 
first level of relevant topics from the resulting set. These relevant topics can be treated as the 
backbone of a Wikibook. 

3.3 Sub-Topic Finding 
Since the extracted topics from the first search often contain the original query term, our 
system removes the original query term string and uses the reduced topics as the query terms 
in the second stage search based on the result of the first stage search. For example, if we 
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input the keyword “Operating system (܂ᄐߓอ)” and retrieve the topic “Linux Operating 
System (Linux܂ᄐߓอ)”, the shortened query will be “Linux”. As another example, if we 
input the keyword “Operating system (܂ᄐߓอ)” and retrieve the topic “Windows Operating 
System (ီ࿗܂ᄐߓอ),” the shortened query will be “Windows (ီ࿗)”. This query 
reformulation is the same both in the English version and the Chinese version. 

Our system extracts keywords from the second stage search result as the sub-level topics 
of the output TOC. This is a recursive method; we can find the sub-sub-topics in the same 
manner. For example, we can further search for sub-topics of “Linux” or “Windows”. After 
finding the sub-level topics, our system will extract other related terms from the anchor text in 
these Wikipedia articles. As such, every related topic we find corresponds to a related 
Wikipedia article, which might be useful content of a Wikibook. There are two approaches for 
mining the related terms: one is to extract anchor texts only in the short definition of an article; 
the other is to extract from the whole article. Our system then combines these related terms as 
the sub-level topics. 

Figure 2. User Interface 
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4. Experiment 

4.1 Dataset Preparation 
We downloaded the English and Chinese version of Wikipedia dump data from the Wikimedia 
downloads website (http://download.wikimedia.org/enwiki/). Then, we parsed the content and 
stored it in a MySQL database. In the following experiment, our system uses the data under 
the title and content XML tags. A searching tool is built based on the Lucene open source 
information retrieval API (http://lucene.apache.org/). The user interface is shown in Figure 2. 

Our system can generate a TOC for any given title without other information. To 
evaluate the quality of our system, we conducted several experiments to find differences with 
previous work. As the target of comparison, we first observe a manually edited Wikibook 
entitled “Operating System Design”; part of the TOC is shown in Table 3. The first four level 
one topics in this TOC are general concepts, which are independent of the title of the 
Wikibook. The sub-topics of and after the fifth topic, however, are very likely to have been 
generated automatically. We also find that the sub-topic of the fifth topic, “Kernel 
Architecture,” states the concept of “Kernel Architecture” or gives some illustrations. Our 
system can help to automatically generate this part of a Wikibook TOC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Partial view of the Wikibook TOC of “Operating 
System Design”, which was edited manually 

1. Preface 
2. Introduction 
3. Case studies 
4. History 
5. Kernel Architecture 

5.1 Monolithic Kernels 
5.1.1 Solaris 
5.1.2 Linux 
5.1.3 Windows 9x 

5.2Microkernels 
5.2.1 QNX 

5.3Exokernel 
5.3.1 XOK 

5.4 Hybrid Kernels 
5.4.1 Windows NT/XP 
5.4.2 Mac OSX 
5.4.3 BeOS 

6. Initialisation 
6.1 Boot Loaders 
6.2 Hardware Initialisation 

7. Processes 
… 
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4.2 Experiment 1: Generate the TOC of “Operating System Design” via 
our System 

As the first example, to derive a TOC about operating systems, we input the query term 
“Operating system,” into our system. The system automatically generates a corresponding 
TOC, shown in Table 4. The arbitrary N can be 10, 20, 50, 100, or 1000. In our experiment, 
we choose the Top 20 (N=20) as our output number. The user can choose different N for 
greater or fewer topics in our system. The sub-topics are ranked according to Formula (1), 
discussed in Section 3.2. Next, the system uses the scheme described in Section 3.3 to perform 
a second stage search. In this case, the sub-topics at the second level are adequate. For 
example, the sub-topics of “Linux operating system” in Table 4 are instances of the Linux 
operating system. The scheme in Section 2.3 is effective. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Partial view of automatically 
generated TOC of “Operating 
System” 

Table 5. Partial view of automatically 
generated TOC of the Chinese 
version “ὁ㋏㍅(Operating 
System)” 

1. Operating system 
2. THE operating system 
3. IBM AIX (operating system) 
4. CPM operating system 
5. Disk operating system 
6. Kent Applicative Operating System 
7. Linux operating system 

7.1 Distro 
7.2 Flask operating system 
7.3 Sabayon 
7.4 Red hatter 

8. Operating system advocacy 
9. Real-time operating system 

9.1 Rubus (disambiguation) 
9.2 RTMOS (Real-Time Multiprogramming 

Operating System) 
10. VSE (operating system) 

10.1 Exec 
10.2 Protected procedure call 

11. Computer network operating system 
11.1 Faceless process 

12. Network operating system 
12.1 Faceless process 
12.2 Brazil (operating system) 

13. Solaris (operating system) 
14. Pick Operating System 
15. Darwin (operating system) 
16. Operating system/kernel 

16.1 Flask operating system

 อߓᄐ܂.1
 อߓᄐ܂ۯ2.64
3.Linux܂ᄐߓอ 
  3-1.Ebuntu 
4.Darwin (܂ᄐߓอ) 
5.ီ࿗܂ᄐߓอ 
  5-1.AUTOEXEC.BAT 
  5-2.JavaOS 
  5-3.Xfwm 
  5-4.WINGs Display Manager 
 ।ڣอᖵߓᄐ܂.6
 อழၴ।ߓᄐ܂.7
8.პຌ܂ᄐߓอ٨। 
9.ီ࿗܂ᄐߓอ95 
10.პຌီ࿗܂ᄐߓอᚨش࿓ڤૠտ૿
٨।ڤࠤ
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Table 5 shows the result of the same experiment in the Chinese version of Wikipedia. 
The result is similar but with less recall. Since the size of the Chinese version of Wikipedia is 
much smaller than the English version of Wikipedia, this is a reasonable result. Table 6 shows 
the results of searching and mining the anchor text, which is described in Section 2.3. As we 
can see, the topic has * notion, meaning it is the anchor text, and the results show more topic 
information differences with Table 3. 

Table 6. Partial view of automatically generated TOC of the Chinese version 
“Operating System”, plus mining anchor texts from short definition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 อߓᄐ܂.1
    * Օীᖙߓ܂อ 
    * ֫ᖲ 
    *  
    * ಖᖋ᧯ 
    * ༊Եߓڤอ 
    * ླྀ 
    * ࿏᧯ 
… 
 อߓᄐ܂ۯ2.64
    * EM64T 
    * IA-64 
    * Linux 
    * Windows 
… 
3.Linux܂ᄐߓอ 
    * 386 
    * Apache 
    * DEV C++ 
    * GNOME 
    * GNU ՠ࿓ 
… 
  3-1.Ebuntu 
    * 12ִ 4ֲ 
 ڣ2006 *    
    * Edubuntu 
… 
4.Darwin (܂ᄐߓอ) 
 ڣ2000 *    
ڣ2002 *     4ִ 
ڣ2003 *     7ִ 
ڣ2005 *     5ִ 

…
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4.3 Experiment 2: Using the crawling method to generate the TOC of 
“Operating System Design” 

We perform the same experiment with the crawling method described in the literature (Yang, 
Han, Oh, & Kwak, 2007), which takes a full TOC of a manually edited Wikipedia entry as the 
input, and outputs a more detailed TOC. The partial result is shown in Tables 7 and 8. 

Table 7. Partial result of the TOC generated by the crawling method for the 
English version of “operating system” 

1 Technology 
    1.1 Program execution  
      * Kernel 
      * Process(computing) 
    1.2 Interrupts 
      * interrupt 
      * kernel 
      * register 
      * stack 
… 
2 Security 
      * classified information 
      * emulates 
      * file transfer protocols 
      * firewalls 
      * Government Department of Defense 
      * p-code 
      * Popek and Geldberg virtualization requirment 
      * sandbox 
      * Trusted Computer System Evaluation Criteria 
    2.1 Example: Microsoft Windows 
      * access privileges 
      * administrator 
    … 
3 File system support in modern operating systems 
    3.1 Linux and UNIX 
      * ext2 
      * ext3 
      * FAT 
      * GFS 
      * GFS2 
      * HFS 
      * ISO 9660 
   … 
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4 Graphical user interfaces 
      * CDE 
      * context switch 
      * COSE 
      * GNOME 
      * graphical user interface 
    … 
5 History 
      * 80286 
      * AmigaOS 
      * batch processing 
      * Control Data Corporation 
   … 
6 Mainframes 
      * ALGOL 
      * B5000 
      * Burroughs Corporation 
    … 

Table8. Partial result of the TOC generated by the crawling method for the 
Chinese version of “operating system” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 ᖵ 
      * ՠ܂ඈݧ 
      * ։ழᖲࠫ 
      * ։ཋߓڤอ 
 ڤᑌڻޅ *      
 ছזڣ1980 1.1    
 ڣ1947 *      
 ڣ1963 *      
 ڣ1964 *      
 זڣ1970 *      
      * AT&T 
      * Cߢ 
      * Direct access storage device 
      * IBM System/360 
      * Maurice V. Wilkes 
      * Multics 
      * Multics 
      * Unix 

     * Օীሽᆰ 
…
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4.4 Evaluation by Comparing to Traditional Textbook 
To measure the coverage of our system results over a traditional textbook, we compare the 
generated TOC to the TOC of a traditional textbook and show the hits and the precision. Table 
9 is a partial TOC adopted from a textbook “Operating System Concepts” (Silberschatz, 
Galvin, & Gagne, 2001). A traditional textbook provides a suitable coverage, such that we can 
estimate how much content can be put into one book. 

As in the TOC of the current Wikibook in Table 3, this TOC begins with general topics 
which can be used for each book. Then, it follows the main ideas, which are the most 
important topics. The order of the topics might be different according how the authors rank 
them. Nevertheless, there should be some causality, from problem to solution or from general 
idea to special case. In order to achieve such a goal (finding more relationships between topics 
(Völkel, Krötzsch, Vrandecic, Haller, & Studer, 2006), more AI technology might be involved, 
such as frame or logical inference. A predefined frame might guide a system to search general 
information for a Wikibook. Logic can be used to infer the causality between topics. 

Table 9. TOC of an “Operating System” Textbook 
1  Introduction 

1.1 What Is an Operating System? 
1.2 Mainframe Systems 

… 
2  Computer-System Structures 

2.1 Computer-System Operation 
… 
3  Operating-System Structures 

3.1 System Components 
… 
4  Processes 

4.1 Process Concept 
… 
Chapter 5  Threads … 

We separate the number of matching hits and precision rate of the first level and second 
level in the following table. Table 10 shows the result using the English version. The number 
of first level and second level topics in the textbook is 23 and 177, respectively. Table 11 
shows the results using the Chinese version. The number of first level and second level topics 
in the textbook is 22 and 191, respectively. We adopt two matching criteria: rigid for exact 
matching and relaxed for partial matching. Table 12 shows the evaluation results of English 
version using the crawling method, and Table 13 shows that of the Chinese version. 
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In this paper, we perform three experiments on our system. Searching only method 
cannot provide the user more precise concepts because of the low number of hits. The 
searching method plus mining short definitions, though, can give more hits than the above and 
attain better precision. On the other hand, the searching method plus mining full document 
definitions can give better hits, but lose some precision. The result is very similar to the result 
of crawling method, which requires a manually edited TOC as input. 

Comparing our method plus mining anchor text with crawling method, we discuss two 
directions. In the first level, we can gain the same number of hits. In the second level, if the 
user wants fewer sub-topics for further editing, mining short definitions can archive precision 
close to crawling method. On the other hand, if the user wants to get more relative subtopics, 
mining full document definitions attains more hits than crawling method. In the Chinese 
version, we can get the same results. 

Table 10. Hits and precision of the TOC of “Operating system” 

 Searching method Searching plus mining Short 
definition 

Searching plus mining full 
document definition 

 # of 
output Hits Precision # of 

output
Hits 

(Short) Precision # of 
output 

Hits 
(Long) Precision 

First Level 20 5 0.250   

Second 
Level 

(Relax) 
17 

3 0.176 

340 

68 0.200 

2154 

284 0.132 

Second 
Level 

(Rigid) 
2 0.118 36 0.106 93 0.043 

Table 11. Hits and precision of the TOC of Chinese version “Operating system” 

 Searching method Searching plus mining Short 
definition 

Searching plus mining full 
document definition 

 # of 
output Hits Precision # of 

output
Hits 

(Short) Precision # of 
output 

Hits 
(Long) Precision 

First Level 10 2 0.200   

Second 
Level 

(Relax) 
5 

1 0.200 

179 

43 0.240 

1273 

150 0.118 

Second 
Level 

(Rigid) 
0 0.000 21 0.117 61 0.048 
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Table 12. Hits and precision of the TOC of “Operating system” 
                  using crawling method 

 Searching method [18] 

 # of 
output Hits Precision

First Level 13 5 0.385 

Second Level 
(Relax) 

406 
105 0.259 

Second Level 
(Rigid) 46 0.113 

Table 13. Hits and precision of the TOC of Chinese version  
“Operating system” using crawling method 

 Searching method [18] 

 # of 
output Hits Precision

First Level 8 3 0.375 

Second Level 
(Relax) 

280 
54 0.193 

Second Level 
(Rigid) 30 0.107 

5. Discussion and Future Work 

According to the observations in the previous section, we would like to discuss issues that 
might improve the results of automatic Wikibook prototyping. 

5.1 Fast Prototyping of Wikibooks 
Speeding up editing collaboratively is our goal. Our system can generate a prototype of a 
Wikibook on any topic. We present our system to depict the TOC in relevant concepts of a 
book, and it looks like the TOC in general books. It will let editors get relevant concepts of the 
given topic more quickly and with a good starting point. The TOC generated by our system 
can be a prototype for editors to revise. Thus, it saves time and stimulates interest in editors to 
revise it. Since the topics are related articles in Wikipedia, they also provide contents of that 
topic. Thus, our system not only provides TOC but also some related content. 

5.2 Identification of Hypernym/Hyponym Relation 
To know the relations between relevant topics is very important in this application, especially 
the relation between the upper and lower concepts, known as the hypernym/hyponym relation. 
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With this relation, a tree structure can be built and a hierarchy formed (Nguyen, Matsuo, & 
Ishizuka, 2007). Supervised (Aggarwal, Gates, & Yu, 1999) or semi-supervised methods 
(Huang, Zhang, & Lam, 2006) of hierarchical clustering algorithms are promising methods. 
After finding a set of relevant documents, a system may be clustered into a hierarchy 
according to the content. The titles of these articles can be treated as the TOC. A 
knowledge-based approach is also possible. We can try to identify the hypernym/hyponym 
relation between relevant titles by using WordNet (Farreres, Rodríguez, & Gibert, 2002) or 
SUMO. 

5.3 Importance of an Article 
Currently, our system ranks relevant documents according to the scoring function of Lucene. 
We might combine the result with Google’s PageRank (Page, Brin, Motwani, & Winograd, 
1999). Each page of the Wikipedia entry contains a link to a page that reports how many 
entries link to this entry, cf. Figure 3. The more inward the link is, the higher the importance 
of this entry is. With the analysis of the link relation, importance can be ranked 
(Wissner-Gross, 2006). This information helps to decide whether the TOC should contain this 
entry or not. The relatedness of words in Wikipedia might also help (Ponzetto & Strube, 2007). 
In the future, we will acquire more TOC of good Wikibooks as a training set to develop a 
better process via machine learning algorithm. Clustering algorithms are promising tools for 
this task. 

 
Figure 3. “What links here” in each page of Wikipedia entry links to a  

page that reports all the entries that link to this entry 

6. Conclusion 

We proposed an automatic process that can generate a Wikibook by mining the content of 
Wikipedia. Our method involves document searching, keyword extraction, related term 
mining, and hierarchy construction technology. We built an experimental system and 
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conducted primary experiments using both English and Chinese. The results showed the 
automatically generated TOC might help the community to edit a Wikibook more rapidly. 

Previous works have not evaluated their system. In this paper, we proposed a method to 
evaluate the result by comparing to the traditional textbook and report the hits and precision. 
This gives a standard to compare systems. We find that using the anchor text from the short 
definition or the full article of Wikipedia will give better precision and more useful terms. The 
major improvement over previous work is that we do not need a manually edited TOC. Our 
system uses a searching mechanism that requires only the title as a search keyword, rather 
than using the full TOC in a manually edited article. 
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